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Although the neural bases of the brain associated with movement disorders in children
with developmental coordination disorder (DCD) are becoming clearer, the information
is not sufficient because of the lack of extensive brain function research. Therefore, it
is controversial about effective intervention methods focusing on brain function. One of
the rehabilitation techniques for movement disorders involves intervention using motor
imagery (MI). MI is often used for movement disorders, but most studies involve adults
and healthy children, and the MI method for children with DCD has not been studied
in detail. Therefore, a review was conducted to clarify the neuroscientific basis of the
methodology of intervention using MI for children with DCD. The neuroimaging review
included 20 magnetic resonance imaging studies, and the neurorehabilitation review
included four MI intervention studies. In addition to previously reported neural bases,
our results indicate decreased activity of the bilateral thalamus, decreased connectivity
of the sensory-motor cortex and the left posterior middle temporal gyrus, bilateral
posterior cingulate cortex, precuneus, cerebellum, and basal ganglia, loss of connectivity
superiority in the abovementioned areas. Furthermore, reduction of gray matter volume
in the right superior frontal gyrus and middle frontal gyrus, lower fractional anisotropy,
and axial diffusivity in regions of white matter pathways were found in DCD. As a result
of the review, children with DCD had less activation of the left brain, especially those
with mirror neurons system (MNS) and sensory integration functions. On the contrary,
the area important for the visual space processing of the right brain was activated.
Regarding of characteristic of the MI methods was that children observed a video
related to motor skills before the intervention. Also, they performed visual-motor tasks
before MI training sessions. Adding action observation during MI activates the MNS,
and performing visual-motor tasks activates the basal ganglia. These methods may
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improve the deactivated brain regions of children with DCD and may be useful as
conditioning before starting training. Furthermore, we propose a process for sharing
the contents of MI with the therapist in language and determining exercise strategies.

Keywords: developmental coordination disorder, neuroimaging, brain, motor imagery, methods

INTRODUCTION

Developmental coordination disorder (DCD) manifests as
‘‘clumsiness and slowness or inaccuracy of motor skills
and defective acquisition and performance of coordination
skills, which interfere with activities of daily living.’’ The
prevalence is 5–6% in children aged 5–11 years, and the
sex ratio ranges from 2:1 to 7:1 (male:female; American
Psychiatric Association, 2013). Various subtypes of motor
problems have been reported and commonly include issues
related to motor skills such as balance, coordination, and
writing (Nakai et al., 2011; Vaivre-Douret et al., 2011).
Underdeveloped motor skills make it difficult to perform the
basic movements required for daily activities (Wilson et al.,
2013; Adams et al., 2016a). Furthermore, problems associated
with DCD extend to exercise-related activities as well as other
aspects. For example, reduced participation in play and group
sports causes physical problems such as weakness and obesity
(Watkinson et al., 2001; Mandich et al., 2003; Cairney et al.,
2005). Self-esteem and self-affirmation may be impaired, and
secondary disorders such as depression and anxiety-related
mental disorders have also been recognized (Poulsen et al.,
2008; Lingam et al., 2012; Missiuna et al., 2014; Caçola, 2016;
Cairney et al., 2016).

DCD can occur alone or with other diseases and disorders.
In particular, its coexistence with attention-deficit/hyperactivity
disorder (ADHD), termed ‘‘deficit of attention, motor control,
and perception syndrome’’, is high (Fliers et al., 2008; Díaz-
Lucero et al., 2011); moreover, it is reported that more than
80% of individuals with coexisting autism spectrum disorder
(ASD) experience significant problems in daily life situations
(Green et al., 2009; Van Waelvelde et al., 2010). Impaired spatial
grasping ability and visual and motor perception may underlie
these comorbidities, but the common neurological basis has not
been clarified.

The exercise-related problems of children with DCD rarely
resolve spontaneously with age. They often persist in adolescence
and adulthood (Zwicker et al., 2012b; Bo and Lee, 2013),
and may further promote secondary disabilities given the
lack of proper intervention (Cantell et al., 1994). Therefore,
some form of support becomes necessary. Various programs
have been implemented for exercise support to children with
DCD, and some short-term results have been reported (Yu
et al., 2018). It is known that training that simply involving
correcting inaccurate coordination is not always effective,
and nowadays the usefulness of a task-oriented approach,
in which the child finds multiple solutions and selects the
most desirable one, has been suggested (Smits-Engelsman
et al., 2018). However, a systematic review and meta-analyses
published between 1996 and 2012, judged to be of low

