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Abstract

Extracorporeal circulation (ECC) and hypothermia are used to maintain stable circulatory parameters and improve the
ischemia tolerance of patients in cardiac surgery. However, ECC and hypothermia induce activation mechanisms in platelets
and leukocytes, which are mediated by the platelet agonist ADP and the phosphoinositide-3-kinase (PI3K) p110b. Under
clinical conditions these processes are associated with life-threatening complications including thromboembolism and
inflammation. This study analyzes effects of ADP receptor P2Y12 and P2Y1 blockade and PI3K p110b inhibition on platelets
and granulocytes during hypothermic ECC. Human blood was treated with the P2Y12 antagonist 2-MeSAMP, the P2Y1
antagonist MRS2179, the PI3K p110b inhibitor TGX-221, combinations thereof, or PBS and propylene glycol (controls). Under
static in vitro conditions a concentration-dependent effect regarding the inhibition of ADP-induced platelet activation was
found using 2-MeSAMP or TGX-221. Further inhibition of ADP-mediated effects was achieved with MRS2179. Next, blood
was circulated in an ex vivo ECC model at 28uC for 30 minutes and various platelet and granulocyte markers were
investigated using flow cytometry, ELISA and platelet count analysis. GPIIb/IIIa activation induced by hypothermic ECC was
inhibited using TGX-221 alone or in combination with P2Y blockers (p,0.05), while no effect of hypothermic ECC or
antiplatelet agents on GPIIb/IIIa and GPIba expression and von Willebrand factor binding was observed. Sole P2Y and PI3K
blockade or a combination thereof inhibited P-selectin expression on platelets and platelet-derived microparticles during
hypothermic ECC (p,0.05). P2Y blockade alone or combined with TGX-221 prevented ECC-induced platelet-granulocyte
aggregate formation (p,0.05). Platelet adhesion to the ECC surface, platelet loss and Mac-1 expression on granulocytes
were inhibited by combined P2Y and PI3K blockade (p,0.05). Combined blockade of P2Y12, P2Y1 and PI3K p110b completely
inhibits hypothermic ECC-induced activation processes. This novel finding warrants further studies and the development of
suitable pharmacological agents to decrease ECC- and hypothermia-associated complications in clinical applications.
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Introduction

Under physiological conditions, platelets play a fundamental

role in hemostasis, prevention of blood loss, and healing of

vascular injury. However, dysfunctional platelets can cause serious

problems like abnormal thrombus formation and consecutive

vessel occlusion as well as severe bleeding complications, which are

all feared side effects of extracorporeal circulation (ECC) [1,2].

ECC is employed in many cardiac surgical procedures to ensure

gas exchange and to maintain stable circulatory parameters of the

patient. In addition, hypothermia ranging between 28uC and

32uC is routinely employed during cardiac operations in addition

to ECC to increase the ischemia tolerance of the patient. Shear

stress, contact of blood with the artificial surfaces of the ECC

circuit as well as hypothermia are all known to be associated with

platelet activation, which results in disturbed platelet function and

associated complications [1,3,4]. Furthermore, activated platelets

can trigger an inflammatory response through interactions with

leukocytes [5]. These platelet-leukocyte interactions are mainly

mediated by binding of the platelet surface receptor P-selectin to

its counter receptor P-selectin glycoprotein ligand-1 (PSGL-1) on

leukocytes. Subsequently, upregulation and activation of the Mac-

1 receptor (CD11b/CD18) on leukocytes is induced as a result of

the P-selectin-PSGL-1 interaction [5,6]. Furthermore, it has been

shown that CD40 ligand, which is shed from platelets upon

activation, also promotes Mac-1 upregulation [7].

Inhibition of platelet activation is a possible approach to inhibit

platelet dysfunction and related detrimental effects during ECC.

One pharmacological strategy to inhibit platelet activation is

blockade of the platelet ADP receptors P2Y12 and P2Y1 [8,9].

We have recently shown that ADP plays a major role in ECC-

and hypothermia-induced platelet activation [10]. Inhibition of

platelet granule release could be achieved during hypothermic

ECC via P2Y12 blockade [11]. Nevertheless, despite effective
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platelet protection by P2Y12 blockade, still higher degrees of

platelet activation compared to baseline values were observed.

