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Abstract

Background

Food allergy (FA) is an adverse health effect produced by the exposure to a given food. Cur-

rently, there is no optimal animal model of FA for the screening of immunotherapies or for

testing the allergenicity of new foods.

Objective

The aim of the present study was to develop an effective and rapid model of FA in Brown

Norway rats. In order to establish biomarkers of FA in rat, we compared the immune re-

sponse and the anaphylactic shock obtained in this model with those achieved with only

intraperitoneal immunization.

Methods

Rats received an intraperitoneal injection of ovalbumin (OVA) with alum and toxin from Bor-
detella pertussis, and 14 days later, OVA by oral route daily for three weeks (FA group). A

group of rats receiving only the i.p. injection (IP group) were also tested. Serum anti-OVA

IgE, IgG1, IgG2a, IgG2b and IgA antibodies were quantified throughout the study. After an

oral challenge, body temperature, intestinal permeability, motor activity, and mast cell prote-

ase II (RMCP-II) levels were determined. At the end of the study, anti-OVA intestinal IgA,

spleen cytokine production, lymphocyte composition of Peyer’s patches and mesenteric

lymph nodes, and gene expression in the small intestine were quantified.

Results

Serum OVA-specific IgG1, IgG2a and IgG2b concentrations rose with the i.p. immunization

but were highly augmented after the oral OVA administration. Anti-OVA IgE increased two-

fold during the first week of oral OVA gavage. The anaphylaxis in both IP and FA groups
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decreased body temperature and motor activity, whereas intestinal permeability increased.

Interestingly, the FA group showed a much higher RMCP II serum protein and intestinal

mRNA expression.

Conclusions

These results show both an effective and relatively rapid model of FA assessed by

means of specific antibody titres and the high production of RMCP-II and its intestinal gene

expression.

Introduction
Food allergy (FA) is ‘an adverse health effect arising from a specific immune response that oc-
curs reproducibly on exposure to a given food’ [1]. Nowadays it is a major public health prob-
lem and the only therapy available consists of avoiding the causative foods [2]. An American
retrospective study showed that the economic burden of FA reactions and anaphylaxis treat-
ments is near to $300 million [3]. Despite the fact that more than 170 foods have been reported
to cause IgE-mediated hypersensitivity [4], most of the allergic reactions are attributed to a lim-
ited number of foods, cow’s milk, egg, nuts and seafood being the most common in Europe [5],
whereas they share prominence with wheat, soy and peanut in the USA [6]. Although the exact
prevalence of FA remains uncertain, data supports that its prevalence is increasing with current
rates around 5% in adults and approaching 8% in the child population [7].

In healthy conditions, the intestinal barrier, constituted by the epithelium covered with
mucus, enzymes and bile salts together with extreme pH, acts as a physical barrier preventing
the passage of harmful pathogens, as well as a selective filter, allowing essential dietary nutri-
ents to pass into the circulation [8,9]. In general, food ingestion results in oral tolerance: when
dendritic cells, the professional antigen-presenting cells, capture food antigen in the lamina
propria (LP) and Peyer’s patches (PP), they carry them to the mesenteric lymph nodes (MLN)
where they induce regulatory T (Treg) cells that migrate back to the LP. The resident macro-
phages in the LP can expand Treg cells, suppressing Th2 cytokines and IgE as well as the effec-
tor functions of mast cells and basophils, thus inhibiting allergic inflammation and food
hypersensitivity [8,10]. In contrast, patients with FA have lost the immune mechanisms re-
sponsible for oral tolerance, and recognize some food antigens as harmful molecules. In this
population, alterations in Treg cell function and environmental factors, such as microbiota,
have been suggested to be important contributors to food sensitization and allergy [11].

Animal models, such as those described in dogs, swine, guinea pigs, mice and rats, have
been used for assessment of allergenicity of foods, although the optimal model has not been
reached [12–18]. In the case of dogs, the gut anatomy, physiology and nutritional requirements
are similar to humans and in swine the anatomy, physiology and immunology of skin and gas-
trointestinal tract are also comparable to humans [19], but in both animal species there are
some disadvantages in comparison with rodents, such as the expense incurred by animal main-
tenance, the limited availability of strains, the lack of commercially available immunological re-
agents, and the long process to sensitization (18 months for dogs) [20]. Studies related to cow’s
milk allergy commonly use guinea pigs for oral sensitization [21,22]. However, it is not an ap-
propriate model for the assessment of allergenicity of novel proteins because the immunologi-
cal reactions to proteins differ from those in humans [22], there are a lack of available tools to
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study the guinea pig immune system and, for FA research, there are significant differences in
the immunophysiology in comparison with other species [19].

