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ABSTRACT
SARS-CoV-2 is a pandemic virus that caused infections and deaths in many world countries, including
the Middle East. The virus-infected human cells by binding via ACE-2 receptor through the Spike pro-
tein of the virus with Furin’s help causing cell membrane fusion leading to Covid-19-cell entry. No reg-
istered drugs or vaccines are triggering this pandemic viral disease yet. Our present work is based on
molecular docking and dynamics simulation that performed to spike protein-ACE-2 interface complex,
ACE-2 receptor, Spike protein (RBD), and Furin as targets for new small molecules. These drugs target
new potential therapies to show their probabilities toward the active sites of mentioned proteins,
strongly causing inhibition and/or potential therapy for covid-19. All target proteins were estimated
against new target compounds under clinical trials and repurposing drugs currently present.
Possibilities of those molecules and potential therapeutics acting on a certain target were predicted.
MD simulations over 200ns with molecular mechanics-generalized Born surface area (MMGBSA) bind-
ing energy calculations were performed. The structural and energetic analyses demonstrated the sta-
bility of the ligands-MPros complex. Our present work will introduce new visions of some biologically
active molecules for further studies in-vitro and in-vivo for Covid-19, repurposing of these molecules
should be taking place under clinical works and offering different strategies for drugs repurposing
against Covid-19 diseases.
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1. Introduction

The coronavirus disease, which was called Covid-19 by the
WHO on February 11, 2020, began in Wuhan, China, in
December 2019 and has highly spread in epidemic manners
(Lillie et al., 2020). The international virus classification com-
mission had clarified that the novel coronavirus was named
SARS-CoV-2. COVID-19 is not the first virus combined with a
severe respiratory disease caused by the coronavirus (Lai et
al., 2020). However, in the past 20 years, coronaviruses have
caused three epidemic diseases named SARS-Cov-2, SARS-
Cov, and MERS-Cov (de Wit et al., 2016). Currently, cases of
COVID-19 have been reported in many countries around the
world, including Egypt (Wu et al., 2020). Coronaviruses are
enveloped viruses with a positive-sense, single-stranded RNA
genome (Su et al., 2016). Coronavirus Spike protein has been
reported as a significant part of the virus-host cell entry
(Papa et al., 2021). SARS-Cov-2, similar to SARS-Cov binds to
human angiotensin-converting enzyme-2 (ACE2) through
viral spike protein, which triggers the entry of infectious
SARS-Cov-2 (Li et al., 2003; Zhou et al., 2020). A spike glyco-
protein of SARS-CoV-2 (COVID-19) is a trimeric viral fusion
protein that is existed S1 and S2 subunits that remain non-
covalently presented in a nonbinding state (Hoffmann et al.,

2020; Tortorici & Veesler, 2019; Walls et al., 2020). Upon
attachment of ACE2 by a receptor-binding domain (RBD) in
the S1 subunit of spike protein (Wong et al., 2004), conform-
ational rearrangements take place that causes S1 shedding
and cleavage of the S2 subunit by host cell proteases, and
exposure of a fusion peptide adjacent to the S2 proteolysis
site (Madu et al., 2009; Millet & Whittaker, 2014; Tortorici &
Veesler, 2019).

Angiotensin-converting enzyme-2 (ACE2) is a cardio-cere-
bral vascular protection factor found in many tissues, includ-
ing the kidney, intestine, lung, skeletal muscles, and nervous
system (Zahoor et al., 2021). Besides, it’s played an important
role in regulating blood pressure and anti-arteriosclerosis
mechanisms (Miller & Arnold, 2019), as well as, it considers a
major binding target for SARS-Cov-2 (Wrapp et al., 2020).
SARS-CoV-2 differs from SARS-CoV by 380 amino acid
sequencing, which translates to different five of the six cru-
cial amino acids in the receptor-binding domain (RBD) that
included in the S1 subunit between the viral spike (S) protein
with cell membrane human ACE-2 (Durmaz et al., 2020).
Spike protein of Covid-19 is studied to target therapeutic
and vaccine development (Zhang et al., 2020). Otherwise,
SARS-CoV-2 had found to use a wide variety of host
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proteases including cathepsin L, cathepsin B, trypsin, factor
X, elastase, Furin, and transmembrane protease serine 2
(TMPRSS2) for the S-protein that enhancing and facilitating
cell entry following ACE-2 binding through the S2 subunit
which reported as a membrane fusion unit (El-Shimy et al.,
2021; Luan et al., 2020). Camostat mesylate is a serine prote-
ase inhibitor combined with a cathepsin L/B inhibitor
blocked SARS-CoV-2 entry as it was trailing clinically in Japan
(Millet & Whittaker, 2015).