quality in a report, questioned the quality of the evidence
in this regard and the effectiveness of such interventions
(Miyahara et al., 2017, 2020). In other words, there are very
few rigorously planned and verified studies and corresponding
reviews regarding interventions for children with DCD, and
there is currently no evidence to prove that these interventions
improve outcomes. In recent years, attempts have been made
to develop international guidelines for DCD (Blank et al.,
2019), and interventions involving task-oriented approaches
(Ward and Rodger, 2004), and neuromotor task training
(Ferguson et al., 2013) are recommended, indicating that these
are considered effective. Besides, from a novel perspective,
interventions using motor imagery (MI) have also been reported.
Since MI simulates in the brain without actually exercising,
it is less likely to cause exercise errors and may be useful
as a pre-training condition for children with DCD. A point
to be noted while carrying out exercise image intervention
is that the intervention method differs depending on factors
such as the age and condition of the target individual and
the type of exercise. To address this issue, Schuster et al.
(2011) analyzed systematic MI training sessions (MITS) and
reported the details of successful MI intervention techniques.
However, most of the studies analyzed involved interventions
for adults, and only two involved interventions for children
up to 9 years of age. Furthermore, both studies involved
interventions for healthy children. Therefore, it is necessary to
investigate the methodology of MI intervention for children
with DCD that is currently being conducted and integrate it
with the results of brain imaging studies to derive effective
intervention methods.

Various studies using brain functional imaging to study
the pathophysiology of DCD have also been conducted. Based
on functional MRI (fMRI) studies using hand movement
tasks, compared to children with typical development (TD),
children with DCD were found to have lower activation in
the middle frontal gyrus (MFG), superior frontal gyrus (SFG),
cerebellum, supramarginal gyrus (SMG), and inferior parietal
lobules (IPLs; Fuelscher et al., 2018). A study focusing on the
mirror neuron system (MNS), including the inferior frontal
gyrus (IFG), premotor cortex (PMC), IPL, and superior temporal
sulcus, has also been reported (Reynolds et al., 2015b; Lust
et al., 2019). In 2016, a critical review of previous MRI
studies was published and concluded that the neural bases
in children with DCD included the frontal lobe, parietal
lobe, basal ganglia, and cerebellum (Biotteau et al., 2016).
As mentioned above, knowledge of DCD’s neural basis and
network abnormalities has been accumulated, but few studies
have mentioned intervention methods based on these studies.
Therefore, we focused on MI, which is one of the neurological
rehabilitation, and aimed to derive an effective intervention
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method for children with DCD based on the results of
neuroimaging studies.

The purpose of this study was to examine MI interventions
for children with DCD based on neuroimaging studies and to
propose new methods. Therefore, we planned to carry out two
reviews. One reviewed MRI articles up to 2020 and summarized
the latest information on how the neural bases and networks of
children with DCD differ from those of children with TD. The
other was to summarize the MI intervention methods used for
children with DCD.

MATERIALS AND METHODS

A comprehensive search was completed in the databases
Medline, CINAHAL, AMED, and The Cochrane Library.

Neuroimaging Studies
The search strategy used MeSH terms and text words for
(‘‘child’’ or ‘‘child, preschool,’’ or ‘‘pediatric’’) and (‘‘motor
skills disorders’’ or ‘‘developmental coordination disorder’’ or
‘DCD’) and (‘‘Magnetic Resonance Imaging’’ or ‘‘functional
connectivity’’ or ‘‘neural pathways’’) in August 2020. Brain
function analyses using MRI for children with DCD involve
the following: (1) fMRI; (2) diffusion tensor imaging (DTI);
or (3) voxel-based morphometry (VBM). Exclusion criteria
were: (1) adult studies or preterm children; (2) review and
meta-analysis literature; (3) cerebral palsy; and (4) dysgraphia.

fMRI
Based on the blood-oxygenation-level-dependent effect (Kim
and Ogawa, 2012), somatosensory sensations, such as visual,
auditory, tactile, taste, and olfactory sensations, can be identified
using an MR device by analyzing the increase in blood flow
associated with brain activity and identifying the activation site.
Similarly, it is possible to understand which part of the brain
is active when exercise or cognitive stimulation is applied. It is
also possible to investigate neural networks, language, memory,
emotion, attention, and brain plasticity. Studies have also focused
on resting-state MRI (Buzsákim and Draguhn, 2004) because
neural activity in the brain fluctuates with a certain frequency
band even in the resting state (Raichle, 2011). With this method,
the subject is taught to be at rest by keeping their eyes closed or
gazing at a fixed point. In many cases, the measured spontaneous
volatility of the blood-oxygenation-level-dependent signal is used
to assess the degree of correlation between the neural activities
of distant regions. This synchronization between brain regions
is called functional connectivity, and a functional index or a
network index (the default mode network) based on it has been
proposed as a new biological index (Mohan et al., 2016).

DTI
Diffusion-weighted images are used as the basis for calculations
in DTI. This method has been used to evaluate the diffusivity of
water molecules in the brain, where the direction of diffusion
of water molecules is determined by the direction of nerve
fiber conduction (Basser et al., 1994). Two types of indices
are obtained from DTI: fractional anisotropy (FA), which

represents the degree of diffusion anisotropy, and apparent
diffusion coefficient, which represents the apparent magnitude of
diffusion. It is also possible to observe the positional relationship
between the nerve fibers in the body tract, sensory tract, visual
axis, and lesion site.