Regarding the use of mice in allergy research, the transcriptional analysis approach has
shown remarkable consistency between murine and human samples, and studies in atopic der-
matitis showed a high degree of homology in the gene expression profile [23]. In addition, their
small size, short breeding cycle and well-characterized immunology are certainly key factors.
Several allergy models performed in mice differ in the strain, the sensitization route, the type of
allergen, the dosage, or the use of an adjuvant [16,24–27]. Nevertheless, the natural complexity
of the allergic reactions makes it difficult to find a single reliable marker to quantify the sensiti-
zation potential of a protein [28]. Finally, the use of rats has a number of advantages compared
with other animal models, particularly with respect to being one of the most commonly used
species in toxicity testing [29]. Brown Norway (BN) rats have been widely studied because this
strain is a high IgE responder, similar to atopic humans. BN rats have been used as a model of
FA in the presence or absence of an adjuvant. In this latter condition, Knippels et al. have dem-
onstrated oral sensitization and have evaluated the influence of rat strain [30] and dosage
[31,32]. However, the model of oral sensitization without an adjuvant requires a long process
of sensitization (six weeks) and, although it has been used in several studies [33–36], success
after oral sensitization was not always achieved in a high percentage of rats [37] and/or the sen-
sitization does not always induce the synthesis of IgE antibodies [20,30,38,39]]. This limitation
makes it difficult to use this model for the screening of new therapies or allergenicity studies.
Regarding the use of other sensitization routes and an adjuvant to induce FA in BN rats, the ad-
ministration of two to three intraperitoneal (i.p.) injections of allergen and, in some cases, the
oral gavage of the same allergen has been applied [40–42]. The present study aimed to develop
an effective and more rapid model of FA in BN rats based on that reported by Ogawa et al. [43]
with only one i.p. injection of the allergen with alum together with toxin from Bordetella per-
tussis (tBp) to promote IgE synthesis [44], and two weeks later the oral administration of
soluble allergen. In order to establish biomarkers of FA in rat, we compared the specific im-
mune and the anaphylactic responses obtained in this model with those achieved with only an
i.p. immunization.

Material and Methods

Animals and experimental design
Three-week-old female BN rats obtained from Janvier (Saint-Berthevin, France) were main-
tained on an OVA-free diet and water ad libitum. The parent rats had followed the SSNIFF
S8189-S105 diet, free of egg proteins. The rats were housed in cages under conditions of con-
trolled temperature and humidity in a 12:12 h light-dark cycle. After an acclimatization period
of one week, the rats were randomized into three groups: reference (RF) group, intraperitoneal
(IP) group and food allergy (FA) group (n = 8 per group). The FA induction was carried out by
combining an i.p. immunization with OVA mixed with alum and tBp followed, 14 days later,
by oral OVA administration for three weeks; five days later, an oral challenge was given to
cause an anaphylactic response (AR). The AR was evaluated by means of body temperature,
protease release of mast cells, intestinal permeability and also by motor activity assessment
[45]. Finally, rats were sacrificed on day 42, two days after the oral challenge, to collect tissue
samples. During the study, the body weight was registered and blood samples were collected
weekly to determine specific antibodies production.

Experimental design was repeated twice in order to get representative results of an enough
number of animals per group.
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Experimental procedures in rats were reviewed and approved by the Ethical Committee for
Animal Experimentation at the University of Barcelona (ref.359/12).

Food allergy induction
An emulsion of OVA (grade V, Sigma-Aldrich, Madrid, Spain) as allergen, in alum (Imject,
Pierce, IL, USA) as an adjuvant and tBp (Sigma-Aldrich) was prepared. Each rat from the IP
group received by i.p. route 0.5 mL of the emulsion containing 50 μg of OVA, 2.5 mg of Imject
and 50 ng of tBp. In the FA group, in addition to the i.p. injection as administered in the case
of the IP group, the animals received, starting 14 days later, 1 mL of OVA solution in sodium
bicarbonate (1 mg per rat) by oral gavage five days/week for three weeks. As a control, the IP
and RF groups received 1 mL of sodium bicarbonate by oral gavage for the same period.

Anaphylaxis induction
Forty days after OVA i.p. immunization, the animals were deprived of food overnight and then
received 2 mL of OVA (200 mg per rat) orally. Blood was collected every 30 min up to 2 h
post-AR induction from the saphenous vein. During this period rectal temperature was mea-
sured using a digital thermometer (OMRON Healthcare Europe, the Netherlands).

In order to determine the intestinal barrier integrity, 30 min after the challenge each rat re-
ceived 100 mg/mL of β-lactoglobuline (βLG, Sigma-Aldrich) by oral gavage [31], details are de-
scribed in the “Quantification of intestinal permeability” section

Motor activity measurement
Motor activity was assessed for 21 min using individual cages in an isolated room, with an ac-
tivity meter that included two perpendicular infrared beams, which crossed the cage 6 cm
above the floor. These facilities have been commonly used to study rat motor activity in differ-
ent conditions [46,47]. Two motor activity measures were performed: the first was measured
24 h before anaphylaxis induction to determine the basal movements, and the second immedi-
ately after the oral challenge to establish the changes produced by anaphylaxis induction.
Activity counts were recorded using time frames of 1 min for 21 min. To stimulate rat move-
ments, 8 min after the beginning of the measurement, the lights were turned off for 5 min and
then turned on until the end of the measurement. The results refer to the movements in three
time phases (pre-darkness, darkness and post-darkness) as well as the entire period. The area
under the curve (AUC) for the 21-min period and the percentage of decrease in motor activity
after AS induction with respect to the basal measurement in each studied phase as well as in
the whole period were also calculated.

