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Abstract: An increasing number of biocatalytic oxidation
reactions rely on H2O2 as a clean oxidant. The poor robustness
of most enzymes towards H2O2, however, necessitates more
efficient systems for in situ H2O2 generation. In analogy to the
well-known formate dehydrogenase to promote NADH-de-
pendent reactions, we here propose employing formate oxidase
(FOx) to promote H2O2-dependent enzymatic oxidation
reactions. Even under non-optimised conditions, high turnover
numbers for coupled FOx/peroxygenase catalysis were ach-
ieved.

Enzymatic oxidation and oxyfunctionalisation reactions are
currently receiving tremendous interest in the context of
preparative organic chemistry.[1] Especially if selectivity is
desired, enzymatic reactions often excel over the chemical
counterparts. Amongst available biocatalysts, monooxyge-
nases are of particular interest.[2] Monooxygenases, however,

rely on molecular oxygen, which is reductively activated at the
enzyme active site. The reducing equivalents required are
mostly derived more or less directly from reduced nicotina-
mide cofactors (NAD(P)H). While issues regarding the in situ
regeneration of NAD(P)H have largely been solved, so that it
can be used catalytic amounts,[3] the so-called oxygen
dilemma poses a more severe challenge:[4] many monoox-
ygenases cannot utilise NAD(P)H directly but depend on
single-electron mediators to transform the hydride transfer
from NAD(P)H into two successive single-electron transport
events. The reduced mediators, however, also directly interact
with dissolved molecular oxygen and are re-oxidised (Scheme
1a). As a consequence, reactive oxygen species are formed in
a futile cycle that uncouples the regeneration reaction from
the oxygenation reaction. In extreme cases, up to 95% of the
reducing equivalents provided by the co-substrate are
wasted.[4]

A viable solution of the challenge outlined above is to
make use of H2O2-dependent “Peroxizymes”.[5] By using
H2O2, Peroxizymes actually make use of the oxygen dilemma
instead of being hampered by it (Scheme 1b).

A range of enzymes are able to use H2O2. Peroxidases for
example, represent model enzymes for H2O2-dependent
oxidation,[6] polymerization,[7] or halogenation reactions.[8]

More recently, peroxygenases have received a lot of attention
for selective oxyfunctionalisation reactions.[9] In addition to
these reactions, hydrolase-catalysed formation of peracids for
H2O2-driven epoxidation[10] and Baeyer–Villiger oxidations[11]

are becoming popular.
Enzymes, however, are also prone to oxidative inactiva-

tion by H2O2
[12] which is why a broad range of in situ H2O2

generation methods have been investigated in recent years
(Table S2 compares some established systems with respect to
efficiency and waste generation). The goal is to provide the
production enzymes with H2O2 at rates that allow high
catalytic turnover while minimising the undesired oxidative
inactivation by excess H2O2.

[13] Today, glucose oxidase (GOx)
is the catalyst of choice for in situ H2O2 generation.[14] It
couples the oxidation of glucose to the reductive activation of
O2 to form H2O2 in a highly efficient and robust fashion. The
GOx system, however, suffers from high levels of waste
generation (196 g of gluconate waste per mol H2O2 equivalent
are generated).[15] Additionally, practical issues such as the
high viscosity of the reaction medium have to be dealt with at
larger reaction scales. Formate would be a more suitable
reductant for the reductive activation of O2 (generating only
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44 g of volatile and therefore not accumulating CO2 waste per
mol H2O2 equivalent). The systems available today, however,
either rely on bioincompatible transition-metal catalysts,[16] or
are too complex[15, 17] or too elaborate[18] to be practical.

Recently, a formic acid oxidase from Aspergillus oryzae
(AoFOx) has been reported as the first member of the
glucose-methanol-choline (GMC) oxidoreductase superfam-
ily that oxidizes formic acid instead of simple alcohols.[19] This
enzyme features an optimum pH range from 2.8–6.8 and a kcat

value of 82 s@1 over that range. It contains an unusual 8-formyl
flavin adenine dinucleotide (FAD) cofactor, which is formed
in situ from FAD through self-oxidation. Its unique catalytic
properties render AoFOx a promising candidate for H2O2-
dependent enzymatic reactions. We therefore set out to
evaluate the potential of AoFOx as a catalyst to promote
H2O2-dependent biocatalytic oxidation reactions (Scheme 2).

