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Abstract
Psychogenic non-epileptic seizures (PNES) are a nonspecific, umbrella category that is used to 
collect together a range of atypical neurophysiological responses to emotional distress, physiological 
stressors and danger. Because PNES mimic epileptic seizures, children and adolescents with 
PNES usually present to neurologists or to epilepsy monitoring units. After a comprehensive 
neurological evaluation and a diagnosis of PNES, the patient is referred to mental health services 
for treatment. This study documents the diagnostic formulations – the clinical formulations about 
the probable neurophysiological mechanisms – that were constructed for 60 consecutive children 
and adolescents with PNES who were referred to our Mind-Body Rehabilitation Programme for 
treatment. As a heuristic framework, we used a contemporary reworking of Janet’s dissociation 
model: PNES occur in the context of a destabilized neural system and reflect a release of prewired 
motor programmes following a functional failure in cognitive-emotional executive control 
circuitry. Using this framework, we clustered the 60 patients into six different subgroups: (1) 
dissociative PNES (23/60; 38%), (2) dissociative PNES triggered by hyperventilation (32/60; 53%), 
(3) innate defence responses presenting as PNES (6/60; 10%), (4) PNES triggered by vocal cord 
adduction (1/60; 2%), (5) PNES triggered by activation of the valsalva manoeuvre (1/60; 1.5%) and 
(6) PNES triggered by reflex activation of the vagus (2/60; 3%). As described in the companion 
article, these diagnostic formulations were used, in turn, both to inform the explanations of 
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PNES that we gave to families and to design clinical interventions for helping the children and 
adolescents gain control of their PNES.

Keywords
Psychogenic non-epileptic seizures, functional neurological symptom disorder, conversion 
disorder, dissociative convulsions, stress seizures, dissociation

Introduction

Psychogenic non-epileptic seizures (PNES) are time-limited disturbances of motor-sensory control 
accompanied by an alteration in consciousness, but without ictal activity on electroencephalogram 
(EEG). PNES commonly present with rhythmic tremor or rigor-like movements: violent thrashing; 
complex movements such as flexion and extension; myoclonic-like movements; episodes of unre-
sponsiveness; episodes of collapse/swooning; non-epileptic auras; and shuddering, staring and 
tonic posturing (Morgan & Buchhalter, 2015). Because PNES mimic epileptic seizures, children 
and adolescents with PNES usually present to neurologists or to epilepsy monitoring units; after a 
comprehensive neurological evaluation and a diagnosis of PNES, the patient is referred to mental 
health services for ongoing treatment. This study, Part I of a two-part article, presents the diagnos-
tic formulations – the clinical formulations about the probable neurophysiological mechanisms, 
known or hypothesized – that were constructed for 60 consecutive children and adolescents with 
PNES who were referred to our Mind-Body Rehabilitation Programme for treatment. In Part II, we 
use the formulations presented here to frame discussions with patients and families, and to identify 
what treatments are most likely to help patients diagnosed with particular subtypes of PNES 
(Kozlowska, Chudleigh, et al., 2017).

More than a century ago, Janet (1889) proposed a dissociation model in which danger, severe 
stress, illness or fatigue could destabilize the neural system, disrupt the mental synthesis between 
ideas, acts, and sensory and motor functions, and cause PNES. Despite this early interest in 
PNES, the technological advances that allow contemporary researchers to study brain function 
had yet to be developed. Interest in PNES waned; research came to a halt. Notwithstanding the 
lack of progress in understanding the neurobiological mechanisms underlying PNES, up to a 
third of all patients presenting to specialist epilepsy centres continued to be diagnosed with 
PNES (Uldall, Alving, Hansen, Kibaek, & Buchholt, 2006) and to be referred to mental health 
services for treatment.

When this study was being established, neurologists and psychiatrists hypothesized that PNES 
involved a heterogeneous range of neurobiological mechanisms that varied from one patient to 
another (Baslet, 2011; Goldstein & Mellers, 2012). Figuring prominently in this context was 
Baslet’s ‘Psychogenic Non-epileptic Seizures: A Model of Their Pathogenic Mechanism’, a con-
temporary reworking of Janet’s dissociation model of PNES (Baslet, 2011). His model provided an 
overarching framework in conceptualizing our study, talking about PNES with patients and fami-
lies, and interpreting our findings. Using the language of contemporary neuroscience, Baslet (2011) 
suggested that PNES reflect a release or activation of prewired motor programmes secondary to a 
functional failure in ‘cognitive-emotional executive control circuitry’ (p. 9) in the prefrontal cortex 
(PFC) and that sudden shifts in arousal (both increases and decreases) play a central role in PNES 
pathophysiology. Under his model, multiple different mechanisms could result in PFC dysfunction 
and subsequent destabilization of the neural system, with each mechanism representing a different 
PNES subgroup.
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In parallel, scientists and clinicians working in areas nominally unrelated to PNES identified a 
broad range of animal and human responses to fear, physiological stressors and danger. These 
responses resembled, in terms of presentation, what our own team was encountering with PNES 
patients. That is, the responses were ones that could be understood as explaining some of the pres-
entations that we were seeing clinically.

In the remainder of this section, we provide a brief overview of the broad range of brain-body 
responses to fear, physiological stressors and danger. Following that, we describe how these brain–
body responses can be used to understand the clusters of clinical presentations we encountered in 
our cohort of 60 consecutive child and adolescent patients with PNES.

Innate defence responses to danger or to memories of danger

The study of innate defence responses began in the 1800s when Darwin used the terms feigning 
death to describe tonic immobility in fireflies, lizards and spiders (C. Darwin, 1839), and flight and 
utter prostration to describe the flight and the collapsed immobility responses in humans (C. 
Darwin, 1872). Subsequent research with animals and humans identified a continuum of defence 
responses – freezing, flight, fight, tonic immobility, collapsed immobility and quiescent immobil-
ity – termed the defence cascade. Two of these defence responses – tonic immobility and collapsed 
immobility – are discussed in the ‘Introduction’ section of this study because of their relevance to 
children/adolescents presenting with PNES.