VBM
After anatomical standardization/tissue fractionation (for
demarcation into gray matter, white matter, and cerebrospinal
fluid space), image analysis of brain morphology is performed
pixel-by-pixel based on the image database of the normal brain
and specific factors (sex, age, lifestyle habits, neuropsychiatric
disorders; Ashburner and Friston, 2000).

Neurorehabilitation Studies (MI)
The search strategy usedMeSH terms and text words for (‘‘child’’
or ‘‘child, preschool,’’ or ‘‘pediatric’’) and (‘‘developmental
disabilities’’ or ‘‘motor skills disorders’’ or ‘‘developmental
coordination disorder’’ or ‘DCD’) and (‘‘mental imagery’’ or
‘‘mental practice’’ or ‘‘mental training’’ or ‘‘mental rehearsal’’ or
‘‘mental movements’’ or ‘‘eidetic imagery’’ or ‘‘visual imagery’’
or ‘‘guided imagery’’ or ‘‘motor imagery’’). The inclusion criteria
were: (1) any design of quantitative intervention studies with a
focus on imaging movements; (2) studies that included children
with DCD; and (3) study intervention that focused on motor
skill, performance, or strength improvement. Exclusion criteria
were: (1) mental practice not related movements; and (2) mental
practice without physical exercise. MITS was classified based
on the 17 elements of the PETTLEP (physical, environment,
timing, task, learning, emotion, and perspective; Holmes and
Collins, 2001) approach-based MITS reported by Schuster
et al. (2011; Supplementary Table 2). The Physiotherapy
Evidence Database list was used to evaluate RCTs and assign
a maximum score of 10 points; (Maher et al., 2003). An
RCT is a study in which people are allocated at random (by
chance alone) to receive one of several clinical interventions.
One of these interventions is the standard of comparison or
control. The control may be a standard practice, a placebo,
or no intervention at all. For the case series experimental
design, the 11-point Single Case Experimental Design scale was
used (Tate et al., 2008). All studies were rated by the first
author based on detailed rating guidelines. Studies received
one point for each fulfilled methodological criterion on the
respective rating list. The higher the achieved score, the better
the study quality.

RESULTS OF NEUROIMAGING STUDIES

The neuroimaging review included 20 magnetic resonance
imaging studies. In all studies, children with DCD experienced
problems in their daily lives and were mostly assessed using
the Movement Assessment Battery for Children (one study
had unclear criteria and the other used the Bruininks-
Oseretsky Test of Motor Proficiency). Most participants were
7–12 years old, but some studies included those up to 17 years
of age. Participants performed various tasks during fMRI,
such as go/no-go, tracking, fine-motor, trial-tracking, motor
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response, finger sequencing, and hand clenching tasks and
observing, executing, and imitating a finger sequence, finger
tapping sequence, and finger adduction/abduction. Others were
conducted in the resting state, or the tasks were not listed.
MRI was conducted at a magnetic flux density of 1.5 T
in only one study and of 3.0 T in others. The details of
the results are summarized in Supplementary Table 1. We
have also depicted the results in Figure 1 to clearly show
the differences in brain activation in DCD and TD. If brain
activation were DCD > TD, the corresponding Brodmann area
(BA) number is displayed in red. On the contrary, if brain
activation were DCD < TD, it is displayed in blue. When
reports were inconclusive (DCD > TD or DCD < TD), they
are displayed in purple. Regions not mentioned are shown
in white. BrainNet Viewer was used to creating the figure1

(Xia et al., 2013).

fMRI Results
It was clear that the activation of the left brain was broadly
reduced in children with DCD, while that in parts of the
right brain was higher than in children with TD (Figure 1).
The results are summarized below according to the sites and
analysis types.

Frontal Lobe
The left medial frontal gyrus (BA6), SFG (BA8), bilateral SFG
(BA9), right dorsolateral prefrontal cortex (BA9), IFG (BA9),
MFG (BA9), and left IFG (BA47) had lower activation in children
with DCD than in children with TD. Conversely, the right lateral
orbitofrontal cortex (BA11) and MFG (BA46) are more active
in children with DCD (Caeyenberghs et al., 2016). The right
precentral gyrus andmedial frontal gyrus (BA6) showed a decline
in activation in two studies (Reynolds et al., 2015a, 2017), but in
the study by Zwicker et al. (2010) high activation was reported. In
the pars opercularis of the IFG (BA44), children with DCD had
lower activation during imitation and higher activation during
observation than those in children with TD (Licari et al., 2015;
Reynolds et al., 2015a).

Parietal Lobe
In the left postcentral gyrus (BA2, 3), superior parietal lobe
(BA7), bilateral precuneus (BA7), and left precuneus (BA39),
children with DCD showed lower brain activation than children
with TD. Conversely, the right postcentral gyrus (BA3) is
activated to a greater extent in children with DCD. The bilateral
IPL (BA40), SMG (BA40), and temporoparietal junction (BA40)
are less activated those in children with DCD (Kashiwagi et al.,
2009; Zwicker et al., 2011; Debrabant et al., 2013), while a study
by Zwicker et al. (2010) reported high activation of the left IPL
and right SMG.