In brief, the entry of both SARS-CoV and SARS-CoV-2 into
cells is facilitated by the attachment of both RBD of viral
spike protein and interfaced domains of the transmembrane
ACE-2 proteins, followed by a cascade cell membrane fusion
process result in virus-host cell entry (Yepes-P�erez et al.,
2020). Besides, it had known that ACE-2 is a metalloenzyme
and presents a zinc-binding active site (Chappel & Ferrario,
2006), since EDTA is a chelating agent of loosely bound Znþ2

metal ions, which acts as a cofactor for ACE-2 leading to
Enzyme blocking (Wysocki et al., 2006).

On the other hand, it had reported that MLN-4760 is a
specific inhibitor for ACE-2 in which their binding is irrevers-
ible (Shagufta & Ahmad, 2021). MLN-4760 has been used in
numerous studies of ACE-2 inhibitor in vivo and in vitro.
However, the compound is not currently commercially avail-
able, it has been shown to increase urinary albumin and
mesangial cell expansion, vascular thickness in both type 1
and type 2 diabetic models (Soler et al., 2007; Ye et al.,
2006). The entry of coronavirus is triggered by cleavage of
Spike protein into two subunits as a subunit (S1) and (S2) by
the action of proteolytic enzymes, including Furin proprotein
(Yamada & Liu, 2009). Furin proprotein was found in most
human tissues, including the small intestine, kidney, lungs,
and liver, which explains why the viruses can invade different
organs (Heald-Sargent & Gallagher, 2012).

The S1 subunit of Covid-19 binds to the ACE-2 receptor
on the host cell membrane, while the S2 site interacts with
the cell membrane to mediate receptor-dependent endo-
cytosis (Yamada & Liu, 2009). The viral spike protein is essen-
tial for the entry of the virus into the cell, contains two
functional domains: an ACE2 binding domain (also called
receptor-binding domain-RBD), and a second domain essen-
tial for fusion of the viral and cell membranes through the
action of Furin (Coutard et al., 2020; Walls et al., 2020; Wan
et al., 2020). Furin activity reveals the binding and fusion
domains, essential steps for entering the virus into the host
cell (Zhao et al., 2020). Based on Furin’s recognition substrate
sequence characteristics, some short peptide inhibitors have
been developed, such as Decanoyl-Arg-Val-Lys-Arg-chloro-
methyl ketone (DEC-RVKR-CMK) (Henrich et al., 2003;
Matsuyama et al., 2018). DEC-RVKR-CMK is a small synthetic
Furin inhibitor that is suitable for clinical purposes. Besides, it
was used by many researchers as a reference inhibitor to
study the effect of Furin and other proprotein convertases
(Garten et al., 1994). It also strongly inhibits viral infection
because of its ability to irreversibly block Furin (Becker et al.,
2010). Furthermore, it had demonstrated that DEC-RVKR-CMK
is a small irreversible cellular diffused competitive blocker of
all proconvertases. Addition to it was reported to inhibit

fusion activity of viral glycoproteins and Furin-mediated
cleavage and used as an antiviral agent, including duck
hepatitis B virus (Tong et al., 2010), Chikungunya virus
(Hallenberger et al., 1992), papillomavirus (Day & Schiller,
2009), chronic hepatitis B virus, influenza A, as well as Ebola
virus infection (Ozden et al., 2008), and human immunodefi-
ciency virus (Pang et al., 2013).

Currently, there are no registered drugs or vaccines avail-
able for beating Covid-19. SARS-CoV-2 is reported to be
more infectious than other types of flu-viruses as one subject
can infect more than two healthy subjects. Scientists are
now giving intense attention to repurposing existing drugs.
Researchers have suggested that using some of the regis-
tered antiviral drugs, e.g. HIV protease inhibitors and nucleo-
side analogs inhibitors, is a potential treatment method.
Angiotensin-converting enzyme-2 (ACE-2) and RNA-depend-
ent RNA polymerase (RdRp) are also promising therapeutics
for COVID-19 infection (Shah et al., 2020). Some antiviral
drugs clinically trialed against COVID-19 infection as
Lopinavir, Favinapir, Ganciclovir, Oseltamivir, and Ritonavir as
well as Hydroxychloroquine and Chloroquine, antimalarial
drugs, has been proven to be effective in the treatments of
COVID-19 (Devaux et al., 2020; Liu et al., 2020). Until any
accurate treatment methodology is available for COVID- 19,
using previously known either antiviral or other approved
drugs that useful strategy. In the present work, molecular
docking and molecular dynamics studies were performed
over the binding pocket of COVID-19 and cell membrane
receptors to show the potential effect of small compounds
against coronavirus disease.