Several lines of published research pointed to the clinical relevance of tonic and collapsed 
immobility in understanding PNES: case reports of soldiers and war veterans who went into states 
of collapse in response to fear during military action or in response to memories of military action 
(Kardiner, 1941; Mosso, 1896); reports of rape victims who experience what is referred to as rape-
induced paralysis (Galliano, Noble, Travis, & Puechl, 1993; Moller, Sondergaard, & Helstrom, 
2017); Stefan Bracha’s (2004) work on fainting in response to fear; Bruce Perry’s accounts of long 
periods of unresponsiveness in maltreated children (Perry & Szalavitz, 2006); and Stephen Porges’ 
(2011) work on the role of the defensive vagus in shut-down states. Based on the clinical descrip-
tions contained in this literature, we realized that in our tertiary care hospital, some of the children/
adolescents that neurologists had referred to us with a diagnosis of PNES were actually experienc-
ing tonic immobility or collapsed immobility in response to some sort of threat.

In our effort to understand the neurobiology of tonic immobility and collapsed immobility, we 
collaborated with the tenth author (P.C.), a neuroscientist, to develop a neurobiological model of 
the innate defence responses (Kozlowska, Walker, McLean, & Carrive, 2015). According to that 
model, innate defence responses are hard-wired, automatically activated motor, autonomic and 
sensory responses mediated by subcortical neural circuits. Each defence response has a signature 
neural pattern – a somatomotor component (which involves either activation or loss of tone of 
skeletal muscle), an autonomic/visceromotor component (which involves sympathetic, defensive 
parasympathetic (vagal), or mixed activation of the viscera) and a pain-processing component 
(opioid system). High states of arousal are necessary for innate defence responses to be activated. 
Children/adolescents who activate tonic immobility will present immobile, with closed eyes or an 
unfocused gaze, with or without tremors in the extremities, and will be unresponsive to external 
stimuli, including pain stimuli. Children/adolescents who activate collapsed immobility will pre-
sent with sudden collapse (fainting) that involves a loss of consciousness, a loss of muscle tone and 
sometimes a loss of continence. Because the neural signatures of tonic and collapsed immobility 
include activation of the opioid system, some clinicians have utilized naloxone – which blocks 
opioid receptors – to disrupt the neural pattern and to terminate the tonic/collapsed immobility 
response (Bruce Perry, personal communication, June 2016).1
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Hyperventilation in response to stress or danger

The autonomic system2 (which mediates changes in arousal) is tightly coupled with the skeletomo-
tor system (which mediates changes in muscle tone and muscle activity, including increased activ-
ity of muscles responsible for respiration (Dum, Levinthal, & Strick, 2016). Because of this 
coupling, when a threat is perceived, increases in arousal are accompanied by increases in respira-
tion: the body prepares itself for action. When ventilation exceeds metabolic demand, hyperventi-
lation (HV) occurs, and in susceptible individuals, HV can change brain neurophysiology in 
powerful ways.

In our clinical work with children/adolescents with PNES, we had observed that our patients 
typically presented in a state of high arousal. This clinical observation was confirmed in our 
research with children/adolescents with functional neurological symptoms, which identified 
increases in physiological arousal (Kozlowska, Palmer, et al., 2015), increases in cortical arousal 
(Kozlowska, Melkonian, Spooner, Scher, & Meares, 2017) and a state of motor readiness to emo-
tional signals (Kozlowska, Brown, Palmer, & Williams, 2013). We had also observed that many of 
our patients with PNES hyperventilated in and around the time of their PNES, and that HV appeared 
to trigger their PNES. We formally tested this hypothesis in the scientific arm of this study – the 
PNES Hyperventilation Study (Kozlowska, Rampersad, et al., 2017). We found that nearly half of 
the children/adolescents with PNES (26 of 60) had difficulty in regulating CO2 during a 
HV-challenge, and that over half those with PNES (32 out of 60) appeared to trigger their events 
with HV.

The PNES Hyperventilation Study indicated that HV was one of the mechanisms by which PFC 
function could be disrupted – triggering, in turn, PNES. HV can disrupt brain function and trigger 
PNES through two potential processes (see Kozlowska, Rampersad, et al., 2017 for review). In the 
first, cortical arousal phase of HV, it causes increased excitability in widely distributed networks 
and can therefore, via the arousal mechanisms, contribute to the functional failure of executive 
control circuitry (i.e. loss of horizontal integration of brain function). In the second hypoxic phase 
of HV, prolonged HV causes cerebral hypoxia due to constriction of cerebral arteries and can con-
tribute to a functional disconnect between the cortex and lower brain structures (i.e. loss of vertical 
integration in brain function); hypoxia disrupts the signals from the brain stem that ordinarily 
maintain both consciousness and muscle tone. Whether the two above processes should be concep-
tualized as an example of dissociation, hypoxia or mixed dissociation-hypoxia process is an open 
question. What is clear, however, is that in vulnerable individuals, HV appears to disrupt PFC func-
tion in significant ways and can result in a release of subcortical motor programmes: PNES (for a 
clinical example see Chandra et al., 2017).

Non-Hyperventilation-related hypoxia in response to threat

From the established medical literature, we were aware that in addition to HV-induced hypoxia, 
non-epileptic seizures could occur as a function of hypoxia secondary to disruptions of the breathing 
cycle or by reflex activations of the defensive vagus (Gastaut, 1974; Stephenson, 1990). Concretely, 
as part of an atypical response to stress, some individuals will experience hypoxia-induced non-
epileptic seizures because they occlude their airway (via vocal cord adduction, holding the breath or 
the valsalva manoeuvre, all in response to distress) or because activation of the defensive vagus 
results in decreased blood flow to the brain (via reflex activations of the defensive vagus in response 
to fear, pain or exposure to blood). We were also aware that this group of non-epileptic seizures 
involved an unacknowledged conceptual overlap between what neurologists typically conceptual-
ized a ‘physiologic’ non-epileptic seizures (those caused by a known physiological mechanisms) 
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and ‘psychogenic’ non-epileptic seizures (those caused by distress or underlying psychological con-
flicts or stressors; Engelsen, Gramstad, Lillebø, & Karlsen, 2013). That is, the neurophysiological 
mechanisms that caused hypoxia-induced non-epileptic seizures could also be triggered by distress, 
fear, panic, sudden fright or pain.