Sacrifice and sample processing
Two days after AR the rats were anaesthetized with ketamine (90 mg/kg) (Merial Laboratories
S.A, Barcelona, Spain) and xylazine (10 mg/kg) (Bayer A.G, Leverkusen, Germany). Blood was
obtained by heart puncture. MLN and spleen were also dissected for immediate lymphocyte
isolation. From the middle of the small intestine (SI), a small piece (0.5 cm) was excised and
kept in RNA later (Ambion, Life Technologies, Austin, USA) until gene expression analysis by
real-time PCR, the procedure is detailed in the “Quantification of gene expression in small in-
testine” section. From the distal part of the SI, visible PP were collected for immediate lympho-
cyte isolation, and gut washes were obtained for quantification of specific IgA.
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Peyer’s patches lymphocyte isolation and gut wash obtention
The processing of these samples was performed as previously described [48,49]. Briefly, PP
were incubated with complete culture medium containing Roswell Park Memorial Institute
(RPMI 1640, Sigma-Aldrich), 10% fetal bovine serum (FBS), 100 IU/mL streptomycin-
penicillin, 2 mM L-glutamine (Sigma-Aldrich), and 0.05 mM 2-β-mercaptoethanol (Merck,
Darmstadt, Germany) with 1 mM of dithiothreitol (Sigma-Aldrich) (5 min, 37°C). Thereafter,
PP were washed with RPMI medium and passed through a cell strainer (40 μm, BD Biosci-
ences, Madrid, Spain).

The remaining distal SI tissue (without PP) was cut into 5 mm pieces, weighed and used to
obtain the gut wash by shaking in phosphate-buffered saline (PBS) (37°C, 10 min). Gut washes
were conserved at -20°C for anti-OVA IgA determination.

Ovalbumin-specific stimulation of mesenteric lymph nodes and spleen
lymphocytes
MLN and spleen cell suspensions were obtained as previously described [48] by passing the tis-
sue through a cell strainer (40 μm, BD Biosciences). Erythrocytes from the spleen were elimi-
nated by osmotic lysis. MLN and spleen cells were cultured at 5 × 106 cells in 1 mL of medium
with or without OVA (50 μg/mL) for 96 h. Supernatants from spleen cultures were collected to
assess cytokine concentrations. MLN cells were used to establish changes in lymphocyte com-
position after specific stimulation.

Assessment of lymphocyte composition in Peyer’s patches and
mesenteric lymph nodes
Peyer’s patches and MLN lymphocytes were stained with the following mouse anti-rat mono-
clonal antibodies (mAb) conjugated to fluorescein isothiocyanate, phycoerythrin or allophyco-
cyanin: anti-TCRαβ (R73), anti-CD4 (OX-35), anti-CD8α (OX-8), anti-CD45RA (OX-33),
anti-NKR-P1A (10/78), anti-CD25 (OX-39) (BD Biosciences) and anti-IgA (Abcam, Cam-
bridge, UK). Cells were labeled with saturating concentrations of conjugated mAb in PBS con-
taining 1% FBS and 0.09% Na3N as previously described [50]. Negative control staining using
isotype-matched mAb was included for each sample.

Analyses were performed using a FC 500 Series Flow Cytometer (Beckman Coulter, FL,
USA), and data were assessed by the FlowJo v7.6.5 software (Tree Star Inc,. Ashland, OR,
USA). Lymphocyte populations were defined as: B (CD45RA+CD4−), B expressing IgA
(IgA+CD45RA+), T (TCRαβ+), Th (TCRαβ+CD4+), Tc (TCRαβ+CD8+) and activated Th
(TCRαβ+CD4+CD25+) cells. Results are expressed as percentages of positive cells in the lym-
phocyte population previously selected according to their forward scatter and side scatter
characteristics.

Quantification of serummast cell protease II
In serum samples obtained during the AR, rat mast cell protease II (RMCP-II) concentration
was quantified using a commercial ELISA set (Moredun Animal Health, Edinburgh, UK) with
slight modifications. In brief, 96-well ELISA plates (Nunc Maxisorp, Wiesbaden, Germany)
were coated with anti-rat RMCP-II antibody (overnight, 4°C). After blocking and washing,
appropriately diluted serum samples were incubated for 3 h. Peroxidase-conjugated anti-rat
RMCP-II antibody was incubated for 2 h and, finally, a 3,3’,5,5’-tetramethylbenzidine solution
with H2O2 was added, and optical density (OD) was measured on a microtiter plate photometer
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(Labsystems Multiskan, Helsinki, Finland). Data were interpolated by means of Ascent v.2.6
software (Thermo Fisher Scientific, S.I.U., Barcelona, Spain).

Quantification of intestinal permeability
To assess intestinal permeability, a method previously described in BN rats was used [30,51].
In this method, βLG was orally given 30 min after the OVA challenge and then were quantified
by ELISA in serum obtained every 30 min duringanaphylaxis. In brief, ELISA plates were coat-
ed with rabbit anti-bovine βLG antibody (A10-125A, Bethyl, Montgomery, USA) and incubat-
ed overnight at room temperature. The plates were then blocked with bovine serum albumin
(Sigma-Aldrich) in TRIS-buffered saline containing 0.05% Tween 20, and after washing, ap-
propriate diluted samples and standard dilutions were added. Finally, an adequate dilution of
peroxidase-conjugate anti-bovine βLG antibody (A10-125P, Bethyl) was incubated and an
o-phenylenediamine dihydrochloride solution was added for detection of βLG from samples.
OD was measured as detailed above.