Based on the previous facts and our ongoing efforts to
discover or develop a new heterocyclic compound with bio-
logical activity (Ammar et al., 2021; Ammar et al., 2020a;.
Ammar et al., 2020b; El-Houseini et al., 2013; El-Sharief et al.,
2019, 2016; Fayed et al., 2020; Hassan et al., 2020; Ragab et
al., 2021; Rizk et al., 2020; Salem et al., 2020b; Wassel et al.,
2021b, 2021a; Ammar et al., 2018; Ammar et al., 2016;
Ammar et al., 2017). Our current study targets Furin to be an
option for potential prevention of Sars-CoV-2 invading cell
using DEC-RVKR-CMK as a Furin inhibitor where it had been
used against HIV infection (Pang et al., 2013). Furthermore,
the current study will estimate DEC-RVKR-CMK action on
Covid 19, since, it was found that the Spike glycoprotein of
Covid-19 has high similarity for HIV, ARAS-Cov and MERS-Cov
(Pang et al., 2013; Van Lam van et al., 2019; Zhou et al.,
2020). The previously mentioned researches pushed us to
evaluate the potential therapeutic action of DEC-RVKR-CMK
against Covid-19. Our study highlights the efficacy of DEC-
RVKR-CMK as an interesting anti-Covid-19 agent through its
binding ability. Additionally, this work aims to evaluate the
ability of MLN-4760 and ethylene diamine tetra-acetate
(EDTA) as inhibitors for ACE-2 (Vickers et al., 2002; Wysocki et
al., 2006) by molecular modelling study, that may lead to
interrupting the attachment of viral spike protein to the host
cells. The computational docking and dynamics simulation
studies will perform for viral spike protein, Furin, and spike-
ACE-2 interface complex (Figure 1), encouraging more clinical
trials using the previously mentioned drugs as potential
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elected therapeutics against SRAS-Cov-2 in vitro and in
vivo studies.

2. Materials and methods

2.1. Ligand selection

The structure of selected drugs (MLN-4670 (Drug bank ID
DB12271), Dec-RVKR-CMK (Pubchem ID 9962075), EDTA (Drug
bank ID DB14600), Acyclovir (Drug bank ID DB00787) and
Camostat (Drug bank ID DB13729), were obtained from a Drug
bank (https://www.drugbank.ca/) and or sigma Merck (https://
www.sigmaaldrich.com/european-export.html). The structures
were introduced to gauss view, then fully optimized-geome-
tries exported by density-functional theory (DFT) with B3LYP
functional with STO-3G based set as implemented in Gaussian
09 package. The Open-Babel is used for generated sdf files.

2.2. Proteases MPro preparation

Crystal structure of the different protein as a structure of
SARS-Cov-2 receptor-complexed with its human receptor
ACE-2 ‘Spike-ACE-2 interface complex’ (PDB ID: 6VW1).
Structure of proprotein Furin as a ternary complex of pro-
teinase K (PDB ID: 1PJ8) and native human angiotensin-con-
verting enzyme-related carboxypeptidase ACE-2 (PDB ID:
1R42) were retractive from protein data bank (RCSB Protien
Data Bank, 2020, https://www.rcsb.org/structure/6VW1,
https://www.rcsb.org/structure/1p8j, and https://www.rcsb.
org/structure/1R42). The protein structures were loaded sep-
arately. The protein structures were prepared by removing
water, the polar H-atoms and electric charge were add using
AMBER forcefield. Then MPros protonation state were tested
using Hþþserver, and all missing hydrogen atoms were
added (Gordon et al., 2005).

2.3. Molecular docking

Pre-molecular docking simulations were completed using
Molecular Operating Environmental (MOE) software version
2008.10 (Hassan et al., 2021; Ibrahim et al., 2021a, 2021b).
The docking processes for all drugs were performed accord-
ing to the reported method (Fukuda et al., 2017) using the
Triangle Matcher placement method and London dG as a
scoring function. The top-scoring pose was inspected visu-
ally. The GlideSP module in Schrodinger was then applied for
the final docking simulation steps (Sinha et al., 2020)
(Supplementary materials).

2.4. Molecular dynamics (MD) simulation and molecular
mechanics-generalized born solvent accessibility
(MM-GBSA) analysis

MD simulations were parameterized with ANTECHAMBER
using AMBER18. xLeap used for preparing the protein-ligand
complexes to 200 ns MD simulations. Then, the 200 ns trajec-
tories were applied to MM-GBSA analysis utilizing Amber18
tools on all the 5000 frames (Supplementary materials).

3. Results and discussion

3.1. Molecular docking study

The molecular docking study is one of the bioinformatics
chemistry methods that widely used in the design of new
drugs and active substances as well as decreasing the time
and money spent on initial screening and identification of
environmentally viable (Salem et al., 2020a). To reduce com-
pactional-cost and time, we utilized two levels of molecular
docking calculations. The pre-docking study by MOE and
binding score were used for represented binding interaction
and followed by a final docking level through glide score

Figure 1. Structure of selected drugs with different biological targets.
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(Figure 2), which is used for the further molecular
dynamic study.