AoFOx was prepared according to a previously published
procedure.[19] In short, AoFOx was expressed in recombinant
Escherichia coli and partially purified to remove catalase.
Overall, from 1 L culture broth, 38 mg of purified enzyme
were obtained within 1 day (Figure S1 in the Supporting
Information).

Having AoFOx in hand, we decided to first apply this
enzyme for some selective oxyfunctionalisation reactions
catalysed by the recombinant evolved unspecific peroxyge-
nase from Agrocybe aegerita (rAaeUPO) heterologously
expressed in Pichia pastoris.[20] As model reaction, we first
focused on the selective hydroxylation of ethyl benzene into
(R)-1-phenylethanol. A preliminary optimisation of the
reaction conditions (Figure 1) revealed that the bienzymatic

cascade operates optimally in slightly acidic
reaction media (pH 6, Figure 1a, Figure S2),
which is in line with the reported preferences of
the enzymes.[21] An apparent optimal temper-
ature of 25 88C was determined (Figure 1b, Fig-
ure S3). Between 20 and 35 88C, the initial rates of
the overall system were largely temperature-
independent (Figure S2) but the reaction ceased
sooner at elevated temperatures. At 40 88C for
example, no further product formation was
observed after 2 h. In contrast, steady product
accumulation occurred at 30 88C or lower. This
behaviour can be attributed to the comparably
poor thermal robustness of wt-AoFOx.

We determined an apparent optimal formate
concentration of 200 mm (Figure 1d, Figure S4),
which represents a compromise between the
relatively high KM value of wt-AoFOx at this
pH[19d–f] and the decreasing peroxygenative activ-
ity of UPOs at higher formate concentrations.[22]

Scheme 2. The formate oxidase from Aspergillus oryzae (AoFOx) ena-
bles in situ H2O2 generation from formate and ambient oxygen to
promote a broad range of biocatalytic oxidation/oxyfunctionalisation
reactions.

Figure 1. Characterisation of the reaction parameters that influence the
efficiency of the bienzymatic hydroxylation of ethyl benzene. Individual
reaction conditions are given in the captions of Figures S2–8.

Scheme 1. Biocatalytic oxyfunctionalisations using monooxygenases (a) or peroxi-
zymes (b). Monooxygenases often are prone to the oxygen dilemma while perox-
izymes productively make use of the oxygen dilemma.
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The relative ratio of (H2O2-generating) AoFOx and
(H2O2-consuming) rAaeUPO had a very pronounced effect
on the efficiency of the overall reaction system (Figure 1c,
Figure S5). The highest initial rate was observed at an
equimolar ratio of the two enzymes, albeit at the expense of
poor long-term stability of the overall system (after 5 h, no
further product formation was observed; Figure S5). Lower
ratios of AoFOx to rAaeUPO gave lower productivity but
significantly greater robustness. At a ratio of 1:5, stable
product formation for at least 24 h was observed.

The availability of molecular oxygen had a significant
influence on the overall reaction (Figure 1e). Under ambient
atmosphere without stirring, an O2 transfer rate of 0.84:
0.03 mmh@1 was estimated (Figure S7), which limits the
productivity of the overall system. Increasing the O2 avail-
ability by increasing the O2 partial pressure in the headspace
of the reaction dramatically increased the productivity of the
overall reaction more than ten-fold (Figure 1e, Figure S8).

It is worth mentioning that appropriate negative controls
(i.e. reactions leaving out either one of the enzymes or
reactions in the absence of formate) were performed for all of
the reactions reported. With the sole exception of CytC-
catalysed sulfoxidation, where traces of sulfoxide were also
observed in the absence of CytC, the control reactions gave
no product formation.

Next, we explored the enzyme and product scope of the
AoFOx-catalysed H2O2 generation system to promote various
H2O2-dependent biocatalytic oxidation reactions (Figure 2).

First, we investigated some peroxygenase-catalysed hy-
droxylation and epoxidation reactions. The proposed H2O2-
generation system enabled excellent catalytic performance of
the peroxygenase used. Both product concentrations and
rAaeUPO-turnover numbers were at least as high as for
previous methods using more complicated H2O2 generation
systems.[15, 18, 20d,23]

The stereospecific hydroxylation of ethyl benzene was
performed on a semi-preparative scale, yielding 434 mg of (R)-
1-phenylethanol (> 99% ee, see the Supporting Information
for further details). A very satisfactory turnover number for
the AoFOx of more than 300000 was achieved, which suggests
that this in situ H2O2 generation system is economically
feasible. It is also worth mentioning that up to 31: 3 mm
(R)-1-phenylethanol was produced (Figure S6), which is one
of the highest numbers observed so far using rAaeUPO.[15] It
should be mentioned here that in case of volatile reagents,
imperfect mass balances were observed upon prolonged
reaction times. We believe that this is a technical issue that
will be overcome in future scale-up experiments.