Determination of cytokines released from spleen lymphocytes
IL-2, IL-4, IL-10 and IFN-γ cytokines released from spleen cell cultures were measured using
the BD Cytometric Beads Assay Rat Soluble Protein Flex Set (BD Biosciences). Briefly, samples
and standards were incubated with a mix of specific fluorescent beads for each cytokine. Then,
a mix containing the detection antibodies conjugated with phycoerythrin was incubated and,
after that, samples were washed. Analysis was carried out by a BD FACSAria (BD Biosciences)
cytometer and the FCAP Array Software (BD Biosciences). The limits of detection were 0.46
pg/mL for IL-2, 3.4 pg/mL for IL-4, 19.4 pg/mL for IL-10 and 6.8 pg/mL for IFN-γ.

Quantification of gene expression in small intestine
For RNA isolation, samples from the SI were processed as previously described [52]. Tissue
samples were homogenized in a FastPrep (MP Biomedicals, Illkirch, France) for 30 s. Total
RNA was isolated with the RNeasy Mini Kit (Qiagen, Madrid, Spain) following the manufac-
turer’s recommendations. The quality of the RNA was assessed by the Agilent 2100 Bioanalyzer
with the RNA 6000 LabChip kit (Agilent Technologies, Madrid, Spain). Two micrograms of
total RNA were converted to cDNA using random hexamers (Life Technologies). The specific
PCR TaqMan primers and probes (Applied Biosystems, Weiterstadt, Germany) used were: Iga
(331943, made to order), Fcer1a (Rn00562369_m1, inventoried (I)), Il2 (Rn00587673_m1, I),
Il4 (Rn01456866_m1, I), Il10 (Rn00563409_m1, I), Ifng (Rn00594078_m1, I) andMcpt2
(Rn00756479_g1, I). Quantification of the genes of interest was normalized to the endogenous
control Hprt1 (Rn01527840_m1, I). Real-time PCR assays were performed in duplicate using
an ABI Prism 7900HT sequence detection system (Applied Biosystems). The SDS software
(version 2.4) was used to analyzethe expression data.

The amount of target mRNA relative to HPRT expression and relative to values from the
RF group was calculated using the 2-ΔΔCt method, as previously described [53]. Ct is the cycle
number at which the fluorescence signal of the PCR product crosses an arbitrary threshold set
within the exponential phase of the PCR. Results are expressed considering gene expression in
the RF group as 100%.

Anti-OVA antibody quantification
Anti-OVA IgG1, IgG2a, IgG2b and IgA antibody concentrations were quantified using an indi-
rect ELISA, and OVA-specific IgE concentration by an antibody-capture ELISA as previously
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described [54]. The relative concentration of each anti-OVA Ig isotype was calculated by com-
parison with a pool of OVA-immunized rat sera to which arbitrary units (AU) were assigned
according to the dilution of the serum samples used for each isotype determination. The AU/
mL assigned were 100000 AU/mL for IgG1 and IgG2a, 10000 AU/mL for IgG2b, 50 AU/mL
for IgA, and 10 AU/mL for IgE.

Statistical analysis
The software package IBM SPSS Statistics 20 (SPSS Inc., USA) was used. The Levene and the
Kolmogorov-Smirnov tests were applied to assess variance equality and normal distribution,
respectively. Two-way ANOVA tests were used to study the effect of group and group x time
interaction. The motor activity data were analyzedby two-way ANOVA for repeated measures
considering the group (FA vs. IP vs. RF group) and time as the interacting factor, followed by
Bonferroni’s post hoc test. To evaluate the correlation among studied variables, Pearson’s coef-
ficient (ρ) was applied. To analyzethe results from anti-OVA antibodies, RMCP-II, βLG and
cytokine concentrations, body temperature, relative gene expression, AUC of motor activity,
and lymphocyte composition, non-parametric tests (Kruskal–Wallis and Mann–Whitney U)
were used due to non-variance homogeneity. Differences were considered statistically signifi-
cant for p values< 0.05.

Results

Body weight and mortality
Rats weighed 66.6 ± 3.68 g (mean ± S.E.M.) at the beginning of the study. Rat growth was mon-
itored throughout the study and was similar among groups. At the end of the study, body
weight was 137.1 ± 6.88 g [127.2–146.2], 136.7 ± 4.49 g [130.5–141.6], and 138.4 g ± 3.22 g
[135.1–143.7] in the RF, IP and FA groups, respectively. No death was produced after the oral
challenge in any of the experimental groups.

Serum and intestinal anti-OVA antibodies
Sera from the RF group did not contain anti-OVA antibodies of any isotype (data not shown).
The i.p. immunization caused the synthesis of anti-OVA IgG1, IgG2a and IgG2b antibodies in
the IP and FA groups that were already detectable 14 days after OVA immunization (Fig 1A–
1C). The oral administration of the allergen boosted the synthesis of anti-OVA IgG isotypes,
which increased in the FA group more than tenfold for IgG1 and IgG2a, remaining elevated
until the end of the study (Fig 1A and 1B; p< 0.05). This increase was also produced in anti-
OVA IgG2b, but to a lower degree (Fig 1C; p< 0.05).