Our work strategy depending on the previous survey, sug-
gested to use of five drugs that exhibited active biological
values ‘MLN-4670, Dec-RVKR-CMK, EDTA, Acyclovir and
Camostat’ were selected and docked inside different protein
targets (Figure S1) to be used as a potential antiviral agent,
especially against Covid-19, and among the numerous tar-
gets we focused on protein targets as Spike-ACE-2 interface
complex, Spike protein, ACE-2 protein and Furin proprotein,
and the results were represented in Table 1 (See supplemen-
tary information Table S1–S4 and all figures for MOE). Firstly,
the viral spike protein-ACE-2 interface complex is the first
step of SARS-Cov-2 infection where the Covid-19 binding to
the human ACE-2, and therefore the virus entering the host
cell leading to viral infection (Wong et al., 2004). The small
molecules that had mentioned before were estimated as a

drug for docking inside active sites of Spike protein-ACE-2
interface complex (6VW1) (RCSB Protien Data Bank, 2020,
https://www.rcsb.org/structure/6VW1, https://www.rcsb.org/
structure/1p8j, and https://www.rcsb.org/structure/1R42).
From Table 1, it observed that the pre-docking energy scores
‘S’ of drugs that attached to the host-virus complex, where is
the highest ‘S’ was for EDTA disodium salt (-59.06 Kcal/mol)
while for ACE-2 receptor (1R42) was (�10.59 Kcal/mol). It was
observed that EDTA bind to the host-virus interface complex
through the B chain of ACE-2 by two bonds, one sidechain
hydrogen bond acceptor between Arg514 and the carbonyl
group with bond length 2.68 Å. The second one is a back-
bone hydrogen bond acceptor between Ala 348 and oxygen
of the same carboxylate with bond length 2.35 Å, as well as
metalloenzyme Znþ2 formed one ionic bond with the oxygen
of carboxylate (1.79 Å) and coordination bond with other car-
bonyl groups of EDTA (1.81 Å) inside the active site of the

Figure 2. The GLID docking simulations for MPros and most stable investigated compounds after pre-docking by MOE; interactions were visualized using maestro
tool; the investigated compounds were represented in the b-chain mode as; MLN-4670 as (Blue); Dec-RVKR-CMK (yellow); Acyclovir (red) and Camostat
(light Orange).
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Spike-ACE-2 interface complex. While docking of EDTA inside
the active site of ACE-2 receptor (1R42) (RCSB Protien Data
Bank, 2020, https://www.rcsb.org/structure/6VW1, https://
www.rcsb.org/structure/1p8j, and https://www.rcsb.org/struc-
ture/1R42) showed only one sidechain donor between
Asp206 and nitrogen of ethylenediamine with bond length
2.41 Å and Znþ2 ion not formed any bonds with EDTA drug
although Znþ2 ions present in an active site (Figure 3, S1 &
S2). Previously, EDTA disodium is used as a chelation therapy
in many diseases such as atherosclerotic disease, angina
(Grier & Meyers, 1993; Halbert, 2004; Lamas et al., 2013) and
neurotoxicity (Fulgenzi & Ferrero, 2019) also EDTA is consid-
ered as ACE-2 inhibitor (Wysocki et al., 2006) since, it had
demonstrated that an ACE-2 is a metalloenzyme containing
Znþ2 binding active site (Chappel & Ferrario, 2006).

The final glide score for EDTA showed the lowest binding
energy against all MPros so we determine stop further MD
study for EDTA (Table 1). Furthermore, MLN-4670 is reported
as a specific ACE-2 irreversible inhibitor (Vickers et al., 2002).
The molecular docking simulation was performed for spike-
ACE-2 interface complex inside the active site of (6VW1) and
showed (BE) binding energy (S) ¼ (�56.60 Kcal/mol) and by
the same way, for only ACE-2 receptor (1R42), it was found
energy score (S) ¼ (�16.91 Kcal/mol) (Table 1). Its ligand
showed the highest BEs in the final step of docking in the
range (�9.63 to �5.524 Kcal/mol) against all MPros except
Furin Protein (1PJ8).