Temporal Lobe
In the left fusiform gyrus (BA37), superior temporal gyrus
(BA41), and transverse temporal gyrus (BA41), children with
DCDhave lower brain activation than children with TD (Zwicker
et al., 2011; Debrabant et al., 2013). Conversely, the right superior

1https://www.nitrc.org/projects/bnv/

temporal gyrus (BA41) is more active than in children with DCD
(Zwicker et al., 2010).

Occipital Lobe
In the right lingual gyrus (BA18) and left middle temporal gyrus
(MTG, BA19), children with DCD have lower brain activation
than children with TD (Zwicker et al., 2011; Reynolds et al.,
2015a). In the right lingual gyrus (BA19), activation was shown
to be higher those in children with DCD (Zwicker et al., 2010).

Limbic System and Islands
In the limbic system and islands, the bilateral insula (BA13),
left cingulate gyrus (BA23, 24), right posterior cingulate (BA29),
left parahippocampal gyrus (BA30), posterior cingulate (BA30),
and right precuneus (BA31), children with DCD were shown
to have lower brain activation than children with TD (Reynolds
et al., 2015a, 2019). Conversely, the right parahippocampal gyrus
(BA30) was shown to be more active in some children with DCD
(Zwicker et al., 2010).

Basal Ganglia and Cerebellum
In the basal ganglia, children with DCD have been shown
to have lower brain activation in the bilateral thalamus and
caudate than children with TD (Reynolds et al., 2019). In the
cerebellum, bilateral cerebellar crus I, and left cerebellar lobules
VI and IX, children with DCD have lower brain activation than
children with TD (Zwicker et al., 2011; Debrabant et al., 2013).
Conversely, the right cerebellar lobule VI has higher activation
than in children with DCD (Zwicker et al., 2010).

Connectivity
The results were summarized in Supplementary Table 1. Querne
et al. found that, compared to children with TD, children with
DCD had weaker connections between the right middle frontal
cortex (BA46) and anterior cingulate cortex (BA32) and the
middle frontal cortex (BA46) and inferior parietal cortex (BA40).
On the other hand, the connection between the bilateral anterior
cingulate cortex (BA32) and inferior parietal cortex (BA40) and
the left middle frontal cortex (BA46) and inferior parietal cortex
(BA40) is stronger in children with DCD (Querne et al., 2008).
Mcleod et al. used resting-state fMRI analysis to show that the
connection between the left M1 and bilateral IFG, insular cortex,
superior temporal gyrus and caudate, right FOC, SMG, nucleus
accumbens, pallidum, and putamen was weaker in children
with DCD (McLeod et al., 2014). Also, they investigated the
association of the sensorimotor cortex (SM1) with the basal
ganglia and cerebellum, and in TD, the right thalamus and left
cerebellar lobe V were found to be more strongly associated
with the right SM1 than the left. However, in children with
DCD, the left thalamus and right cerebellar lobe V were more
strongly associated with the left SM1 than with the right. The
right putamen was more strongly associated with the right
SM1 than with the left in the TD group. However, in children
with DCD, no strong intrahemispheric connections with the
motor cortex were found in the right putamen, which was equally
well-connected to the left and right SM1 (McLeod et al., 2016).
Also, Rinat et al. (2020) showed that the connection between
bilateral SM1 and posterior cingulate cortex (PCC; BA23, BA31)
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FIGURE 1 | Comparison of brain activity in developmental coordination disorder (DCD) and typical development (TD). (A) Left outside of the sagittal plane. (B)
Coronal plane of the basal ganglia. (C) Right outside of the sagittal plane. (D) Left inside of the sagittal plane. (E) Coronal plane of the cerebellum. (F) Right inside of
the sagittal plane. Brodmann area (BA) 1, 2, 3, postcentral gyrus; 4, precentral gyrus; 5, superior parietal lobule; 6, premotor cortex and supplementary motor cortex;
7, superior parietal lobule; 8, frontal eye fields; 9, dorsolateral prefrontal cortex; 10, anterior prefrontal cortex; 11, 12, superior frontal gyrus; 13, insular cortex; 17,
primary visual cortex; 18, secondary visual cortex; 19, associative visual cortex; 20, inferior temporal gyrus; 21, middle temporal gyrus; 22, superior temporal gyrus;
23, 24, 28–33, cingulate cortex; 25, subgenual area; 26, ectosplenial portion of the retrosplenial region of the cerebral cortex; 27, piriform cortex; 34, dorsal
entorhinal cortex; 35, 36, perirhinal cortex and ectorhinal area; 37, fusiform gyrus; 38, temporal pole; 39, angular gyrus; 40, supramarginal gyrus; 41, 42, primary
auditory cortex; 43, primary gustatory cortex; 44, pars opercularis, part of the inferior frontal gyrus; 45, pars triangularis, part of the inferior frontal gyrus; 46,
dorsolateral prefrontal cortex; 47, pars orbitalis, part of the inferior frontal gyrus.

and precuneus (BA7, BA31), SM1 and left posterior middle
temporal gyrus (pMTG) was weaker in children with DCD than
that in children with TD.