Furthermore, platelet adhesion to the ECC surface and therefore

platelet loss could not be prevented. Consequently, in addition to

ADP other factors obviously activate platelets during ECC. In this

regard, shear-induced activation of platelets is another important

factor during ECC [4,12]. Shear triggers a signaling pathway,

which includes activation of the class Ia phosphoinositide-3-kinase

(PI3Ks) p110b isoform. This results in activation of the platelet

fibrinogen receptor GPIIb/IIIa and platelet aggregate formation

[13,14,15,16].

On the basis of these data, we hypothesize that substantial

platelet protection during ECC and hypothermia may be achieved

by combined inhibition of P2Y12, P2Y1 and PI3K p110b. To prove
this, we first defined effective doses of the P2Y12 antagonist 2-

MeSAMP and the PI3K p110b blocker TGX-221 to achieve

substantial inhibition of platelet activation in vitro. Afterwards, the

effect of single and combined blockade of ADP receptors and

PI3K p110b on platelet activation, platelet adhesion to the ECC

surface, their interaction with granulocytes as well as subsequent

granulocyte activation was investigated in human whole blood

employing an ex vivo ECC model at hypothermia (28uC).

Results

Concentration-dependent Inhibition of ADP-induced P-
selectin Expression using 2-MeSAMP and TGX-221 and
the Effect of MRS2179
Treatment of whole blood with different concentrations of 2-

MeSAMP (10 and 100 mM) showed that ADP-induced (final ADP

concentration: 20 mM) P-selectin expression is more potently

inhibited with higher antagonist concentrations (Figure 1A). The

addition of MRS2179 (100 mM) in the 2-MeSAMP-treated group

further decreased the expression of platelet P-selectin expression

upon ADP activation (Figure 1A).

Furthermore, a TGX-221 concentration of 2.2 mM is more

potently inhibiting ADP-induced P-selectin expression in human

whole blood, when compared to a TGX-221 concentration of

0.5 mM (Figure 1B).

PI3K p110b Inhibition Alone or in Combination with ADP
Receptor Blockade has no Effect on Expression Levels of
GPIIb/IIIa and GPIba as Well as on vWF Binding of
Platelets, but Reduces GPIIb/IIIa Activation during
Hypothermic ECC
Platelet activation is accompanied by a conformational change

of the platelet GPIIb/IIIa receptor into a high-affinity conforma-

tion, which enables binding of ligands including fibrinogen and

vWF [19]. Using specific antibodies we analyzed (1) the general

expression of GPIIb/IIIa on the platelet surface and (2) the

GPIIb/IIIa activation state. Basic GPIIb/IIIa expression was

neither influenced by hypothermic ECC nor by antiplatelet agents

(Figure 2A), while hypothermic ECC induced a significant in-

crease in GPIIb/IIIa activation in controls (p,0.01; Figure 2B).

This effect was inhibited by PI3K p110b inhibition using TGX-

221 alone (p,0.05) and more profoundly by PI3K p110b
inhibition combined with P2Y blockade (2-MeSAMP and

MRS2179; p,0.001).

The GPIba receptor is involved in mediating primary platelet

adhesion via binding to its ligand vWF [19]. Upon platelet

activation GPIba surface expression is decreased due to down-

regulation [20] or receptor shedding [21,22]. Regarding the

expression of the GPIba receptor on platelets as well as vWF

binding to platelets in our experiments, no effect of either

hypothermic ECC or P2Y and PI3K p110b inhibition was

observed (Figure 2C and D). It has previously been described

that the platelet agonist ADP decreases GPIba surface expression

on platelets [20,23,24]. This finding was confirmed in our

experiments and indicated intact platelet reactivity before and

after hypothermic ECC in the PBS group (Figure 2C).

In addition, vWF binding was investigated on ADP-activated

platelets before and after hypothermic ECC in the PBS group.