Other dissociative brain processes in the face of threat

Finally, four additional bodies of research contribute to our understanding of other stress-induced, 
dissociative brain processes at work in patients who present with PNES. This additional research 
involves (1) methodological advances in analysing EEG and brain-imaging data, specifically in 
studies with patients with PNES, (2) the emerging literature about changes that occur in the brain 
as a function of cortical arousal, (3) the literature on dissociation and (4) arousal-related priming, 
activation, and proliferation of glial cells, which increases the individual’s sensitivity to stress. 
Taken together, these four bodies of work identify brain processes that are likely to contribute to 
dissociation – a loss of connectivity between brain areas that typically work together – which can-
not be understood or conceptualized by any of the mechanisms described earlier in this section.

Neurophysiological studies with adult patients with PNES have been reviewed exhaustively 
by Perez and colleagues (Perez et al., 2015; Perez & LaFrance, 2016). In a nutshell, neurophysi-
ological studies suggest that functional failures of executive control circuitry reflect alterations 
in connectivity in resting-state brain networks involved in the following: emotion regulation and 
arousal, cognitive control, self-referential processing, and motor planning and coordination. 
Studies in adults and adolescents show that functional failures also include changes in EEG 
synchrony, both within cortical brain systems and between cortical and subcortical brain systems 
(Barzegaran, Carmeli, Rossetti, Frackowiak, & Knyazeva, 2016; Umesh, Tikka, Goyal, Sinha, & 
Nizamie, 2017).

In parallel, an emerging body of work has examined how changes in cortical arousal facilitate 
shifts in network organization – to weaken cortical networks and to strengthen subcortical ones – 
as part of the brain’s response to threat (Arnsten, 2015; de Kloet, Joels, & Holsboer, 2005; Hermans 
et al., 2011). Exposure to acute, uncontrollable stress causes catecholamine release in the PFC and 
impairs both PFC function and connectivity within cortical networks (Arnsten, 2015), causing a 
disruption (dissociation) of horizontal integration of brain function.

Research on dissociation suggests that, on the molecular level, cortical arousal also involves 
secretion of endogenous opioids, endogenous cannabinoids and other anaesthetic neurochemicals 
(Lanius, 2014) that can likewise impair function in frontal areas – the cingulate cortex, orbitofron-
tal cortex and insula cortex, all of which have high levels of opioid receptors (Lanius, 2014). 
Anaesthetic neurochemicals may also disrupt the vertical integration of brain function – the normal 
relationship between the cortex and subcortical brain systems – thereby interfering with signals 
from the brain stem that ordinarily maintain consciousness, and leading to changes in the individ-
ual’s level of consciousness (Lanius, 2014).

Finally, recent advances have found that glial cells – the cells that surround neurones and that 
support and interact with them – are involved in the brain’s response to stress (Ji, Chamessian, & 
Zhang, 2016; von Bernhardi, Eugenin-von Bernhardi, Flores, & Eugenin Leon, 2016; Wu, Dissing-
Olesen, MacVicar, & Stevens, 2015). In restorative mode, glial cells stabilize and regulate neural 
networks, suppress inflammation and promote healing. In response to stress, they switch into 
defensive mode. In defensive mode, they proliferate and secrete pro-inflammatory neurochemicals 
that excite neurones and that disrupt brain function by interfering with the homeostatic regulation 
of synapses. In this way, glial cells play a major role in priming the brain’s sensitivity to stress and 
in stress-related changes in network organization. Glial cells also induce stress-related neuroplastic 



Kozlowska et al.	 145

changes that maintain chronic pain (Ji et al., 2016). Similar, stress-induced glial-mediated neuro-
plastic changes are implicated in patients whose PNES (and other functional neurological symp-
toms) become chronic.

Taken together, the above bodies of work provide us with a basic understanding of the broad range 
of dissociative brain processes’ that are triggered in the brain in response to increases in cortical 
arousal, and that disrupt brain function and connectivity. In daily life, a broad range of stressors – ill-
ness, injury, emotional distress secondary to adverse life events, or psychological trauma – can activate 
cortical arousal mechanisms (catecholamine release, secretion of anaesthetic neurochemicals and net-
work reorganization) and, in susceptible individuals, shift brain organization into a defensive state. In 
this defensive state, the brain switches from reflective voluntary control of behaviour to reflexive 
modes of behaviour. Salient emotional signals are prioritized, and motor control is modulated by emo-
tion-processing regions (Arnsten, 2015; Blakemore, Sinanaj, Galli, Aybek, & Vuilleumier, 2016; 
Hermans et al., 2011). An unwanted by-product of this process may be the emergence of functional 
neurological motor symptoms, including PNES. Whereas functional motor symptoms, both positive 
and negative (abnormal gait, functional tremor, functional tics, motor weakness and limb paresis), 
appear to reflect a relatively stable reorganization of neural networks in response to stress, PNES 
appear to reflect transient disruptions of neural networks – disruptions that affect the vertical integra-
tion of brain function and that cause a disconnect between cortical and subcortical systems (Barzegaran 
et al., 2016). The result is a temporary ‘glitch’ in top-down executive control over the motor regions in 
a time-limited release of motor programmes in the basal ganglia, midbrain and brain (PNES).