DTI Study Results
Zwicker et al. (2012a) showed that children with DCD had lower
mean diffusivity in the corticospinal tract than children with
TD. Furthermore, posterior thalamic radiation also decreased
axial diffusivity. Langevin et al. (2014) reported that in the
bilateral superior posterior parietal and left superior longitudinal
fasciculus III, FA in children with DCD was lower than in those
with TD. According to a report by Debrabant et al. (2016)
the FA of the left retrolenticular limb of the internal capsule
was lower in children with DCD compared to those with TD,
while the radial diffusivity was increased; the same trend was
observed on the right. They used a predictive statistical model
to show that the cerebellum lobule VI and the right parietal
superior gyrus are the most effective for distinguishing children
with DCD from children with TD. Also, a study by Brown-

Lum et al. (2020) which investigated the entire brain, showed
a decrease in FA of the cerebral peduncle, superior cerebellar
peduncle, external capsule, and splenium of the corpus callosum.
In the corticospinal tract, cerebral peduncle, posterior thalamic
radiation at the retrolenticular part of the internal capsule and
external capsule, axial diffusivity was also reduced.

VBM Study Results
Reynolds et al. (2017) reported that, compared to children with
TD, children with DCD had significantly greater gray matter
volume, which decreased to the right in the right SFG (BA6) and
right MFG (BA6, 8).

DISCUSSION (NEUROIMAGING STUDIES)

Regarding the neural bases of DCD, a review of fMRI studies
published in 2016 referred to the frontal lobe, parietal lobe,
basal ganglia, and cerebellum (Biotteau et al., 2016). Our
review indicates decreased activity in the bilateral thalamus
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decreased connectivity of the SM1 and left posterior middle
temporal gyrus, bilateral posterior cingulate cortex, precuneus,
cerebellum, and basal ganglia, loss of connectivity superiority
in the above regions. Furthermore, reduction of gray matter
volume in the right SFG and MFG and lower FA and
axial diffusivity in regions of white matter pathways were
found in DCD.

The thalamus plays an important role in relaying sensory
information (visual, auditory, somatosensory, etc.) to the
cerebral cortex. Somatosensory information is sent to the
SM1 and the IPL via the thalamus, the efferent copies of exercise
are integrated, and the exercise program is modified. Also, the
thalamus is involved in selective visual spatial attention and
relays attentional feedback to the visual cortex (Saalmann et al.,
2012; Zhou et al., 2016). Hypothalamic inactivity leads to the
inhibition of this sensory information, which may be related to
the problems of motor planning and visuospatial cognition of
children with DCD.

It has been suggested that the MTG is involved in the
visual and auditory perception of tools and in tool movement
in cooperation with the bilateral fusiform gyrus and the
left parietal lobe (Assmus et al., 2007; Xu et al., 2016;
Tomasello et al., 2017). Also, the MTG has been reported
to play a role in the recognition of semantic actions, the
expression of such actions, action monitoring during the
performance, and comparison of sensory input and sensory
prediction (Kalénine et al., 2010; Wallentin et al., 2011; Davey
et al., 2015; Aue et al., 2019; van Kemenade et al., 2019);
it is also thought to combine sensorimotor knowledge of
meaningful behavior. When these observations are collectively
interpreted, it is clear that MTG plays an important role in
behavior-related knowledge and interpretation. The problem
of gripping and using tools in children with DCD may be
related to the inactivation of MTG. The PCC is involved in
many cognitive functions, such as visual processing, motor
performance (Field et al., 2015), visual space navigation (Bzdok
et al., 2015), and decision-making (Heilbronner et al., 2011).
The precuneus is involved in self-related processes such as
retrieval of autobiographical and episodic memory, visual-spatial
processing, and MI. Many studies have shown the involvement
of the PCC and precuneus in various aspects of visual-spatial
processing. Visuospatial abilities are associated with DCD, and
decreased connectivity with the SM1 may be associated with
diminished motor control that is dependent on visuospatial
information (Tsai et al., 2009, 2012).

Strong functional connections in the thalamus on the
ipsilateral side of the right brain and the cerebellum V on
the contralateral side were observed in TD. On the other
hand, children with DCD had strong functional connections
to the thalamus in the left side of the brain and the
contralateral cerebellum V. This observation was first reported
by McLeod et al. (2016). One possibility is that children
with TD have to mitigate the non-dominance of their left
hand to perform tasks with both hands smoothly. Children
with DCD have stronger functional connections to compensate
for clumsiness due to sensory-motor disorder of the right
hand. Besides, the children with TD and ADHD had a strong

connection of the putamen on the ipsilateral side with the
right SM1, whereas children with DCD strong connections
on both the left and the right. In a previous study, children
with DCD also showed a decrease in the diffusivity of the
corticospinal tract (Zwicker et al., 2012a), suggesting that
the unilateral significance of the dominant hand seen in
TD is low.