The previously mentioned results observed that the bind-
ing of MLN-4670 is stronger when attached to the ACE-2
chain associated with the viral spike protein chain (6VW1)
than binding separated ACE-2 receptors. The high binding
energy of MLN-4670 inside the active site of (6VW1) may be
due to the two ionic bonds between metalloenzyme Znþ2

and two oxygen atoms of carboxylate with bond length 1.77
and 1.75 Å, besides, hydrogen bond backbone acceptor
between Ala 348 and carbonyl of carboxylate with bond
length 2.53 Å (Figure S1 and S2). MLN-4670 showed the fol-
lowing bonds in the final step: two H-bonds between
ALA348 as donor and carbonyl group, two p-p bonds
between phenyl ring and TRP349, the hydrogen bond
between Cl atom and ASP350, four ionic bonds between Zn
and carbonyl groups, respectively (Figure S3). While in the
case of redocking the MLN-4670 inside the receptor of the
cell on (1R42) and reveled in both docking steps (Figure 3,
S1 and S6), H-bond sidechain donor between Asp266 and
nitrogen of secondary amine with bond length 2.34 Å and
formed an ionic bond between Lys562 and carbonyl groups.
Herein, we could highlight that the MLN-4670 are more
effective against Covid-19 infection and practical works

needed for those drugs. Particularly, it has been observed
that the docking study of the Spike protein-ACE-2 interface
complex showed all bindings to the B chain that belonged
to ACE-2 in the complex. So, we isolated the spike protein (E
and F chains) from the complex based on a computational
method to determine if it competes for the combining of
drugs with ACE-2 chains. The MLN-4670 drug’s affinity dis-
played binding energy S ¼ (�19.54 and �9.63 Kcal/mol)
respectively, for both steps. This ligand caped over Trp436
by carbonyl of carbonate with bond length 2.59 Å and
Asn343 with NH group 2.84 Å, respectively. While, in the final
step, MLN-4670 occupied the binding site by carboxylate
group and amino group to formed H-bond and two ionic
bonds between Arg490 and Glu271, respectively (Figure S4).
The previously mentioned results observed that the spike
protein could enhance the binding of drugs to the ACE-2 (A,
B chains) in a complex, in addition to it is a competitive
active binding site to spike only if all ACE-2 receptor sites is
binding (Figures S1 and S2).

Furin is a proconvertase enzyme, and it is essential for the
entry of SARS-Cov-2 into the host cells through its binding and
fusion functional domains (Zhao et al., 2020). The blocking of
Furin may inhibit the viral host cell entry (Baron et al., 2020;
Kong et al., 2020). The docking study was achieved for Furin
protein (1PJ8) (RCSB Protien Data Bank, 2020, https://www.
rcsb.org/structure/6VW1, https://www.rcsb.org/structure/1p8j,
and https://www.rcsb.org/structure/1R42), and the interaction
of small molecules inside its active site represented in
(Table 1). The results showed that DEC-RVKR-CMK was demon-
strated as a Furin inhibitor (Pang et al., 2013). The DEC-RVKR-
CMK showed the highest potent binding inhibitors for Furin
among the studied molecules by showing the BE ¼ (�26.49
and �9.76 Kcal/mol) when compared with both Camostat
(S¼�17.37 and �6.52 Kcal/mol) and Acyclovir (S¼�17.60
and �7.86 Kcal/mol), respectively, for both steps. The DEC-
RVKR-CMK formed three hydrogen bonds inside the active site
of (1PJ8), two of three hydrogen bond sidechain donors
through Asp 530 and nitrogen of imino (C¼N) and nitrogen
of NH of guanidine with bond length 2.72 and 2.30 Å, respect-
ively. The third one is hydrogen bond backbone donor
between Val263 and nitrogen of butylamine 2.46 Å (23%) as
well as hydrophobic interaction due to aliphatic chains in the
structure (Figures S1, S3 and S6). The final H-bond formed only
in glide docking between carboxylate and Gly265 (Figure S6,
Supplementary information S3).

Camostat mesylate is a serine protease inhibitor which a
part of a proprotein facilitating SARS-CoV-2 entry, and it was
trialing in Japan (Millet & Whittaker, 2015). It was first
described in the literature in 1981, as part of research on the

Table 1. The Energy score (Kcal/mol) resulted from pre-docking by MOE and GLID docking of selected drugs inside the active site of targeted proteins.

Drug Name

Target protein with PDB ID

Spike-ACE2 interface complex (6VW1) Spike chain in ACE-2 complex (6VW1) Furin Protein (1PJ8) ACE-2 receptor (1R42)