Aims of the study

As we have seen above, PNES is an umbrella category that incorporates a range of atypical neuro-
physiological responses to emotional distress, physiological stressors and danger. In the sections 
below, our goal is to determine the extent to which these mechanisms can be clinically incorpo-
rated, on a case-by-case basis, into diagnostic formulations that identify distinct subgroups of 
patients with PNES. We use the expression diagnostic formulations to refer to working hypotheses 
that take into account and synthesize all available information about the child/adolescent’s presen-
tation, including information obtained from the child/adolescent, family and neurologist, comple-
mented by the team’s clinical knowledge and its own study of the scientific and clinical literature. 
The diagnostic formulation provides both a shared understanding of the problem and a roadmap for 
the journey of treatment (Gordon, Riess, & Waldinger, 2005; Kozlowska, 2013).

Methods

Participants

The study was approved by the Sydney Children’s Hospital Network Ethics Committee. Participants 
and their legal guardians provided written informed consent in accordance with the Australian 
National Health and Medical Research Council guidelines.

The participants of the study consisted of 60 consecutive children and adolescents – 42 girls and 
18 boys, aged 8–17.67 years (mean = 13.45; standard deviation (SD) = 2.61) – who were referred to 
Psychological Medicine for treatment of PNES after assessment in the Department of Neurology 
during a 5-year period (April 2011–March 2016). The time from onset of PNES ranged from 1 day to 
48 months (median = 2 months). In 28 cases (47%), the PNES presented alongside other functional 
neurological symptoms; in 10 cases (17%), the PNES presented alongside a chronic pain presenta-
tion; and in 22 cases (36.7%), the PNES were the primary presenting symptom. All families reported 
antecedent stressors (range = 1–12; mean = 4.63; median = 4; see Table 1). Comorbid symptoms and 
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diagnoses are documented in Table 1. Other clinical characteristics, intelligence quotient, comorbid 
neurological conditions and the semiology of PNES are documented in Tables 2 and 3. All children 
in the study participated in the PNES Hyperventilation Study, which provided neurophysiological 
data and HV-challenge profiles (Kozlowska, Rampersad, et al., 2017). Eight children/adolescents 
were excluded from the previous study because of partial pressure of carbon dioxide (PCO2) data 
were not collected, and four because PCO2 data were inadequate (technical difficulties or child’s lack 
of cooperation during the HV challenge).

Procedure

All patients with PNES completed a comprehensive neurology assessment, were diagnosed with 
PNES and were referred to Psychological Medicine for treatment. The Psychological Medicine assess-
ment involved a comprehensive family assessment (Kozlowska, English, & Savage, 2013). The team 

Table 1.  Clinical characteristics of the 60 patients with PNES.

Clinical characteristic N %

Antecedent stressors
Illness event (accident, infection or relapse of a chronic illness) 30 50
Family conflict 26 43
Maternal mental illness (typically anxiety or depression) 26 43
Being bullied 23 38
Loss due to separation 21 35
Paternal mental illness 16 27
Loss due to death 13 22
Exposure to domestic violence 12 20
Sexual abuse 8 13
Physical abuse 7 12
Neglect 7 12
Comorbid psychiatric disorders (DSM-IV-TR criteria) and psychiatric symptoms
Anxiety disorder (excluding PTSD and panic disorder) 22 36.67
PTSD 7 11.67
Panic disorder 7 11.67
Depression 10 16.67
Behavioural disorder 3 5
Eating disorder 1 1.67
Dissociative symptoms (loss of memory or capacity to recognize family 
members)

18 30

Comorbid pain 41 68.33
Disturbed sleep 23 38.33
Any nonspecific somatic symptom (excluding pain and sleep) 53 88.33
Dizziness 40 66.67
Breathlessness 33 55
Nausea 25 41.67
Fatigue 25 41.67
Heart pounding 20 33.33
Pins and needles 11 18.33

PNES: psychogenic non-epileptic seizures; DSM-IV-TR: Diagnostic and Statistical Manual of Mental Disorders, 4th Edition, 
Text Revision; PTSD: posttraumatic stress disorder.
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made its diagnostic formulation, based on all available information, at the completion of the family 
assessment and provided an explanation about the child/adolescent’s PNES – the lay version of the 
diagnostic formulation – to the child/adolescent and family. Baseline respiratory rates were recorded 
at the beginning of the child’s individual assessment, which included a determination whether the 
child/adolescent was capable of using a biofeedback tool called MyCalmBeat. The formulation/expla-
nation was updated if new information came to light during the inpatient treatment admission.

Data analysis

The data analysis was qualitative. The diagnostic formulations – our clinical formulation about the 
probable neurophysiological mechanisms underlying particular presentations – are clustered below 
into subgroups of similar patients (PNES subgroups, see Figure 1). Normal reference ranges were 
used to evaluate elevated baseline respiratory rate and heart rate (Fleming et al., 2011).

To make the qualitative data clinically relevant to mental health clinicians, we provide a clinical 
vignette for each PNES subgroup. With the consent of the patients and parents, Vignettes 1, 2, 5 
and 6 describe individual patients in particular PNES subgroups. Vignettes 3 and 4 are amalgams 
put together from similar cases.

Table 2.  Comorbid neurological conditions and intelligence quotient.