Regarding serum anti-OVA IgE antibodies (Fig 1D) the OVA immunization also induced
their synthesis in both the IP and FA groups. Nevertheless, the oral administration of OVA for
a week magnified the production of this antibody in the FA group, increasing almost twofold
the levels of specific IgE with respect to the IP group (p< 0.05). Afterwards, however, anti-
OVA IgE underwent a progressive decrease in both the IP and FA groups.

With regards to the anti-OVA IgA concentrations measured in serum and gut wash sam-
ples, the i.p. immunization did not induce the synthesis of this antibody in either compartment
(Fig 1E and 1F). In contrast, the oral OVA administration in the FA group induced the synthe-
sis of anti-OVA IgA antibodies (Fig 1E) and they were also found in gut washes at the end of
the study (Fig 1F).
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Assessment of anaphylaxis
Body temperature, RMCP-II concentration and intestinal permeability, together motor activi-
ty, allowed to quantify anaphylaxis in rats after oral OVA challenge.

The body temperature, registered during the 2 h after oral challenge in intervals of 30 min,
revealed that there was a decrease of about 2°C in both the IP and FA groups compared to the
RF group throughout the whole studied period (Fig 2A; p< 0.05). No significant differences
were observed between the IP and FA groups.

After AR induction, the IP group showed about a threefold increase in serum RMCP-II con-
centration compared to that in RF animals (Fig 2B; p< 0.01). However, in the FA group the in-
crease was much higher. The FA animals underwent a rise about 18 times (p< 0.01) higher
than that of the RF animals and six times higher compared with the IP group (p< 0.01). This
effect lasted for at least 2 h post-challenge.

βLG given orally 30 min after AR induction, quantified in sera as a measure of intestinal
permeability, increased significantly at 30 min from oral protein administration (60 min after
AR induction) in both IP and FA groups (Fig 2C; p< 0.05). Later, IP rats kept the serum βLG
concentration whereas the FA rats showed a faster decrease, although at the end of the studied
period, both groups had significantly higher levels compared to RF animals (p< 0.05).

Fig 1. Concentrations of OVA-specific antibodies during post-immunization period. A) serum IgG1,B) serum IgG2a, C) serum IgG2b, D) serum IgE,
E) serum IgA and F) intestinal IgA. White bars represent RF group,▼ or black bars represent IP group and∎ or grey-striped bars represent FA group.
Shadow period corresponds to oral administration of OVA in FA group. Results are expressed as mean ± S.E.M. (n = 8). *p < 0.05 vs. RF group and ϕp < 0.05
vs. IP group.

doi:10.1371/journal.pone.0125314.g001
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Motor activity
Rat motor activity was measured for 21 min at 24 h before (Fig 3A) and immediately after (Fig
3C) AR induction to obtain basal values and data representative of AR-induced behavioral
changes, respectively. With regards to basal motor activity, the pattern of movements during
the time showed that the three groups became quieter over the 21 min period (Fig 3A; p< 0.05
for time) although motor activity increased when the lights were turned off (p< 0.05 for RF
and FA groups). The motor activity of the IP group was lower than that of the RF group, look-
ing at the whole period and the three established phases (pre-darkness, darkness and post-
darkness) (p< 0.05). Similarly, in the basal pattern, FA rats also made a lower number of
movements than RF animals, taking into account the whole period (p< 0.001) and also the
pre- and post-darkness phases (p< 0.05). The differences among basal groups’movements in

Fig 2. Variables measured during 2 h after anaphylactic shock induction: A) body temperature, B) serumRMCP-II concentration and C) serum βLG
concentration.White bars represent RF group, black bars represent IP group and grey-striped bars represent FA group. Results are expressed as
mean ± S.E.M. (n = 8). *p < 0.05 vs. RF group and ϕp < 0.05 vs. IP group.

doi:10.1371/journal.pone.0125314.g002
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Fig 3. Motor activity for 21-min period. A) Basal motor activity assessed 24 h before the AR induction;B)
area under the curve from the whole studied period before AR induction;C)motor activity assessed
immediately after AR induction; D) area under the curve from the whole studied period after AR induction; E)
percentage of motor activity decrease after AR induction referring to pre-darkness, darkness, post-darkness
and the whole period. � or white bars represent RF group,▼ or black bars represent IP group and∎ or grey-
striped bars represent FA group. In A and C, shadow period corresponds to darkness. Results are expressed
as mean ± S.E.M. (n = 8). *p < 0.05 vs. RF group.

doi:10.1371/journal.pone.0125314.g003
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the whole studied period can also be observed when AUC was calculated (Fig 3B; p< 0.05 IP
and FA groups vs. RF).

The motor activity registered after AR induction showed a similar pattern to the basal one,
the animals being quieter during the pre-darkness phases and more active in the darkness peri-
od (Fig 3C; p< 0.05). However, the three studied groups showed a lower number of move-
ments than those observed in basal conditions. Interestingly, for those animals belonging to
the IP and FA groups, the AR induction produced a more noticeable decrease in the motor ac-
tivity than in the RF group (p< 0.001), which can also be observed when considering the AUC
of the whole period (Fig 3D; p< 0.05 IP and FA groups vs. RF).