Decreased gray matter volume in the right premotor and
frontal lobes is associated with DCD-related dysfunctions, such
as those related to working memory (Tsai et al., 2012), motor
planning and performance, and attention (Tsai et al., 2009). The
MTG is involved in motor control (Hanakawa et al., 2008) and
contributes to decision-making and inhibitory control (Garavan
et al., 1999; Talati and Hirsch, 2005); problems with these
brain functions may be associated with motor control issues
and behavioral consequences of poor accuracy or efficiency in
children with DCD (Wilson et al., 2002; Adams et al., 2014;
Reynolds et al., 2015b). Furthermore, the relationship between
movement and brain function during motor control in children
with DCD has been confirmed based on both cerebral blood flow
in fMRI and event-related potential in electroencephalography
(Zwicker et al., 2010, 2011; Pangelinan et al., 2013).

The corticospinal tract is an extensive network of projected
white matter pathways that connect the primary motor cortex
to the spinal cord via the corona radiata, internal capsule hind
limbs, and cerebral peduncle. The posterior thalamic radiation
at the retrolenticular part of the internal capsule and external
capsule is another network of projected white matter tracts
associated with sensory and motor processing. Previous studies
have also shown that children with DCD have low FA in these
areas (Zwicker et al., 2012a). Brown-Lum et al. (2020) found that
children with DCD also had low FA in the cerebellum pathway
by examining the entire brain. These pathways enter and exit the
spinal cord, pons, and cerebral cortex, and cerebellum, helping
to improve motor movements, learn new motor skills, and
balance proprioceptive information into a posture (Keser et al.,
2015). This finding complements the findings from functional
MRI studies that showed inactivation of the cerebellar and
mural regions in children with DCD compared to children
with TD.

Focusing on the red and blue color in Figure 1, it is interesting
that children with DCD have less extensive activation of the left
brain than those in children with TD, and that activation in parts
of the right brain (BA3, 11, 19, 30, 41, 46, cerebellar lobule VI)
was enhanced. It has been pointed out that children with DCD
often have problems with cross-modal information processing
involving visual space recognition, kinesthetic perception, and
matching of vision and proprioceptive sensation (Wilson and
McKenzie, 1998; Schoemaker et al., 2001; Gomez and Sirigu,
2015). This activation may be a result of trying to compensate
for the problem of sensory integration by visual space processing.
It can also be interpreted that interhemispheric inhibition (IHI)
occurs due to repeated high activity in the right hemisphere.
However, since there are very few reports on activation at
this time, careful discussion regarding this aspect is still
needed. In rehabilitation interventions for children with DCD,
it is necessary to aim at reconstructing brain function, and
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MI is one of the intervention methods. MI is defined as
mentally evoking a certain motion and is a method used
in multiple fields, such as sports, education, psychology, and
rehabilitation (Caeyenberghs et al., 2009; Cumming and Ramsey,
2009). Especially in the area of rehabilitation, randomized
controlled trials (RCTs) have shown their effectiveness for
neurorehabilitation after stroke (Page et al., 2001; Liu et al.,
2004). With the recent development of brain science methods,
the neural basis of MI is becoming clear. Previous studies
have repeatedly reported that brain activity similar to that at
the time of motor execution occurs during MI (Zabicki et al.,
2017). It has been reported that MI activates the bilateral
PMC, supplementary motor area, dorsal and ventral PMCs,
superior and inferior parietal lobules, basal ganglia (putamen),
cerebellum (lobule VI), and left cingulate gyrus (Hardwick
et al., 2018). Some of the brain areas that are activated by
MI overlap with the neural base of DCD. Also, studies using
transcranial magnetic stimulation have shown plastic changes
due to mental practice and an increase in the excitability of
the M1 during MI (Kasai et al., 1997; Stinear et al., 2006;
Avanzino et al., 2015).

RESULTS OF NEUROREHABILITATION
STUDIES

In total, three studies by Australian and European groups
published in Wilson et al. (2002, 2016), and Adams et al. (2017),
and one protocol listed in Adams et al. (2016b) were included in
the literature review. Concerning study design, two studies were
RCTs, while one was a case series. Study quality was rated on a
10-point scale for RCTs and an 11-point scale for the case series.
All interventions were for children with DCD between the ages
of 7 and 12 years. The extracted information is summarized in
detail in Table 1.