Comorbid neurological conditions and intelligence quotient n %

Current comorbid neurological condition

Epileptic seizures (one was part of a congenital syndrome, see below) 7 11.67
Congenital condition with neurological manifestations (neurofibromatosis Type 1 with 
hydrocephalus, epilepsy and ocular gliomas; chromosome deletion 8 with spontaneous 
intraventricular bleeds, hydrocephalus and ventriculo-peritoneal shunting procedures)

2 3.33

Left cerebral atrophy of unknown cause (unchanging over time) 1 1.67
Cerebral palsy 1 1.67
Hereditary angioedema 1 1.67
Tuberous sclerosis 1 1.67
Cerebellopontine angle cavernoma 1 1.67
Migraine (one child’s migraines were accompanied by hemiplegia) 2 3.33

Past history of a neurological insult to the central nervous system

Past history of viral meningitis 2 3.33
Past history of chemotherapy 1 1.67

Other conditions or vulnerabilities

Type 1 diabetes 1 1.67
The past history of Bell’s palsy 1 1.67
Hypermobility 4 6.67
Fainting secondary to orthostatic stress (2 girls, 1 boy) 3 5
Postural tachycardia syndrome (POTTS) 5 8.33

Intelligence quotient estimate (from school reports and school assessments)

Superior 7 11.7
Average 43 71.7
Borderline 8 13.33
Developmental delay 2 3.33
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Results: PNES subgroups

PNES subgroup 1: dissociative PNES

Diagnostic formulation.  One-third of patients (23/60; 38%) were clustered into subgroup 1: disso-
ciative PNES (see Figure 1). As discussed in the introduction, our diagnostic formulation in this 

Table 3.  PNES semiology.

Semiology description n %

Movements (rhythmic, thrashing/kicking, flexion/extension) 15 25.0
Syncopal-like events alone 11 18.3
Visual blackout, loss of vision or changes in consciousness associated 
with head dropping

8 13.3

Prolonged periods of unresponsiveness 2 3.3
Sensory experiences 2 3.3
Changes in responsiveness followed by amnesia lasting days or weeks 
(loss of memory of self or parents)

2 3.3

Staring episodes 1 1.7
Both movements and syncopal-like events 17 28.3
Movements, syncopal-like events and long periods of unresponsiveness 2 3.3
Total 60 100

PNES: psychogenic non-epileptic seizures.

Figure 1.  This figure depicts the different PNES subtypes in the 60 children and adolescents participating 
in the study. It also depicts the seven children/adolescents who presented with more than one type of 
PNES presentation.
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Figure 2.  Pattern of symptom presentation in the dissociative PNES subgroup.

scenario is that a broad range of stressors have activated cortical arousal mechanisms and have 
shifted brain organization into a defensive state. An unwanted by-product of this process is the 
emergence of functional neurological motor symptoms, including PNES.

In this dissociative PNES subgroup (n = 23), 14 patients had PNES comorbid with other func-
tional neurological symptoms (see Figure 2), 7 had PNES alone and 2 had PNES in the context of 
a chronic pain presentation. On clinical measures of arousal and motor readiness, 39% of patients 
(9/23) had baseline heart rates above the 75th percentile, and 58% (11/19) had baseline respiratory 
rates above the 75th percentile. A handful of patients (4/23; 17%) had skewed HV profiles. On 
clinical assessment, patients typically reported that their PNES occurred suddenly, without warn-
ing. If warning signs were present, they included motor agitation (e.g. jiggling legs), sudden head-
ache and a sense of ‘spacing’ or ‘vagueing’ out. Although we did not observe these patients to 
hyperventilate before the PNES – or to precipitate their PNES via HV – some patients were some-
times, but not always, observed to hyperventilate during the PNES.

Vignette 1: dissociative PNES.  Fiona, a 14-year-old girl, experienced a painful, twitching left foot fol-
lowing a tumble turn in a swimming competition, after which she presented to hospital and had a 
neurological assessment. After 3 weeks, new symptoms emerged. Fiona experienced PNES – tonic- 
and clonic-like movements lasting up to an hour – followed by an inability to speak or to move her 
limbs. After each PNES, for periods lasting up to a week, she also did not remember recent events 
and did not recognize family and friends. In addition to the pain and twitching, she developed pins 
and needles in her left foot and fluctuating dystonia of the third, fourth and fifth left toes. She expe-
rienced intermittent dystonia or twitching of other body parts (head, neck and shoulders).

Fiona and her older brother lived at home with their estranged parents. For many years, Fiona 
had witnessed high levels of conflict between her brother and her mother, including episodes of 
physical violence towards her mother. Although Fiona and her father resided in the same house, she 
had not had a conversation with her father for 6 years.
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Fiona and her family did not want to engage with the Psychological Medicine team. They 
attended the family assessment during Fiona’s second admission to the neurology ward, when 
Fiona had begun to suffer from PNES and when she could no longer recognize her parents. The 
family accepted, though somewhat reluctantly, the explanation pertaining to the PNES and func-
tional neurological symptoms. Fiona’s mother and brother became very upset that the stress in the 
family could have affected Fiona’s body in such a severe way. From that point on, Fiona’s brother 
ceased his angry outbursts at home.

Treatment in hospital included pharmacotherapy for down-regulating arousal, stabilizing sleep 
and terminating excessively long PNES (melatonin 6 mg and clonidine 50 mcg at bedtime; fluox-
etine 20 mg and olanzapine 5 mg if the PNES lasted more than an hour). It also included individual 
work with Fiona to help her track body state, to identify warning signs (sudden headache, feeling 
hot, sweating), and to use progressive muscle relaxation, guided-imagery recordings or slow 
breathing to avert PNES. As part of a family intervention, the unresolved issues within the family 
system were discussed explicitly; the family decided that repair of the estrangement between them 
was not possible. Fiona engaged in 18 months of outpatient treatment, during which she began to 
explore her anxiety in relation to school work and her home life. Her PNES now occurred very 
intermittently – once every 3 months – when she was sleep deprived or stressed.

PNES subgroup 2: dissociative PNES triggered by Hyperventilation

Diagnostic formulation.  In total, 32 patients (32/60; 53%) were clustered into PNES subgroup 2 (see 
figure 1). Clinically, this subgroup was indistinguishable from subgroup 1 except that the children/
adolescents’ PNES were typically triggered by HV (Kozlowska, Rampersad, et al., 2017). As dis-
cussed in the introduction, our working formulation for this patient cluster was that when these 
patients became stressed, they activated their respiratory motor system (alongside the autonomic 
nervous system and cortical arousal systems) and inadvertently hyperventilated, thereby disrupting 
brain function and triggering PNES.