ADP induced a significant increase in vWF binding at both

timepoints (Figure 2D). Regarding the fact that GPIba surface

expression was downregulated at the same time, this finding is

Figure 1. Concentration-dependent inhibition of ADP-induced P-selectin expression using 2-MeSAMP and TGX-221. Heparinized
human whole blood (n = 4) was treated for 5 minutes at 37uC with (A) PBS as control, 2-MeSAMP (10 and 100 mM; ‘‘2-MeS’’) or a combination (100 mM
each) of 2-MeSAMP and MRS2179 and (B) propylene glycol (‘‘PG’’) as control or TGX-221 (0.5 or 2.2 mM; ‘‘TGX’’). Afterwards platelets were activated
using ADP (final concentration: 20 mM) and the percentage of P-selectin expressing platelets under a pre-set histogram marker was analyzed in flow
cytometry using an anti-P-selectin mAb. Data are given as means and SD.
doi:10.1371/journal.pone.0038455.g001

Platelet and Leukocyte Protection during ECC
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most likely due to binding of vWF to GPIIb/IIIa. In this regard, it

has previously been described that platelets have other binding

sites for vWF then GPIba [25] and that vWF is a ligand of the

GPIIb/IIIa receptor [19,26].

Hypothermic ECC-induced P-selectin Expression on
Platelets and Platelet Microparticles is Profoundly
Inhibited by P2Y and PI3K p110b Inhibitors
As an indicator for a-granule release and platelet activation, P-

selectin expression on the surface of platelets and platelet-derived

microparticles was measured before and after hypothermic ECC.

Single platelets and PMPs were identified according to their size

and granularity (Figure 3A). As a positive control P-selectin

expression on ADP-stimulated platelets was measured to confirm

platelet reactivity before and after circulation in the control group

(Figure 3B).

P-selectin expression significantly increased during hypothermic

ECC in controls (p,0.05, Figure 3C). Both P2Y blockade and

PI3K p110b inhibition alone as well as combined inhibition of

ADP receptors and PI3K p110b completely inhibited this

phenomenon (p,0.05).

PMPs, which express typical platelet surface receptors including

P-selectin, are released from platelets upon activation [3,27,28]. In

our experiments the total number of PMPs was not affected by

hypothermic ECC or antiplatelet agents (data not shown).

Nevertheless, P-selectin expression on PMPs was significantly

increased by hypothermic ECC (p,0.001; Figure 3D). P2Y

receptor blockade, PI3K p110b inhibition as well as the

combination of P2Y receptor and PI3K p110b inhibition

significantly reduced P-selectin expression on PMPs (p,0.05).

Figure 2. GPIIb/IIIa and GPIba expression as well as vWF binding are not influenced by ex vivo hypothermic ECC and antiplatelet
agents, while platelet PI3K p110b inhibition alone or in combination with P2Y12/P2Y1 receptor blockade reduce GPIIb/IIIa activation
induced by hypothermic ECC. Human blood was left untreated (‘‘before circ.’’) or treated ex vivo with PBS (control), a combination of 2-MeSAMP
and MRS2179 to block P2Y receptors (100 mM each; ‘‘P2Y block’’), propylene glycol (‘‘PG’’, control), TGX-221 to inhibit PI3K p110b (2.2 mM; ‘‘TGX’’) or
a combination of 2-MeSAMP, MRS2179 (100 mM each) and TGX-221 (2.2 mM; ‘‘P2Y block + TGX’’). All treated samples were circulated in an ECC model
for 30 minutes at 28uC. Expression of GPIIb (A; n = 4), activated GPIIb/IIIa (B; n = 6), GPIba (C; n = 6) as well as vWF binding (D; n = 4) were evaluated in
flow cytometry using specific antibodies. ADP stimulation (20 mM) before and after hypothermic ECC was performed as positive control for GPIba
expression (C) and vWF binding (D) in the PBS group. Geometric mean fluorescence values of fluorescently labeled antibodies are given in diagrams
as means and SD; not normally distributed data were analyzed using a non-parametrical test (Friedman test with Dunǹs multiple comparison test; A,
D); normally distributed data (B, C) were compared using RM-ANOVA with Bonferroni’s multiple comparison test; *p,0.05; **p,0.01; ***p,0.001.
doi:10.1371/journal.pone.0038455.g002
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Effects of Hypothermic ECC, P2Y Blockade and PI3K
p110b Inhibition on Platelet-ECC Adhesion, Platelet-
granulocyte Aggregate Formation and Platelet Loss
Hypothermic ECC induced a significant increase in platelet

adhesion to the artificial ECC surface in controls (p,0.001;

Figure 4A). This was only prevented by a combination of P2Y

blockade and PI3K p110b inhibition (p,0.05), but not by P2Y

blockade or PI3K p110b inhibition alone.