The MITS factors for all MI interventions are summarized
in Table 2. MI was performed in individual sessions and added
or embedded before, between, or after physical practice (PP).
MI sessions were supervised by a research assistant or therapist.
The position of the participants during MI was task-specific.
Participants received acoustic and visual MI instructions, which
were mainly standardized and pre-recorded. The perspective
used during MI practice was chosen from both internal and
external viewpoints. The MI used kinesthetic as well as visual
modes, and MI interventions were mainly investigated with
respect to motor-focused tasks. All interventions involved
watching a video of the movement before initiating the MI
intervention, and the two interventions included a visual
imagery exercise, a relaxation protocol, and mental preparation.
MI training was directed by stepwise guidance, and detailed
instructions regarding the methods were given to the children.
The MI training contents could be changed based on the
participant’s weaknesses or additional motor skills. Details
regarding the task environment (location) were not reported.
Each intervention involved a 60-min session conducted once
a week for 5 weeks (total 300 min) in two studies; 45-min
sessions were conducted per week for 9 weeks (total 405 min)
in one study. One of the reports included the MI intervention TA
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TABLE 2 | Overview of extracted motor imagery training sessions (MITS) elements.

MITS element Wilson et al. (2002) Wilson et al. (2016) Adams et al. (2017)

Position Task-specific Task-specific NSt
Location NSt NSt NSt
Focus Motor-focused Motor-focused Motor-focused
Order MI before, between, and after PP MI before, between, and after PP MI before and after PP
Integration Embedded Embedded Added
MI instructions medium Acoustic and visual (CD-ROM, video) Acoustic and visual (CD-ROM, video) Acoustic and visual (video)
Instruction mode Pre-recorded Pre-recorded Pre-recorded
Supervision Supervised Supervised Supervised
Directedness Directed with stepwise guidance Directed with stepwise guidance Directed
Instruction type Detailed Detailed Detailed
Instruction individualization Standardized Standardized Standardized
Familiarization Received familiarization Received familiarization Received familiarization
Change Changed Changed Changed
MI session Individual Individual Individual
Eyes Opened Opened Opened
Perspective Internal and external Internal and external Internal and external
Mode Kinesthetic and visual Kinesthetic and visual Kinesthetic and visual

time, which was 20 min, including video observation and
actual practice.

DISCUSSION (NEUROREHABILITATION
STUDY)

Our research question was aimed at examining how MI
interventions are performed in children with DCD. The purpose
of our literature review was to answer this question and explore
the current approaches toMI intervention in children with DCD.
Our literature search focused on identifying medical treatments
based on the clinical diagnosis of DCD.

This is the first report to clarify the methodology of
MI intervention for children with DCD. As a result of the
investigation, we found that participants’ attitudes during
MI were task-specific. Participants received linguistically
standardized explanations, and MI was performed from the
kinesthetic and visual modes from the internal (first person) and
external (third person) perspectives. Participants observed and
prepared videos on motor skills before starting MI, which was
performed before PP and alternately during or after PP. In some
ways, it was confirmed that MI interventions for healthy children
and adults and children with DCD differed in several ways.

Regarding the timing of implementing MI, Feltz and Landers
(1983) recommend that it be implemented before PP. Schuster
et al. (2011) on the other hand, recommend that it be performed
after the PP. The timing of the MI depends on the purpose
of the training, such as whether the content of the imagined
exercise is new learning or preparation for an acquired motion.
As MI intervention for children with DCD aims to enhance
weak and unacquired movements, MI was performed before PP
in all studies or added during or after the PP. In other words,
the afferent information obtained from the actual movement is
useful for movement expression during MI.

In all studies, children observed a video of the motions before
theMI intervention. This is useful for learning themotor element
of the imaged motion and enables participants to prepare for
MI. In addition to the PMC and the parietal lobe, which are

reported to be active in MI, the brain regions that are active
in action observation (AO) include the occipital lobe and the
IFG (Hardwick et al., 2018). Possibly the AO can activate a
wide range of brain areas with reduced activity. Recent studies
suggest that combining or simultaneously using AO and MI has
a better effect on exercise outcomes than MI or AO alone (Eaves
et al., 2016). It has also been verified that MI and AO are more
effective than MI alone in interventions for children (Scott et al.,
2019). It is also reported that MI intervention causes a temporary
deterioration in motor performance due to mental fatigue caused
by repeated MI (Rozand et al., 2016). These findings suggest
that performing MI and AO simultaneously may reduce mental
stress. Also, the speed of the video to be observed is added to the
nominal, and the slow-motion is used for observation. It has been
reported that AO in slow motion promotes greater activation
of the M1 compared to that at normal speed (Moriuchi et al.,
2014, 2017). It is believed that slow-motion makes it possible
to decompose and better understand the elements of motion,
which in turn better activates the AO network. So far, it is
known that motor-related areas, which are important for motor
activity, are activated more by kinesthetic images, and the visual
cortex, which processes visual information, is activated more by
visual images (Guillot et al., 2009). Therefore, for the acquisition
of motor skills, MI intervention often uses a first-person and
kinesthetic image (Ridderinkhof and Brass, 2015). However, even
if the participants are instructed to perform only the kinesthetic
motor image task, there is no guarantee that they will be able to
recall the pure kinesthetic motor image as instructed. Therefore,
it is considered useful to use the first-person and third-person
actions observed in the video in advance for MI.