MOE GLID MOE GLID MOE GLID MOE GLID

MLN-4670 �56.6 ± 2.54 �8.65 �19.54 ± 1.65 �9.63 �13.01 ± 1.42 �9.45 �16.91 ± 0.98 �5.524
Dec-RVKR-CMK �41.64 ± 1.78 �7.36 �17.65 ± 1.35 �8.65 �26.49 ± 2.07 �9.76 �20.73 ± 1.32 �7.63
EDTA �59.06 ± 3.25 �2.36 �8.78 ± 1.23 �2.45 �8.32 ± 0.51 �1.96 �10.59 ± 0.87 �1.09
Acyclovir �23.09 ± 212 �8.56 �13.09 ± 1.59 �7.25 �17.60 ± 1.14 �7.86 �12.37 ± 1.03 �5.409
Camostat �41.99 ± 2.84 �6.29 �20.78 ± 2.12 �7.48 �17.37 ± 0.97 �6.524 �18.94 ± 1.41 �5.87
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inhibition of skin tumors in mice (Ohkoshi, 1981). Camostat
mesylate inhibits cholecystokinin, pro-inflammatory cyto-
kines, and serine proteases, therefore, it had repurposing for
treatment of Covid-19 (Hoffmann et al., 2020; Uno, 2020).
Camostat mode of action was similar to a great extent with
DEC-RVKR-CMK; otherwise, the DEC-RVKR-CMK showed
higher interaction with Furin than Camostat. On the other
hand, Acyclovir showed a near energy score binding to
Camostat. Acyclovir was registered as a nucleotide analogue
antiviral used to treat herpes simplex, Varicella zoster, herpes
zoster, herpes labialis, and acute herpetic keratitis (Perry &
Wagstaff, 1995; Sadjadi et al., 2018). We reused Acyclovir in
the current molecular docking study to show its binding to
the target’s proteins. According to the current docking study,
we compared the binding score of both Camostat and
Acyclovir and showed no significant differences and clinical
trials for Acyclovir are recommended as well as Camostat. On
the other hand, DEC-RVKR-CMK showed the highest binding
score to be the most interested in pushing more efforts with
further research works (Figure 4).

Furthermore, DEC-RVKR-CMK and Camostat showed nearly
similar binding interactions against 1R42 and 6VW1 in both
stages. The DEC-RVKR-CMK was demonstrated two hydrogen
bonds sidechain donors between Asp350 and nitrogen of an
imino (C¼NH) guanidine and nitrogen of the amino (NH2)
guanidine with bond length 2.40�A and 2.29�A. Moreover, two
arene-cation interaction between Trp349 with the amino group
of pentenyl amine derivative and His346 with the amino of
guanidine moiety as well as Znþ2 ion form two coordinate

bonds with the carbonyl group with bond length 2.00�A, 1.95�A
(Figure S1–S4 and S6). Similarly, Camostat showed two hydro-
gen bonds sidechain donors between Glu406 and the nitrogen
of the imino (C¼NH) guanidine and nitrogen of an amino (NH)
guanidine with bond length 2.58 and 2.33�A. Besides, one
arene-arene-interaction with phenyl of the 4-guanidine benzoic
acid derivative and Znþ2 ion form three coordinated bonds with
three carbonyl groups with bond length ranged between 2.03
and 2.08�A for the Spike protein-ACE-2 interface complex.
Simultaneously, both DEC-RVKR-CMK and Camostat were
bound to Spike chains (E and F) separated from host-virus inter-
face complex with binding energy S¼ �17.65, �20.78 Kcal/mol,
respectively. (supplementary material Table S1 and S2)

Finally, the present docking study hypothesized that the
drugs used in our research interacted with more than one tar-
geted proteins with high interaction docking BE means that
using of one or more small molecules can block the binding site
of SARS-CoV-2 with irreversible interactions and give high effect
on infected cells with covid-19 practically. For example, using
MLN-4670 and DEC-RVKR-CMK as potential therapies in a deep
study, with respect to their dose’s effects on healthy tissues and
cells, may raise the possibility to prevent viral host cell entry
and also may cure the infected cells with SARS-Cov-2. MLN-
4670 showed the highest BE interaction for the Spike-ACE-2
complex and ACE-2 receptor, which is the mirror of free cells
hoping to block cell receptors ‘the Covid-19 site binding’.
Another significant finding from BE, DEC-RVKR-CMK can bind
Furin protein’s active site with high supporting the prevention
of virus-cell entry through inhibiting cell membrane fusion. All

Figure 3. Interaction analysis for tested compounds against the SARS-CoV-2 viral Spike-ACE2 interface Complex (6VW1) during the MDs; (A) Equilibrated of tested
compounds structure bound to the SARS-CoV-2 viral spike receptor-binding domain before MDS production phase; (B) Receptor surface analysis; (C) Ligand ana-
lysis; all tested ligands represented in stick mode; where DEC-RVKR-CMK (yellow); of Camostat (green); Acyclovir (orange); MLN-4670 (blue).
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the previous results that discussed and our conclusion depend-
ing on docking affinity binding energy that showed a high bind-
ing score addition to many other factors that support our work
as the drugs selected already registered and approved for using
as drugs on the market to another targeted diseases and that
decrease spent time for designing a new drug that consumed
time and money due to further experimental as well as, length
and type of bonds in docking process were all bindings not
exceeded than 3.25�A with a good strength percentage. Several
hydrogen bonds and some other interactions appear as arene-
arene or arene-cation interaction, and in some cases that pro-
tein-containing metalloenzyme Zn þ 2 another type of bonds
as coordination and ionic bonds appear with small bond length.
According to the previous motioned strategies, it is vital to run
out in-vivo and in-vitro studies to evaluate the effects of previ-
ously used drugs that could stop coronavirus’s breakout
(Covid 19).