Interaction of activated platelets with leukocytes plays a pivotal

role in ECC-related pro-inflammatory complications [1,29]. We

evaluated the formation of platelet-granulocyte aggregates during

hypothermic ECC ex vivo. A significant increase in aggregate

formation was found after 30 minutes of circulation at 28uC in

controls (p,0.01; Figure 4B). This phenomenon was significantly

inhibited by P2Y blockade alone (p,0.05) and by combined

treatment with P2Y and PI3K p110b blockers (p,0.05).

A significant decrease of platelet counts was observed during

hypothermic ECC (p,0.01; Figure 4C). The combination of P2Y

blockers and PI3K p110b inhibitor significantly prevented

hypothermic ECC-induced platelet loss (p,0.05).

P2Y Blockade in Combination with a PI3K p110b Inhibitor
Prevents Upregulation of the Mac-1 Receptor on
Granulocytes
Interaction of activated platelets with leukocytes triggers the

upregulation of the Mac-1 receptor on leukocytes. Mac-1 mediates

leukocyte adhesion and migration as well as interaction and

binding of leukocytes and platelets [30]. To evaluate granulocyte

activation, we measured surface CD11b expression on granulo-

cytes. Hypothermic ECC induced a profound increase in CD11b

expression on granulocytes in controls (p,0.05; Figure 5). This

was significantly decreased by P2Y blockade in combination with

PI3K p110b inhibition (p,0.001). P2Y and PI3K p110b in-

hibition alone had no effect on hypothermic ECC-induced CD11b

expression on granulocytes.

Figure 3. Blockade of P2Y12 and P2Y1 as well as PI3K p110b inhibition profoundly inhibits hypothermic ECC-induced P-selectin
expression on platelets and platelet microparticles. Prior to (‘‘before circ.’’) and after hypothermic ECC (28uC, 30 minutes) flow cytometric
analysis of P-selectin expression on platelets and PMPs was performed in groups treated with either PBS as control, 2-MeSAMP and MRS2179 (100 mM
each; ‘‘P2Y block’’), propylene glycol (‘‘PG’’) as control, TGX-221 to inhibit PI3K p110b (2.2 mM; ‘‘TGX’’) or a combination of 2-MeSAMP and MRS2179
(100 mM each) as well as TGX-221 (2.2 mM; ‘‘P2Y block + TGX’’). Representative dot plot indicating the identification of PMPs, single platelets and
aggregates according to their size and granularity (A). Representative histogram overlay including a marker to identify percentages of P-selectin
expressing platelets before circulation without additional stimulation (grey filled), before circulation with addition of ADP (20 mM; grey solid line) as
well as 30 minutes after hypothermic ECC (black solid line) (B). Percentages of platelets (C) and PMPs (D) expressing P-selectin are depicted. Data in
(C) and (D) are given as means (n = 6) and SD; groups were compared using RM-ANOVA with Bonferroni’s multiple comparison test; *p,0.05;
**p,0.01, ***p,0.001.
doi:10.1371/journal.pone.0038455.g003

Platelet and Leukocyte Protection during ECC

PLoS ONE | www.plosone.org 4 June 2012 | Volume 7 | Issue 6 | e38455



Discussion

In this study, we investigate the effects of ADP receptor

blockade combined with PI3K p110b inhibition on platelets and

granulocytes in an ex vivo model simulating hypothermic ECC. In

general, our current findings confirm previously reported effects of

hypothermic ECC on platelet activation, which lead to numerous

responses in platelets like: platelet adhesion to the ECC surface,

granule release associated with upregulation of P-selectin on

platelets and PMPs, activation of GPIIb/IIIa and subsequent

interaction of platelets and granulocytes as well as granulocyte

activation (Figure 6) [1,2,12,31,32,33,34]. In our current study,

GPIba and GPIIb/IIIa expression levels as well as vWF binding

to platelets were unaffected by hypothermic ECC. Hypothermic

ECC did also not result in increased PMP numbers, but in an

increase of P-selectin expression on PMPs and single platelets.

This contributes to explain the increase in platelet-granulocyte

aggregate formation and upregulation of Mac-1 expression on

granulocytes as observed in our experiments, since P-selectin

expressing platelets and PMPs can mediate binding and consec-

utive activation of platelets and leukocytes [35]. Furthermore, the

observed loss of platelet counts after hypothermic ECC can be

explained by the fact that aggregate formation as well as platelet

adhesion to the ECC surface occurred during hypothermic ECC.