In this HV-induced subgroup (n = 32), 13 patients had PNES comorbid with other functional 
neurological symptoms (see Figure 3), 12 had PNES alone and seven had PNES in the context of 
a chronic pain presentation. In this last group, four also experienced transient functional motor-
sensory symptoms. On clinical measures of arousal and motor readiness, 53% of patients (17/32) 
had baseline heart rates above the 75th percentile; 75% (21/28) had baseline respiratory rates 
above the 75th percentile; and 72% (23/32) had skewed HV profiles (see black line in Figure 4). 
On clinical assessment, many patients reported that their PNES were typically preceded by warn-
ing signs, including ‘breathing too fast’, ‘heart beating’, sweatiness, nausea, feeling dizzy, blurry 
vision, visual blackout, sudden headache, tight band around the head, wobbly legs and a feeling of 
fogginess and being unable to think clearly. The visual and cognitive symptoms described by these 
patients are prototypical symptoms of HV. Paroxysmal increases in ventilation – probable HV – 
occurred immediately prior to PNES episodes and were observed in all 32 cases during the assess-
ment or treatment admission.

Further sequencing work with these patients and their families suggested that HV events (and 
subsequent PNES) were triggered by psychological distress in 26 cases, by pain in four cases and 
by exercise in two cases. The sources of psychological distress were very broad, ranging from 
anticipatory anxiety about commonplace daily stressors, such as scholastic expectations at school, 
to adverse life circumstances such as illness worries, family conflict, loss events or bullying, to 
intrusive memories of the past sexual abuse by a parent or grandparent. For all four patients whose 
PNES were triggered by pain, the pain occurred in the context of chronic pain conditions. For both 
patients whose PNES were triggered by exercise, the relevant sports activities took place during a 
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Figure 4.  Hyperventilation profiles in children and adolescents assessed for PNES and in controls in 
the scientific arm of the current study – the PNES Hyperventilation Study (Kozlowska, Rampersad, et al., 
2017).
The shaded blue area depicts the homeostatic range for arterial CO2. The top blue line depicts controls. Controls 
showed a clear pattern of PCO2 changes during the HV task: a baseline PCO2 within the homeostatic range, a steep 
drop in PCO2 during HV, and a prompt return to homeostasis during recovery. The middle red line depicts the 60 
children and adolescents with PNES who participated in the study (and in the current study). Children and adolescents 
with PNES showed a downwardly skewed HV-challenge profile suggesting difficulties with PCO2 regulation. The bottom 
black line depicts the subgroup of 32 children and adolescents whose PNES were typically preceded by – ‘triggered by’ 
– HV.

Figure 3.  Pattern of symptom presentation in the dissociative PNES triggered by HV.
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period of increased stress at school, with the consequence that the children/adolescents were una-
ble to down-regulate following exercise (resulting in HV and then PNES).

Nine children/adolescents were diagnosed with HV-induced PNES but had HV profiles indis-
tinguishable from controls. This phenomenon brought to our attention that the manner in which a 
particular patient hyperventilates during the HV-challenge may be different from the manner in 
which that same patient hyperventilates during real-life scenarios. In this context, a normal – or 
almost normal – HV-challenge profile did not necessarily exclude the possibility of HV-induced 
PNES. What characterized these nine patients was the paroxysmal nature of their HV in real-life 
situations: severe HV occurred in response to specific triggers. Two patients who had been sexually 
abused by close family members (father and grandfather, respectively) demonstrated extreme HV 
only when experiencing vivid intrusive memories of the past abuse. The other seven patients 
hyperventilated intermittently in the context of daily stressors, recent adverse life events or memo-
ries of the past bullying. At other times, they did not manifest any symptoms associated with 
increases in ventilation.

Vignette 2: HV-triggered PNES.  Danae was a 14-year-old adolescent girl with left cerebral atrophy of 
unknown origin (unchanging over time) and a history of absence seizures well controlled with 
medication. She presented with a new type of seizure event – twitching and tonic- and clonic-like 
movements – for which there was no electrical correlate on video EEG (vEEG). PCO2 readings 
during the HV component of the vEEG showed that Danae was hypocapnic (34 mmHg) prior to 
formal HV, that her PCO2 level dropped to 20 mmHg with HV, and that it failed to recover 
(32 mmHg at 15 minutes post-HV). During the family assessment in Psychological Medicine, and 
as various school stressors were being explored (the key source of distress for Danae), her breath-
ing rate reached 40 per minute (= HV), precipitating what was, for her, a typical PNES. Danae was 
unable to slow down her breathing (to a normal rate of <20 breaths per minute), and her PNES 
continued, on and off, over 30 minutes. The explanation to the family included an explanation of 
HV as the underlying mechanism and a clear expectation that Danae would be able to control her 
episodes with breath training and treatment of her anxiety. The intervention included breath train-
ing using a biofeedback tool (MyCalmBeat), treatment of anxiety with a selective serotonin reup-
take inhibitor and quetiapine (37.5 mg at night) and cognitive-behavioural therapy.

Roughly a year later (after being well for some time), at a time that school examinations were 
overwhelming her with fear and anxiety, Danae re-presented with a different type of PNES – 
namely, of sudden fainting accompanied by incontinence (of urine; see section of innate defence 
behaviours below). This presentation was followed by a family intervention that helped Danae’s 
parents to modify their expectations of academic achievement and to support a choice of career in 
which Danae could flourish free of PNES.