3.2. MD simulations

To determine the reliability and stability of the binding affin-
ity between drug and receptor, the MD-calculations (MDs)
were performed according to this workflow, docking studies,

MDs and Free binding energy (BEs) calculation. MD was used
to obtain dynamic data at spatial and picosecond (Benson &
Daggett, 2012; Gajula et al., 2016). MDs have been performed
in three phases of minimization. The first step is heating step
and two equilibrium phases and consequently by 200 ns of
the generation phase. The binding-mode of generated com-
plexes was analyzed based on H-bond, Van-der-Waals and
p-p interactions. The trajectories-MDs are analyzed through
these parameters; RMSD and free ‘BEs’ binding energies/
Poisson-Boltzmann surface area (MM-PBSA), Radius-gyration
(Rg), and SASA (solvent accessible surface area). The four
MPros bind with four ligands showed stable and constant
RMSD variation range 0.10 to 0.24 nm at on 200 ns timescale
(Figure 5). Pre-MDs analysis for MLN-4670-complexes displays
the conformational stability at 5 ns (RMSD ¼ 1.5 nm) for all
MPros except (6vwl) the stability appeared at 20 ns with
RMSD¼ 1.46 nm. The stability for other complexes from post-
MDs analysis appeared at 5 ns with RMSD range 1.46 to
1.49 nm (Figure 5).

For MLN-4670 against 6VW1 represented four different
fluctuations at 5–15, 20–50, 108–120 and 162–184 ns against
(RMSD) nm, this related to the conformational stability
stages. The large fluctuation may be the change in the

Figure 4. Interaction analysis for tested compounds against the SARS-CoV-2 viral Furin Protein (1PJ8) during the MDs; (A) Equilibrated of tested compounds struc-
ture bound to the SARS-CoV-2 viral spike receptor-binding domain before MDS production phase; (B) Receptor surface analysis; (C) Ligand analysis; all tested
ligands represented in stick mode; where DEC-RVKR-CMK(yellow); of Camostat (green); Acyclovir (orange); MLN-4670 (blue).
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conformation in the MPros binding-site. The large fluctuation
appeared between 8–15 ns with RMSD > 1.44–1.55 nm. The
other MPros-binding sites against MLN-4670 showed one sta-
ble conformational stage at all period-scales 5–200 ns. All
MPros-binding sites of the protein structures are not affected.

For Dec-RVKR-CMK-MPros., Camostat-MPros and Acyclovir-MPros

figured stable RMSD with slight fluctuation for all MPros.

RMSD is constant and consistently fluctuated till end simula-
tions at 200 ns period. Its compounds did not impact the
backbone of protein-fluctuation and showed that the

Figure 5. The RMSD analysis for ligands and MPros complexes; 6vwl-Complexes (Blue), spike 6vwl-Complexes (Red), 1P8J-Complexes (gray) and 1R42-
Complexe (yellow).
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binding-site-proteins have fluctuations causing compounds-

fluctuations during the computation process. It may explain

by increasing binding-zone and the existence of a loop at

this binding-zone.

3.3. Analysis of free BE/Poisson-Boltzmann surface area
(MM-PBSA)

The pre-molecular docking proposed the binding energy (BE)
of the complex. The DG or post docking process term

Figure 5. (Continued)

JOURNAL OF BIOMOLECULAR STRUCTURE AND DYNAMICS 9



Figure 6. Calculated MM-GBSA binding energies over 200 ns for MPro complexes, 6vwl-Complexes (Blue), spike 6vwl-Complexes (Red), 1P8J-Complexes (gray) and
1R42-Complexe (yellow).
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referred to the analysis of free BE after the simulation pro-
cess, which examined the stability of non-bonding interac-
tions between binding-site and compound. To get the high
reliability degree, MD simulations for the docked-poses were

achieved in a solvent along 200 ns, and the corresponding
BEs were simulated by MM-GBSA basis set (Figure 6). All
tested ligands exhibited high stability against MD simulations
with promising MM-GBSA in range �40 to �140 kcal/mol.

Figure 6. (Continued)
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For MLN-4670-MPros. showed no significant oscillation for
all MPro. In case of 6vwl complexed with Dec-RVR-CMK
showed lower MM-GBSA (�40 to �80 kcal/mol) over 0–50 ns
period. Its complex displayed no significant difference with
enhancement values for MM-GBSA BEs over 20–200 ns. In

Acyclovir-6vwl (MPro), which showed lower binding affinity
over 0–20 ns corresponding to MM-GBSA (�50 to �78 Kcal/
mole). According to MM-GBSA BEs for all tested complexes,
ligands’ binding affinity is arranged as Dec-RVKR-CMK-MPro <

Acyclovir-MPro < MLN-4670-MPro < Camostat-MPro. The slight

Figure 7. Radius of gyration (Rg) analysis for 6vwl-Complexes (Blue), spike 6vwl-Complexes (Red), 1P8J-Complexes (gray) and 1R42-Complexe (yellow).
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deviation for MM-GBSA BEs overall time-scale figured that
strong interaction between Ligands and all examined MPros.