Based on these data and previous findings [3,10,36], a routine

strategy for platelet protection during ECC and hypothermia is

warranted and could be very beneficial for many patients in

clinical settings where ECC and hypothermia are employed.

In patients with coronary disease platelet inhibition is routinely

performed with ADP receptor P2Y12 blockers including the

thienopyridines clopidogrel and prasugrel [37,38]. We have

recently reported that administration of cangrelor, a reversible

non-thienopyridine P2Y12 receptor blocker with short plasma

half-life (3–6 minutes) [39] effectively reduces platelet granule

release, platelet-granulocyte binding, and platelet loss during

hypothermic ECC [11]. Furthermore, according to its short half-

Figure 4. Effects of hypothermic ECC and platelet inhibitor treatment on platelet adhesion to the ECC surface, platelet-granulocyte
aggregate formation and platelet counts. Human blood samples were either left untreated or treated with PBS (control group), a combination
of 2-MeSAMP and MRS2179 (100 mM each; ‘‘P2Y block’’), propylene glycol (‘‘PG’’, control group), TGX-221 (2.2 mM; ‘‘TGX’’) or a combination of 2-
MeSAMP, MRS2179 and TGX-221 (‘‘P2Y block + TGX’’). Blood, which was treated accordingly, was circulated in an ex vivo ECC model at 28uC for
30 minutes. A specific ELISA method was employed to detect platelet adhesion to the ECC surface (A; n = 6). Platelet-granulocyte aggregate
formation was measured in flow cytometry before circulation (‘‘before circ.’’) and after circulation in all treatment groups (B; n = 4) according to the
fluorescence of an anti-CD15-PE antibody on aggregates (aggregate region in figure 3A) under a pre-set histogram marker. Platelet counts were
measured in all samples (C; n = 6). Data are given as means and SD; normally distributed data were compared using RM-ANOVA with Bonferroni’s
multiple comparison test (A, B); not normally distributed data were analyzed using a non-parametrical test (Friedman test with Dunǹs multiple
comparison test; C); *p,0.05; **p,0.01; ***p,0.001.
doi:10.1371/journal.pone.0038455.g004
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life administration of cangrelor only during ECC results in rapid

recovery of platelet function after ECC and is not associated with

blood loss. Nevertheless, cangrelor had no inhibitory effects on

platelet-ECC binding and no sustainable effect on GPIIb/IIIa

activation [11]. In the setting of normothermic ex vivo ECC

(37uC), platelet-ECC adhesion as well as platelet-platelet and

platelet-granulocyte aggregation can be very effectively decreased

with the PI3K p110b inhibitor TGX-221 [4]. In addition,

further inhibition of ADP-mediated effects may be achieved by

blocking not only P2Y12, but also P2Y1 on platelets. Therefore,

the aim of our current study was to combine full platelet ADP

receptor blockade with inhibition of shear-induced platelet

activation to completely inhibit platelet activation during ECC

and hypothermia.

At first, we employed a combination of experimental P2Y12 and

P2Y1 blockers to protect platelets during hypothermic ECC. The

P2Y1 receptor has been suggested as a crucial target for inhibition

of ADP-mediated effects, since P2Y1 activation is necessary for full

platelet aggregation [8]. Nevertheless, until today, no P2Y1

antagonist for clinical applications has been developed [40,41].

We therefore used the experimental and reversible P2Y1 antag-

onist MRS2179, which has been shown to substantially inhibit

ADP-induced platelet aggregation [42]. Furthermore, 2-Me-

SAMP, a specific inhibitor of the platelet P2Y12 receptor

[43,44], was used in the current study, because previous ex vivo

experiments as well as our current in vitro experiments showed

substantial and specific P2Y12 blockade to a similar extent then the

effect observed with cangrelor [10,11].

Our results show, that combined P2Y12 and P2Y1 blockade

results in significant inhibition of P-selectin expression on platelets

and PMPs as well as a reduction in platelet-granulocyte

aggregates. Nevertheless, similar to results observed in a previous

study [11], no effect of P2Y12 and P2Y1 blockade was observed for

GPIIb/IIIa activation and platelet-ECC adhesion.