PNES subgroup 3: innate defence responses presenting as PNES

Diagnostic formulation.  Six patients (6/60; 10%) – four boys and two girls – were clustered into 
PNES subgroup 3 because we assessed their PNES as reflecting activation of innate defence 
responses (tonic immobility or collapsed immobility) (see Figure 1). Triggers for the episodes 
included highly arousing imaged memories or thoughts pertaining to any of the following: sexual 
abuse by a parent, emotional and physical abuse by a parent, exposure to domestic violence 
between parents, memories of a deceased father who had suddenly died from cancer, war trauma, 
and, in a neurologically compromised adolescent girl, extreme fear of school examinations (see 
end of Vignette 2). Two patients presented with episodes of collapsed immobility alone. Of these, 
one had baseline heart and respiratory rates above the 75th percentile, and both had normal 
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HV-challenge profiles. Three patients presented with collapsed immobility episodes and also 
PNES triggered by HV, and one with collapsed immobility episodes, tonic immobility episodes 
and PNES triggered by HV. Of these four, three had baseline heart rates above the 75th percentile; 
four had baseline respiratory rates above the 75th percentile; and four had skewed HV-challenge 
profiles. These four patients were also included in data reported in subgroup 2 (see Figure 1).

Vignette 3: innate defence responses presenting as PNES.  Jasmine was an 8-year-old girl who was 
attending therapy with her adoptive mother for unpredictable shifts in mood and behaviour. Jas-
mine had been subjected to extreme physical abuse prior to her adoption; for example, once when 
she was angry, her biological mother had tried to cut off one of Jasmine’s toes. In therapy, when the 
therapist was discussing examples of what made Jasmine angry or distressed, Jasmine was unable 
to manage the conversation. At first she seemed not to be hearing the therapist, and she had a blank 
look on her face. Then she went pale and limp, and was unresponsive to the therapist’s voice and 
touch. The collapsed state lasted for 40 minutes. Jasmine’s adoptive mother mentioned that this 
happened often at home. Jasmine was hypersensitive to changes in tone of voice, and if her adop-
tive mother raised her voice in any way, Jasmine would become nonresponsive, sometimes going 
pale and limp. Stories about how the animal the opossum responds to threat – by becoming limp 
and unresponsive – helped reframe Jasmine’s behaviour as reflecting an innate stress response.

PNES subgroup 4: PNES associated with syncope triggered by vocal cord adduction 
in the context of distress

Diagnostic formulation.  One patient (1/60; 2%) was clustered into PNES subgroup 4 (see Figure 1). 
The diagnosis of vocal cord adduction was confirmed by the respiratory team’s direct visualization 
of the vocal cords while the patient was having symptoms that led to a non-epileptic seizure. On 
clinical measures of arousal and motor readiness, the patient had a baseline heart and respiratory 
rates >75th percentile. The HV-challenge profile was normal.

Whereas vocal cord adduction in anxious children with chronic asthma – or misdiagnosed as 
chronic asthma – is documented in the literature (Ibrahim, Gheriani, Almohamed, & Raza, 2007; 
Silberg, 2001), non-epileptic seizures following vocal cord adduction have not previously been 
documented. Despite signs of marked respiratory distress, hypoxia (measured by pulse oximetry) 
during vocal cord adduction is rare (Brugman, Howell, Rosenberg, Blager, & Lack, 1994). By the 
same token, non-epileptic seizures associated with vocal cord adduction triggered by distress are 
also rare.

Vignette 4: vocal cord adduction.  Mika was a 9-year-old child with a history of chronic treatment-
resistant asthma and weekly presentations to hospital. He was referred to neurology for vEEG 
after a seizure-like event. Subsequently, another event was witnessed during lung-function test-
ing. Mika became anxious and began to cough intermittently and to take in huge, noisy gulps 
of air. Suddenly, the noisy breathing stopped. Mika’s eyes rolled back, and he slumped to the 
side and was incontinent of urine. A blue tinge around his lips signalled a hypoxic state. Fol-
lowing the event, he did not remember what had happened. Similar events occurred while Mika 
was still in hospital. Some were followed by tonic- and clonic-like movements. The speech 
therapy component of the intervention involved Mika being taught to use the sounds shh, sss 
and fff to open his vocal cords when he felt tightness in his chest. The psychological interven-
tion addressed anxiety and involved a range of relaxation, visualization, self-talk and vocaliza-
tion techniques. The shh, sss and fff sounds were embedded into Mika’s visualization and 
relaxation exercises.
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Subgroup 5: non-epileptic seizures associated with syncope triggered by activation 
of the valsalva manoeuvre in the context of distress

Diagnostic formulation.  One patient (1/60; 2%) was clustered into PNES subgroup 5. Subsequent to 
presentation, this patient also developed non-epileptic seizures triggered by HV (see Figure 1). On 
clinical measures of arousal and motor readiness, the patient had baseline heart and respiratory 
rates >75th percentile and a skewed HV-challenge profile. The valsalva manoeuvre involves forced 
expiration against a closed airway, either by closing one’s mouth and pinching one’s nose shut, or 
by exhaling against a closed glottis. The manoeuvre increases intrathoracic pressure, which leads 
to decreased cardiac output and decreased cerebral circulation even as the available oxygen itself 
decreases. Because respiration is driven primarily by the level of carbon dioxide, decreasing that 
level by hyperventilating prior to breath-holding enables individuals to hold their breath for longer 
periods of time.

A loss of consciousness associated with the valsalva manoeuvre is well documented in adoles-
cents and young men, who use it as a means of group entertainment (Howard, Leathart, Dornhorst, 
& Sharpey-Schafer, 1951), and in divers, where it is associated with high rates of mortality (Kumar 
& Ng, 2010). In children, however – and especially in children with developmental delay – the 
valsalva manoeuvre may be used habitually as a means of eliciting pleasant sensations (Gastaut, 
Zifkin, & Rufo, 1987; Lai & Ziegler, 1983) or managing feelings of distress. We – the authors of 
this study – have also seen this presentation in children/adolescents who have been maltreated in 
infancy. Like all hypoxic events, the loss of consciousness caused by the valsalva manoeuvre can 
involve hypoxia-related movements that can look like a seizure.