The reduction in motor activity resulting from AR induction was also calculated as the per-
centage of motor activity decrease between basal and post-AR induction in each phase (Fig
3E). RF animals reduced by about 35–50% their number of movements; however, both IP and
FA groups underwent a 70–85% reduction of motor activity (p< 0.05 in the whole studied
period).

There was a correlation between the percentage of decrease in motor activity and the body
temperature after AR (ρ = -0.615, p< 0.05 at 90 min; ρ = -0.601, p< 0.05 at 120 min) meaning
that the higher the percentage of decrease, the lower the animal’s body temperature.

Lymphocyte composition in Peyer’s patches and mesenteric lymph
nodes
The percentage of TCRαβ cells, Tc and Th subsets, activated Th cells, B cells and B IgA+ subset
from PP and MLN lymphocytes in the three studied groups is summarized in Fig 4. No differ-
ences between the groups were observed either in PP or MLN (Fig 4A and 4B), showing that
both i.p. immunization and FA induction did not produce significant changes in the consid-
ered cell populations in either intestinal compartments.

After 96 h of OVA stimulation, the composition of MLN cells from RF animals did not sig-
nificantly change (Fig 4C). Interestingly, in the IP group there was an increase in the TCRαβ
cell proportion after OVA stimulation (p< 0.05). This increase corresponded to Tc and acti-
vated Th cells (p< 0.05). In cells from the FA group, no significant variations were observed in
any of the studied MLN subsets after OVA stimulation.

Cytokine production by spleen cells
The cytokine quantification of supernatants obtained from spleen cells isolated after two days
of AR induction and cultured for four days with or without OVA was carried out. Those sam-
ples that had concentrations below the cutoff received a value corresponding to one-half the
cutoff value, as previously described [55]. Spleen cells from RF animals did not produce detect-
able amounts of the studied cytokines (Table 1). After OVA stimulation, cells from the IP
group increased their IL-2, IL-4 and IL-10 production with respect to that in the RF group
(p< 0.05). On the contrary, the concentrations of cytokines from cells obtained from FA ani-
mals did not significantly differ from that of RF group, which could be due to the fact that IL-2
and IL-4 cytokines were only detected in 25% of FA animals, and IL-10 and IFN-γ in 50% and
75% of these animals, respectively. In comparison with the IP group, FA rats produced signifi-
cantly lower amounts of IL-10 (p< 0.05).

Small intestine gene expression
The gene expression of IFN-γ, IL-2, IL-4, IL-10, IgA, RMCP-II and FcεRI was analyzedin the
SI at the end of the study (Fig 5). In both the IP and FA groups, IFN-γ and IL-10 gene expres-
sion was down-regulated whereas IgA mRNA levels increased but these changes did not

An Effective Food Allergy Model in Rat

PLOS ONE | DOI:10.1371/journal.pone.0125314 April 29, 2015 11 / 20



achieve statistical significance. In the IP group a significant up-regulation of FcεRI gene expres-
sion was found in comparison with RF animals (p< 0.05) and RMCP-II mRNA levels also in-
creased but not significantly. Regarding the FA group, the gene expression of RMCP-II
increased about fourfold with respect to RF animals (p< 0.05), but no changes were detected
in FcεRI. No significant amounts of mRNA of IL-2 and IL-4 were expressed in the small intes-
tine wall from either the reference or immunized animals.

Table 1. Cytokine production by spleen cells after stimulation with OVA.

Groups IL-2 (pg/mL) IL-4 (pg/mL) IL-10 (pg/mL) IFN-γ (pg/mL)

Reference 0.23 1.70 9.70 3.40

Intraperitoneal 54.18 ± 9.94* 104.34 ± 40.93* 803.3 ± 300.5* 26.94 ± 10.08

Food allergy 68.17 ± 25.32 38.97 ± 15.25 61.25 ± 33.54ϕ 7.55 ± 4.15

Results are expressed as mean ± S.E.M.

*p < 0.05 vs. RF group,
ϕp < 0.05 vs. IP group.

doi:10.1371/journal.pone.0125314.t001

Fig 4. Lymphocyte composition isolated from A) Peyer’s patches, B) mesenteric lymph nodes, and C) mesenteric lymph nodes after culturing for
96 h in the presence or absence of OVA. In A and B, white bars represent RF group, black bars represent IP group and grey-striped bars represent FA
group. In C, white bars summarize values without stimulus and striped bars represent values after OVA stimulation. Results are expressed as mean ± S.E.M.
(n = 8). *p < 0.05 vs. non stimulated condition.

doi:10.1371/journal.pone.0125314.g004
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Discussion
The present study provides the set-up and characterization of a FA model in BN rats, including
the induction of an AR, carried out following the previous i.p. immunization with the allergen,
OVA, together with alum and tBp and a subsequent daily oral administration of OVA for a
period of three weeks. In order to establish specific biomarkers of FA, we compared the anti-
allergen immune response and the AR obtained in this model with those achieved with only
the i.p. immunization.