Jackson et al. have reported the platelet PI3K p110b isoform as

important target for new antithrombotic agents, since it plays

a major role in shear-induced activation of platelets [45]. In order

to inhibit the platelet PI3K isoform p110b, TGX-221, an

experimental compound with a reported 1.000-fold selectivity

over the two other PI3K isoforms p110a and p110c [45], was

used. Only the combined administration of P2Y blockade and

PI3K p110b inhibition prevented platelet-ECC adhesion during

hypothermic ECC and provided a better protection of platelet

counts and inhibition of GPIIb/IIIa activation then P2Y blockers

or TGX-221 alone.

Overall, combined blockade of P2Y12, P2Y1 and PI3K p110b
during hypothermic ECC in our current experiments resulted in

an effective reduction of all investigated platelet activation

markers. Furthermore, the effect of combined blockade of

P2Y12, P2Y1 and PI3K p110b achieved inhibitory effects close to

values measured at baseline before ECC and is therefore more

profound then the sole inhibition of P2Y12, P2Y1 or PI3K p110b.
This confirms that activation processes mediated via ADP and

shear stress in combination are the major players for the induction

of platelet activation during hypothermic ECC. Therefore,

inhibition of the respective receptors and activation pathways

may be very beneficial for patients undergoing hypothermic ECC.

As a consequence the development of respective agents for use in

clinical applications is highly desirable. Such innovative substances

for administration during ECC and hypothermia should optimally

have a short half-life. In this case platelet inhibition can be

achieved only during the phase of ECC and hypothermia and

platelet function is quickly restored after termination of infusion

after ECC. We have recently demonstrated the functionality of

this innovative pharmacological principle by employing cangrelor

during hypothermic ECC in vivo [11].

In conclusion, our novel findings indicate that hypothermic

ECC-induced platelet activation as well as subsequent events

including aggregate formation and granulocyte activation are

completely inhibited by combined P2Y12, P2Y1 and PI3K p110b
blockade. This therapeutic strategy carries the potential to

effectively protect platelets and to prevent life-threatening

complications like thrombosis, bleeding and systemic inflammation

in the setting of ECC and hypothermia. Hence, our findings

warrant additional studies to further evaluate this new antiplatelet

strategy and to develop innovative reversible antiplatelet agents for

clinical use.

Limitations and Outlook
The Chandler loop ECC model, which was used for the ex vivo

ECC experiments in this study, is a well-established and routinely

used model to analyze effects of ECC and hypothermia on

platelets and other blood components. However, the obtained

results need to be interpreted with caution, since the Chandler

loop model differs in some points from the setting of ECC as

employed in cardiac surgery. In the Chandler loop PVC tubings,

which contain human whole blood, are circulated in a water bath

at a designated temperature. Therefore, human whole blood is

circulated exclusively and continuously over artificial surfaces,

which causes activation of platelets and leukocytes. However, in

the Chandler loop model heart-lung machine components like

oxygenator and roller pumps, which are routinely used during

cardiac surgery, are omitted and therefore shear stress and other

activating effects might be decreased in comparison to what

happens under clinical conditions. Furthermore, no priming

volume is used in the Chandler loop model, which may result in

Figure 5. P2Y12/P2Y1 blockade in combination with TGX-221
prevents upregulation of the Mac-1 receptor on granulocytes.
Granulocyte activation was measured before (‘‘before circ.’’) and
30 minutes after hypothermic ECC in groups treated with PBS (control
group), 2-MeSAMP and MRS2179 (‘‘P2Y block’’; 100 mM each), propylene
glycol (‘‘PG’’, control group), TGX-221 (‘‘TGX’’; 2.2 mM) and a combina-
tion of P2Y block (100 mM each) and PI3K p110b inhibition with TGX-
221 (2.2 mM; ‘‘P2Y block + TGX’’;). Mac-1 expression on granulocytes was
evaluated using geometric mean values of antibody fluorescence in
flow cytometry. Data are given as means (n = 6) and SD; groups were
compared using RM-ANOVA with Bonferroni’s multiple comparison test;
*p,0.05; ***p,0.001.
doi:10.1371/journal.pone.0038455.g005
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augmented activating effects. Nevertheless, it has been shown in

previous studies that platelet activation is induced during cardiac

operations employing a heart-lung machine and hypothermia to

a similar extent compared to what we found in our experiments

[1,36,46,47].