The investigated compounds also examined their interactions
through individual residues during MDs. The tested com-
pounds stabilized in Spike-ACE2 interface Complex (6VW1)
by two H-bonds with Arg314 (Figure 3 & S7) before the
beginning of the production step the bond still stable during

all simulations. Similarly, for ACE-2 receptor (1R42) these
ligands formed stable two H-bonds with Glu208 and Arg219
during all periods of the simulation process (Figure S8). In
the case of the Spike chain in the ACE-2 complex (6VW1),
four stable H-bond formed with Asn375, Asn440, Asn370 and
Val3.76 with bond length 2.68, 2.77, 2.66 and 2.47, respect-
ively. The investigated ligand stabilized in Furin Protein

Figure 7. (Continued)
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(1PJ8) by forming three H-bond Ala532 and Lys449 during all
50 ns (Figures 3, 4 and S7). The super-position of ligands con-
formation between the starting and end of MDs figured the

stability of the complex. The equilibrated RMSD ligand con-
firms this data during all the simulation process (Figures 3, 4,
S7, and S8).

Figure 8. SASA analysis for 6vwl-Complexes (Blue), spike 6vwl-Complexes (Red), 1P8J-Complexes (gray) and 1R42-Complexe (yellow).
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3.4. H-Bond analysis

The H-bond played an important role in identifying the sta-
bility of the interaction-strength in ligand and protein. The

MLN-4670-MPro and Dec-RVKR-CMK-MPro have constant H-
bonds range between 3 and 10 in the simulation process.
While Camostat-MPro and Acyclovir-MPro showed the H-inter-
action between 2 and 10. The changing H-bond between

Figure 8. (Continued)
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ligand-MPros may propose that the conformational around
ligands inside the binding site change through simulation.
Overall simulations supported the high stability of all pro-
tein-ligand complexes during a simulation.

3.5. Radius-gyration (Rg) profile

The Rg was simulated to investigate the quality of the folding-
system of protein with the time. The higher Rg values indi-
cated a lower-unfolded structure combined with Harmonic-
entropy. The decrease in Rg values describes the strong folded
with high stability for the MPro. As it seems from (Figure 7), the
Rg simulation values for MLN-4670-MPros (1.04–1.12 nm), RVKR-
CMK-MPros (1.04–1.12 nm), Camostat-MPros (1.09–1.16) and
Acyclovir-MPros (2.11–2.18 nm) against four cases of proteins.
The difference between initial and final values for Rg simula-
tions arranged as Camostat-MPro (0.2 nm) < Acyclovir-MPro

(0.14 nm) < Dec-RVKR-CMK-MPro (0.1 nm) < MLN-4670-MPro

(0.08 nm).The lower deviation in the Rg value displayed
protein’s stability in the binding process and did not motivate
changes in the architecture structure. These Rg values of all
MPros-ligand complexes support their folded conformation
structure and size.

3.6. SASA profile

The SASA (solvent accessible surface area) calculations were
used for the examination of exposed receptors to solvents
through MD (Figure 8) (Chaudhary et al., 2020). The binding
hydrophobic-residues with ligand and exposed to solvents in
the receptor affect the SASA values. The SASA value exhibited
between 130–420 nm2, which displayed that ligands’ binding
does not change in the folding conformation of the protein.

4. Conclusion

SARS-Cov-2 was believed to be a pandemic virus, and it
thought that blocking viral spike protein and/or ACE-2 recep-
tors could help in improving a drug or vaccines against
Covid-19, that is why the present work focused on small
molecules which had the abilities to work against SARS-Cov-
2 through disrupting the spike-ACE-2 interaction. The small
molecules used in this study were EDTA disodium salt, MLN-
4670, DEC-RVKR-CMK, Acyclovir, and Camostat. The current
study by docking studies revealed that the most bindings
showed to Spike-ACE-2 interface complex, ACE-2 receptor,
Spike protein and Furin were EDTA, MLN-4670 and DEC-
RVKR-CML. Further, the 200 ns MDs confirmed the affinity for
investigated molecules from lower calculated MM-GBSA,
RMSD deviations and better stabilization in spike receptor-
binding domain of MPros. This study highlighted small mole-
cules that could act as potential therapeutic drugs against
Covid-19; this purpose requires practical experiments as a
clinical trial research in-vitro and in-vivo studies.
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