For the screening of drugs, nutritional interventions or immunotherapies to fight against al-
lergies or for testing the allergenicity of new foods, many rat models of FA have been described,
including those that only use the oral route [30–32], those that only use the i.p. route without
adjuvant [40,56] and those that combine i.p. and oral administration [42]. Although BN rats
are high IgE responders, similar to atopic humans, experimental procedures in this rat strain to
induce oral sensitization without adjuvant are time-consuming and are not always able to gen-
erate a reproducible and effective FA model [20,30,37–39]. In fact, we previously tested a
model in BN rats administered only by oral route and the result was that a few animals were
sensitized and none produced specific IgE [39]. In contrast, other studies using several i.p. im-
munization protocols, with or without adjuvant, reported a successful production of specific
IgE [40,56,57]. It is for this reason that we applied here an i.p. immunization with alum and
tBp previous to the oral allergen administration.

As described in previous studies [54], the i.p. immunization of BN rats with OVA, alum and
tBp induces the synthesis of specific antibodies in 100% of the animals, especially those isotypes
related to Th2 immune response in rat, such as IgE, IgG1 and IgG2a [18,36,58]. The anti-OVA

Fig 5. Relative gene expression in small intestine. Expression levels were normalized using HPRT as the
endogenous housekeeping gene and were expressed as percentage in comparison with the RF group, which
was considered as 100% gene expression. White bars represent RF group, black bars represent IP group
and grey-striped bars represent FA group. Results are expressed as mean ± S.E.M. (n = 8). *p < 0.05 vs.
RF group.

doi:10.1371/journal.pone.0125314.g005
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antibody profile, including specific IgE, is not surprising and can be attributed to both alum ad-
juvant and tBp which favor IgE synthesis [59,60]. Interestingly, when two weeks later a daily
OVA solution was given orally, the specific antibody response was strengthened. This pattern
was observed for serum IgG isotypes, which rose steeply during the first week of oral gavage,
demonstrating that anti-OVA immune response was rapidly boosted by oral OVA administra-
tion. Similarly, OVA-specific IgE antibodies increased nearly twofold after one week of oral ga-
vage but, however, when longer oral OVA administration was carried out, IgE serum
concentrations decreased, following the same pattern as those that only received i.p. immuniza-
tion. These results regarding serum anti-OVA antibody kinetics agree with those reported by
Golias et al. [61] in a mouse model of FA obtained by two i.p. immunizations (two weeks
apart) and oral feeding 14 days later every two days. In particular, this last study found that
specific IgE response was already present before oral OVA administration, peaked during the
first week after oral gavage and decreased later. Therefore, from the overall results concerning
specific IgE, it could be suggested that only the first doses of the allergen administered are re-
sponsible for an exacerbation of the IgE synthesis and this response is lost with time. Overall,
from the results concerning anti-OVA antibodies, it could be concluded that an effective FA
model had been achieved because it produced the synthesis of specific antibodies in 100% of
the animals and was relatively rapid since the highest specific IgE and IgG levels were reached
one week after oral allergen administration, which was sooner than other reported models
[34,37].

The FA model proposed here produced the synthesis of serum and intestinal anti-OVA IgA
antibodies, which were not found when only i.p. immunization was carried out, thus demon-
strating the stimulation of gut-associated lymphoid tissue. Although intestinal IgA is thought
to contribute to gut homeostasis by limiting the uptake of oral antigens and it has been consid-
ered to have a protective role against oral sensitization [62], its role in food allergy is still con-
troversial. In human FA, it has been reported that specific IgA2 levels (isotype mainly found in
mucosa surfaces such as those of the intestine) increased when children became tolerant [63].
However, other authors reported that increased specific IgA was associated with a later FA [64]
and that serum allergen-specific IgA seems not to be associated with food tolerance [65]. From
our results, although oral challenge was performed with a high dose of oral OVA, the protective
effect of intestinal IgA antibodies in the FA group was not observed because the measurement
of AR provided similar results in both the FA and IP groups.

After AR induction, the FA model was characterized by a high increase in serum RMCP-II
concentration, which again might reflect the stimulation of gut-associated lymphoid tissue be-
cause this protease is typical of activated mucosal mast cells [66]. In addition, other mediators
released from mast cells produce vasodilatation and are responsible for the decrease in body
temperature [67,68]. Animals immunized with only OVA by i.p. route and those immunized
by i.p. route and subsequent oral OVA administration underwent a similar drop in body tem-
perature after AR induction. There was no correlation between body temperature and the
serum RMCP-II concentration, suggesting that other mast cells different from those in the in-
testinal mucosa could contribute to AR-induced hypothermia. On the other hand, AR caused
an increase in intestinal permeability in both IP and FA groups, which must reflect the dis-
rupted intestinal barrier after OVA immunization. It has been demonstrated that repeated
OVA oral gavage produces an accumulation of RMCP-II in the intestine leading to altered
motor responses in both the small intestine and the colon [69,70]. Nevertheless, it has been re-
ported that an i.p. immunization produced a higher increase in intestinal permeability than an
oral sensitization without an adjuvant, and this was attributed to the release of RMCP-II,
among other mediators, which could increase the absorption by paracellular route [31]. From
the results obtained here, rats with FA (i.p. and oral sensitization) seem to absorb βLG faster
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than the IP group because serum protein concentration tended to be higher at 30 min after
βLG oral administration (60 min after AR induction) and disappeared faster. The collection of
samples earlier than 30 min should confirm this suggestion and can shed some light as to
whether there is any difference in intestinal permeability when OVA is given orally after the i.
p. immunization. AR-induced behavioral changes were quantified by the decrease in motor ac-
tivity as performed in a previous study [45], instead of using the classical score systems which
require the subjective validation by the investigator [71,72]. The results after AR induction re-
vealed a clear decrease of movements in comparison with the basal ones. However, when com-
paring the motor activity between the IP and FA groups, it could be observed that the decrease
in motor activity induced by AR was similar in both groups. Therefore, from the results ob-
tained after AR induction, it could be concluded that only the serum concentrations of
RMCP-II, which were highly increased by oral OVA, clearly indicated the development of an
FA model. Further studies on intestinal permeability should be directed to elucidate changes
induced by oral allergen administration in this FA model. However, the decrease in body tem-
perature and also in motor activity did not differ between IP and FA rats, which could be attrib-
uted to the similar serum IgE levels present at the end of the study.