Our findings indicate that combined P2Y and PI3K inhibition

has the potential to achieve complete platelet inhibition during

hypothermic ECC and may therefore be very beneficial in the

clinical situation. Therefore, our final aim is to evaluate this

antiplatelet strategy in a carefully designed clinical study.

However, previous studies employing different animal models

revealed that there is a species-dependent variation regarding the

effect of TGX-221 on bleeding [45,48]. Therefore, before a clinical

investigation may be initiated, the effect of our experimental

strategy on the bleeding time needs to be carefully evaluated in

human blood. Especially administration of short-acting drugs like

cangrelor or drugs, which doǹt influence the bleeding time, will be

the agents of choice for the in vivo setting and should be further

evaluated in the future.

Methods

Blood Sampling
All blood sampling procedures were approved by the Research

and Ethics Unit of the University of Tübingen, Germany (project

number 270/2010BO1). Written informed consent was obtained

from all subjects before blood sampling.

Blood from healthy donors was collected by venipuncture and

anticoagulated with heparin [final concentration (fc): 3 I.U./ml].

All subjects were free of platelet-affecting drugs for at least 14 days.

In vitro Evaluation of Different Concentrations of 2-
MeSAMP and TGX-221
Heparinized humanwhole blood (n= 4)was treated for 5 minutes

at 37uC with the following agents: PBS as control (Invitrogen

GmbH, Karlsruhe, Germany), 2-MeSAMP (fc: 10 and 100 mM;

dissolved in PBS; Sigma-Aldrich Corporation, St. Louis, USA),

a combination of 2-MeSAMP and MRS2179 (fc: 100 mM each;

dissolved in PBS; Tocris Biosciences, Bristol, UK), propylene glycol

(PG; Carl Roth GmbH + Co. KG, Karlsruhe, Germany) as control

or TGX-221 (fc: 0.5 or 2.2 mM; dissolved in PG; Merck Chemicals

Ltd., Nottingham,UK). Afterwards whole bloodwas incubatedwith

Figure 6. Overview of a pharmacological strategy for platelet protection during hypothermic ECC employing P2Y12 and P2Y1

receptor blockers as well as a PI3K p110b inhibitor.
doi:10.1371/journal.pone.0038455.g006
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ADP (fc: 20 mM) and a phycoerythrin (PE)-labeled anti-P-selectin

monoclonal antibody (mAb) (BD Biosciences, Heidelberg, Ger-

many) as well as an fluorescein isothiocyanate (FITC)-labeled anti-

GPIIb mAb (Beckman Coulter, Marseille, France) according to

previously described methods for 20 minutes at 37uC [3]. Next, all

samples were fixed using CellFixH (BD Biosciences) and flow

cytometric analysis was performed within 6 hours.

Ex vivo ECC Chandler Loop Model
In each experiment, baseline values were measured directly

after blood sampling in 20 ml of heparinized blood. A well-

established closed-loop ECC model (Chandler loop) [17] and PVC

tubings (tubing length: 50 cm, inner diameter: 7,6 mm; wall:

2,3 mm) without additional coating (Jostra, Hirrlingen, Germany)

were used to simulate ECC at 28uC. For each donor, five tubings

were filled with 20 ml of fresh heparinized whole blood and

treated with the following agents: the first and second sub-samples

were treated with PBS and PG as controls, respectively. In the

third sub-sample, both platelet ADP receptors were blocked (‘‘P2Y

block’’) employing the experimental P2Y12 antagonist 2-MeSAMP

(fc: 100 mM) and the experimental P2Y1 antagonist MRS2179 (fc:

100 mM). In the fourth sub-sample, PI3K p110b was inhibited by

TGX-221 (fc: 2.2 mM). In the last sub-sample, a combination of

P2Y blockade and PI3K p110b inhibition was employed.

Afterwards, each tubing was closed into a circuit and circulated

in a water bath (at 30 rpm) at 28uC for 30 minutes.

In this study, blood was anticoagulated with heparin, because

heparin is routinely applied during clinical procedures employing

ECCas anticoagulant to prevent activation of plasmatic coagulation

during ECC. The degree of potential platelet activating effects of

heparin on platelets has been analyzed in a previous study and found

to be of minor extent in our ex vivo ECC model [3].