Cytochrome C (CytC), another heme-containing protein
capable of catalysing H2O2-driven oxygen transfer reactions,
especially sulfoxidation,[16] was evaluated next. Compared to
the turnover numbers observed with rAaeUPO, the numbers
achieved with CytC appear rather low. However, these
numbers are still significantly higher than those achieved
previously using other H2O2-generation systems.[16] The lack
of enantioselectivity in the sulfoxidation of thioanisol is in
accordance with previous reports.[16] It should be kept in mind
here that the natural role of CytC is not that of an enzyme but
rather that of an electron-transport protein.

Another important H2O2-driven reaction is the so-called
perhydrolase reaction of lipases.[1b, 24] In short, a lipase catal-
yses the perhydrolysis of carboxylic (esters) to yield a reactive
peracid, which in turn can undergo Baeyer–Villiger oxida-
tions of ketones or Prilezhaev oxidations of C=C-double
bonds. Our proposed AoFOx H2O2-generation system proved
to be applicable in principle to drive these reactions
(Figure 2). Using the lipase B from Candida antarctica,
CalB) together with octanoic acid as cocatalyst gave catalytic
turnover in the chemoenzymatic Baeyer–Villiger oxidation of
cyclohexanone as well as the chemoenzymatic epoxidation of
styrene. However, compared to the other systems investigated
here, rather low turnover numbers for the biocatalyst were
observed. This can be attributed to the low affinity of CalB
towards H2O2 in aqueous systems[25] resulting in low CalB
activity under the conditions chosen. Further investigations
aiming at higher in situ H2O2 concentrations are currently
ongoing.

Finally, we evaluated AoFOx to promote halogenation
reactions catalysed by the V-dependent haloperoxidase from

Figure 2. The scope of AoFOx-driven peroxizyme reactions: The per-
oxygenase from Agrocybe aegerita (rAaeUPO) enabled selective hydrox-
ylations and epoxidations; lipase B from Candida antarctica (CalB)
mediated chemoenzymatic epoxidation and Baeyer–Villiger oxidations;
cytochrome C (CytC, a heme-containing electron-transport protein)
was applied to the sulfoxidation of thioanisole; and V-dependent
chloroperoxidase from Curcuvaria inaequalis (CiVCPO)-initiated hy-
droxyhalogenation and halolactonisation reactions. For details about
the reaction schemes and experimental results, please refer to the
respective section in the Supporting Information. Yields shown are
calculated from the product concentration divided by the initial
starting material concentration.
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Curvularia inaequalis.[8b,c,26] The hydroxyhalogenation of
styrene gave acceptable results in terms of product yield
and catalyst performance. Again, the volatility of the reagents
impaired the final product concentration and thereby the
catalytic numbers. A completely different picture evolved,
however, when using 4-pentenoic acid as starting material.
Here, a perfect mass balance was observed and full con-
version of the starting material into the desired bromolactone
was observed. We also scaled up this reaction to the gram
scale: Starting from 200 mm 4-pentenoic acid, 150 mm of the
desired bromolactone was obtained, which could be separated
from the reaction mixture by simple extraction (Figure S14).
Thus, 1.6 g of the pure product was obtained.[27]

In conclusion, we present herein the proof-of-concept for
a simple H2O2 generation system based on formate oxidases
such as the FOx from Aspergillus oryzae (AoFOx). This
system stands out in terms of practical simplicity and excellent
performance, even at this early stage of development.
Furthermore, the turnover numbers achieved with AoFOx
exceed those of established systems by orders of magnitude
(Table S2).

Three decades ago, the introduction of formate dehydro-
genases as NADH regeneration catalysts ushered in a new era
in bioreduction catalysis.[28] We are convinced that formate
oxidases will have a similar impact for biooxidation/function-
alisation catalysis. Further developments in our laboratories
will focus on further engineering AoFOx (in particular,
a lower KM value towards formate is highly desirable) and
further characterisation and optimisation of the synthetic
schemes to fully explore its synthetic potential.
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