Tissue samples obtained two days after AR induction allowed the detailed characterization
of the FA process in comparison with the i.p. immunization. The study of lymphocyte compo-
sition in PP and MLN shows that neither the i.p. immunization nor the oral OVA administra-
tion changed the proportion of the main lymphocyte subsets in these intestinal compartments,
at least at the moment when these samples were collected. These results did not agree with
those of Ogawa et al. [43], which reported the accumulation of T lymphocytes in PP in a model
of FA. Further studies carried out at different times could help to clarify this controversy, but
from our results, it could be suggested that the characterization of lymphocyte phenotype in
PP and MLN did not constitute a biomarker of FA induction. On the other hand, we observed
that the proportion of T cells increased when MLN lymphocytes isolated from the IP group
were specifically stimulated in vitro, but these results were not found in the FA group. These
data could suggest the lymphocyte responsiveness in the IP group in contrast to the lympho-
cyte unresponsiveness after oral gavage of OVA for three weeks. This suggestion agrees with
the cytokine results obtained from OVA-stimulated spleen cells, which show that only in the
IP group was the amount of IL-4 and IL-10 released from spleen cells higher than that observed
in the RF group, whereas the concentration of cytokines released by the FA group did not differ
from reference values. In this sense, although some authors describe an increase of IL-4 and IL-
10 in supernatants of spleen cultures of FA animals [34,73,74], other authors do not [42], and
none of them compare the changes between i.p. immunization alone and i.p. together with an
oral allergen administration. From these results it could be suggested that cytokines released
from spleen cells collected after three weeks of allergen gavage did not reflect the oral sensitiza-
tion process present in FA. Studies carried out in a previous phase of FA induction could better
represent this response. In addition, other conditions of spleen cell incubation, such as a
shorter stimulation and higher stimulus concentration, among others, could be better condi-
tions for releasing representative cytokines. Nevertheless, it could be speculated that, at the end
of the study, the continuous oral OVA administration produced a certain tolerance. This lack
of response would not be reflected in the great synthesis of antibodies that occurred throughout
the process, but would be only observed in the specific stimulation of cells collected at the end
of the study.

Finally, the study of gene expression on intestinal tissue could reflect changes induced local-
ly by oral OVA administration. We found that the gene expression of RMCP-II was significant-
ly increased in FA animals, and these results agree with serum concentrations of this mediator
and also with changes reported concerning the gene expression of this molecule in mice and
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rats with food allergies [33,35,43]. However, surprisingly the gene expression of FcεRI did not
change with FA induction, although it did after i.p. immunization alone. It has been reported
in mouse mast cells that the internalization of FcεRI is a mechanism of antigen-specific desen-
sitization [75]. Therefore, the comparison of the results obtained in the FcεRI gene expression
in IP and FA groups could endorse the idea that the FA group developed a certain tolerance
from the continuous oral allergen administration.

In conclusion, by means of the combination of i.p. immunization followed by the oral ga-
vage of the food allergen, we have established a rat model of FA that is effective because it was
able to induce the synthesis of specific Th2-related antibodies, especially IgE, and consequently
an AR after oral challenge in all animals. This fact represents a great advantage with respect to
FA models only induced by oral route, which did not provide effective and reproducible results
in all experiments. In addition, the allergic response development is faster than in other FA
models described because one week after the oral administration of allergen i.e., three weeks
after i.p. immunization, high levels of specific IgE were produced. In comparison with only i.p.
immunization, the developed model provides much higher levels of specific IgG antibodies,
achieving high amounts of Th2-related antibodies in rat (IgG1 and IgG2a), and also anti-OVA
IgE, although the anaphylactic response after five weeks was similar in both groups. In addi-
tion, the levels of RMCP-II released after the anaphylaxis induction and the intestinal gene ex-
pression of this protease with respect to those of the i.p. immunization are the best biomarkers
of the FA process. The results from in vitro antigen-specific activation of lymphocytes from
spleen and mesenteric lymph nodes suggest a certain unresponsiveness state of these cells pos-
sibly induced by repeated oral doses of the allergen. Nevertheless, although further studies
must confirm this hypothesis, the specific antibody response kinetics suggest that the best FA
model could be obtained after only a week of oral OVA administration.
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