Flow Cytometric Analyses of Blood Samples Before and
After ECC
Analyses of human platelets and granulocytes were performed

directly after blood sampling (‘‘before circulation’’) and after ex vivo

ECC in all treatment groups. Expression of P-selectin, GPIba as

well as binding of the PAC-1 mAb against activated GPIIb/IIIa

on platelets was measured according to previously described

methods [3,10].

Expression of the GPIIb/IIIa receptor on platelets as well as

platelet von Willebrand factor (vWF) binding was evaluated in

25 ml of diluted whole blood (1:50 dilution in modified Tyrodès

buffer) using 5 ml of an anti-GPIIb-FITC (Beckman Coulter) and

5 ml of an anti-vWF-FITC mAb (1:10 dilution; Abcam, Cam-

bridge, UK), respectively. P-selectin and GPIba expression as well

as vWF binding were also analyzed on ADP-activated (fc: 20 mM)

platelets before and after hypothermic ECC in the PBS group as

positive controls.

Analysis of platelet microparticles (PMPs) was performed after

flow cytometric calibration and setup using a forward scatter/

sideward scatter dot plot and 1 and 3 mm-sized latex beads

(Polysciences, Eppelheim, Germany). PMPs are defined as objects

with a size of #1 mm. The number of PMPs was counted and P-

selectin expression was analyzed as described previously [3].

Platelet-granulocyte aggregates were detected in 25 ml of whole
blood, which was incubated for 20 minutes with 5 ml of an anti-

GPIIb-FITC mAb and 5 ml of an anti-CD15-PE mAb. After-

wards, samples were treated with FACS Lysing Solution (BD

Biosciences) to lyse erythrocytes, centrifuged at 200 g for

5 minutes and washed with PBS.

CellFixH (BD Biosciences) was used for sample fixation. Flow

cytometry was performed within 6 hours using a FACScanH
cytometer (BD Biosciences) according to standard procedures

[3,18].

For evaluation of granulocyte activation, 90 ml of whole blood

was incubated with 10 ml of an anti-CD11b-PE mAb (Beckman

Coulter) for 20 minutes at 37uC, treated with FACS Lysing

Solution, centrifuged at 200 g for 5 minutes and afterwards

washed with PBS. All samples were fixed using CellFixH. Within 6

hours after antibody staining, granulocytes were identified

according to their size and granularity and analyzed using flow

cytometry.

For all samples, suitable isotype antibodies were used to adjust

fluorescence amplification settings. A total of 10.000 events were

acquired in each sample. If not otherwise indicated, geometric

mean fluorescence intensities were used for analyses of flow

cytometric data.

Detection of Platelet Adhesion to the ECC Surface
Platelet adhesion to the ECC surface was detected using

a specially designed enzyme-linked immunosorbent assay (ELISA)

method as previously described [4]. Briefly, ECC tubings were

washed and blocked after circulation and surface-bound GPIIb

was detected employing a primary anti-GPIIb antibody (Sigma,

Deisenhofen, Germany) and an alkaline phosphatase conjugated

secondary antibody (Immunotech/Coulter, Marseille, France).

The chromogenic reaction was stopped by addition of NaOH.

Light absorbance was determined with an ELISA reader MR

5000 (Dynatech, Denkendorf, Germany) at 405 nm.

Analysis of Platelet Counts
Before and after circulation, human whole blood was antic-

oagulated with EDTA (EDTA-MonovetteH, Sarstedt, Nümbrecht,

Germany) for platelet count analysis using an ABX Micros 60

blood analyzer (Axon Lab AG, Baden-Dättwil, Switzerland).

Statistical Analysis
Data are depicted as means with standard deviation (SD). In

order to test data sets for normality, the Kolmogorov-Smirnov test

was performed. Normally distributed data were then analyzed

using repeated measures (RM) ANOVA with Bonferroni’s

multiple comparison test to analyze differences between groups,

while not normally distributed data were analyzed using a non-

parametrical test (Friedman test with Dunǹs multiple comparison

test). All analyses were performed using the statistical software

program GraphPad Prism (version 5, GraphPad Software, La

Jolla, USA). Statistical significance was defined as p,0.05.
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