Vignette 5: non-epileptic seizure associated with the valsalva manoeuvre.  Lizzy was a 9-year-old girl of 
average intelligence with a 1-month history of collapse episodes. She had a history of exposure to 
drugs in utero and of severe neglect and abuse from birth to 4 years of age. Since that time she was 
looked after by her grandparents, who became her primary attachment figures. Following the death 
of her grandfather, Lizzy began to experience episodes of collapse. EEG telemetry over a 24-hour 
period captured a number of events (including one collapse), all of which were associated with 
EEG slowing and no changes in heart rate. Lizzy would become distressed, take a breath and gri-
mace as she held the breath against a closed mouth. The key treatment intervention was a slow 
breathing exercise that, with the help of her grandmother, Lizzy implemented when distressed. 
Individual work with a psychologist helped soften Lizzy’s grief.

Subgroup 6: non-epileptic seizures associated with syncope triggered by reflex 
activation of the vagus

Diagnostic formulation.  Two patients (2/60; 3%) were clustered into PNES subgroup 6 (see Figure 1). 
On clinical measures of arousal and motor readiness, one patient had a baseline heart rate >75th 
percentile and both had a baseline respiratory rate >75th percentile. The HV-challenge profile was 
skewed in one patient and normal in the other. Syncope triggered by reflex activation of the vagus 
is common across the lifespan and is well described in the literature (Pavri, 2014). The vagus can be 
activated by pain and other noxious stimuli, the sight of blood, orthostatic stress (and activation of 
heart mechanoceptors) or C-fibre mechanoreceptors located in the lungs, oesophagus, bladder and 
rectum, associated with coughing, swallowing or vomiting, micturition or defaecation, respectively. 
In all of these scenarios, reflex activation of the defensive vagus3 leads to bradycardia or asystole, 
which causes cerebral hypoxia. As in all cases of cerebral hypoxia, hypoxia-induced loss of con-
sciousness can involve hypoxia-related movements that can look like an epileptic seizure.
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In one patient, a 16-year-old girl, non-epileptic events appeared to be triggered by acute pain 
flare-ups (see Vignette 6). In the other patient, a 14-year-old girl with chronic anxiety (and HV) and 
established orthostatic syncope, the collapse events typically occurred after meals and appeared to 
reflect an unusual presentation of postprandial syncope.

Vignette 6: non-epileptic seizures triggered by reflex activation of the vagus.  Siew was a 16-year-old 
girl with a 6-month history of complex regional pain syndrome following a sprain injury. A 
more recent injury had aggravated the pain, causing Siew to experience sudden sharp spikes of 
pain. Siew began to present to accident and emergency weekly with episodes of fainting or of 
fainting followed by tonic- and clonic-like movements, which looked just like epileptic sei-
zures. During one such event, Siew sustained significant bruising to her head. After multiple 
neurology reviews and EEG/vEEG studies, all of which were normal, Siew was diagnosed with 
PNES. Unable to leave home on her own, Siew became increasingly anxious, weak physically 
and illness focused, and developed a broad range of other nonspecific somatic symptoms 
(insomnia, nausea, abdominal pain and loss of appetite). Management included an explanation 
of the probable underlying mechanism – a reflex activation of the vagus by pain. Incremental 
physical exercise (while Siew wore a protective helmet) enabled Siew to regain her natural 
level of fitness. Training in mind-body strategies enabled her to better manage her anxiety, 
work through pain flare-ups and manage her other somatic symptoms. Her chronic pain symp-
toms also continued to improve.

Limitations

The scientific arm of this study – the PNES Hyperventilation Study (Kozlowska, Rampersad, 
et al., 2017) – included a thorough discussion of the study limitations. An additional limitation in 
the clinical arm (this study) is that we did not have funding to pursue further ambulant electrocar-
diography (ECG) and EEG monitoring (to document heart rate changes or hypoxia-associated 
EEG slowing) in patients clustered into PNES subgroups 3 and 6.

Conclusion

In conclusion, PNES is a nonspecific, umbrella category that is used to collect together a range 
of atypical neurophysiological responses to emotional distress, physiological stressors and dan-
ger. Recent advances in neuroscience, neurophysiology and the field of dissociation provide us 
with a richer framework for thinking about PNES. In this study, we used our review of brain–
body responses to fear, physiological stressors and danger as the basis for clustering our child 
and adolescent patients under distinct diagnostic formulations – clinical formulations about the 
probable neurophysiological mechanisms – that explained their PNES. In Part II – the compan-
ion study – we describe how we used the formulations presented here to frame the explanations 
that we gave to patients and families, and to inform the treatment interventions (within each 
subgroup) that we used to help our patients gain control of their PNES (Kozlowska, Chudleigh, 
et al., 2017). As the knowledge about the neurobiology of PNES expands, and as new diagnostic 
tools become available, the framework offered in this study will need to be updated, expanded 
and revised to keep abreast of developments in the field. This clinical study highlights the com-
plex interplay among neural, physiological and emotional phenomena; it challenges dualistic 
thinking and practice; and it emphasizes an integrated mind-body approach, one that links brain, 
psyche and soma.



156	 Clinical Child Psychology and Psychiatry 23(1)

Acknowledgements

We thank the children, adolescents and families who participated in this study and who taught us so much 
about non-epileptic seizures. We also thank the children, adolescents and families who have given us consent 
to share their stories with others. We thank Joyanna Silberg and Dominic Fitzgerald for their help with the 
amalgam vignettes of Jasmine and Mika.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publi-
cation of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Notes

1.	 Dr Bruce Perry, who is known for his work with maltreated children and adolescents, has used naloxone 
or naltrexone in more than 10 cases of children or adolescents presenting with extended immobility and 
unresponsiveness assessed to reflect the tonic/collapsed immobility response.

2.	 Physiologists refer to the autonomic system as the visceromotor system because it provides the motor 
innervation to the viscera. Using this terminology, they would refer to coupling between the two motor 
systems: visceromotor and skeletomotor.

3.	 Porges (2011) has written extensively about the defensive vagus and refers to the defensive vagus as the 
vegetative vagus, the unmyelinated vagus or the unmyelinated vagal system.
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