GENERAL DISCUSSION

Brain function in children with DCD can be plastically altered
and need not remain constant throughout life. A report by
Williams et al. suggests that aging changes the network of
pathways important for motor planning, control, and cognition
and that various experiences during growth can help to develop
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compensatory pathways (Williams et al., 2017). A study of
motor learning in healthy adults also confirmed a decrease in
connectivity from the primary motor cortex (M1) to the basal
ganglia and from the supplementary motor cortex (SMC) to
the M1. On the contrary, changes in connectivity enhancement
from the basal ganglia to the SMC and from the dorsal motor
cortex to the SMC were also observed (Ma et al., 2010; Patel
et al., 2013). The main purpose of our study is to derive an
effective MI intervention method based on the neuroimaging
studies of DCD. There are two characteristics of MI intervention
for children with DCD: (1) AO is performed before MI and
exercise to learn the elements of exercise that they are not good
at; and (2) Perform a visual-motor task before MI or exercise
to perform mental preparation and conditioning. As has been
identified, areas of decline include areas important for exercise
execution and sensory integration, such as SMC and IPL, and
major areas of MNS, such as IFG. These areas are consistent with
the main symptoms of DCD, including reduced ability to correct
with motor commands and feedback, imitation, and difficulty
in motor learning. It should be noted that the pars opercularis
of the IFG (BA44), children with DCD had lower activation
during imitation and higher activation during observation than
children with TD (Licari et al., 2015; Reynolds et al., 2015a).
These results suggest that observation is more effective than
imitation in children with DCD, and it may be useful to perform
AO before the start of training. A review of Neuroimaging
studies showed that children with DCD had reduced thalamic
activity and weaker connectivity to SMC. The thalamus plays an
important role in relaying somatosensory and is also involved
in the correction of undoing based on sensory information. It
is difficult to activate the thalamus in simulations such as MI
and AO that do not involve actual movements. The thalamus is
also involved in selective visual spatial attention (Wilson et al.,
2002, 2016), suggesting that the visual-motor task is useful in
this regard. Also, children with DCD tend to use the right
brain to handle more visuospatial information to compensate for
their lack of somatosensory. Therefore, we think that it may be
possible to activate the thalamic pathway and promote sensory-
based correction of luck by combining visual information and
movement. Furthermore, we focused on the cerebellum, which
is important for planning and modifying exercise such as
feedforward. Especially, the cerebellar-crus-I has been reported
to be involved in linguistic working memory (Marvel and
Desmond, 2010), it may be activated by expressing the elements
of movement and perception in words. Verbalizing the elements
of motion simulated by MI and AO corrects feedforward-
level errors and enables motion under appropriate motor
strategies. A method similar to this idea is the task-oriented
approach CO-OP (cognitive orientation to daily occupational
performance). CO-OP is a cognitive movement (behavioral)
approach that supports children in the process of discovery and
learning to specifically work on children’s cognition and achieve
the motor tasks they desire. It is characteristic that it assists in
controlling behavior by verbalizing the flow of problem-solving
such as goal setting, planning, execution, and self-reflection
(Sangster et al., 2005). By sharing motor and sensory information
obtained from AO and MI with the instructor via language,

it may be possible to clarify the motor strategy and correct
it before making an error. In some people with DCD, there
was an imbalance in activity in the left and right hemispheres.
IHI is believed to have spurred this situation. IHI from the
contralateral to the ipsilateral motor cortex has been shown
to increase during MI (Liang et al., 2014). Therefore, it may
be possible to suppress the activity of the right hemisphere by
increasing the activity of the left hemisphere with repeatedMI. In
our review, we could not find out the details of the report on task
environment (location). As with the PETTLEP method, MI is
recommended to be performed in a real environment, and ideally
subsequent practices should be performed in a similar setting.
Treatment of children with DCD has often done in hospitals
and therapy rooms. We consider that children need to perform
tasks in real-life situations, such as the home practice reported by
Adams et al. (2017).

One of the problems in research on DCD was the coexistence
of ASD and ADHD. It was found that the activity of the brain
region was different when DCD alone and ADHD coexisted.
To clarify the brain function specialized for the symptoms
of DCD, it is necessary to establish exclusion criteria and
proceed with research and review. DCD is also a more highly
heterogeneous disorder than other developmental disorders.
Therefore, it is necessary to study by dividing into several
subtypes (classification by exercise/behavior level or brain
imaging, et cetera). Also, few RCT treatises are using MI for
children with DCD, and it is currently difficult to carry out a
meta-analysis. MI intervention is easy to have variations and
needs to be verified by a unified method by each researcher.

CONCLUSION

In this review, we investigated the brain activity that is
the basis of clumsiness in children with DCD. Adding to
what is known from previous reports, our results indicate:
(1) decreased activity of the bilateral thalamus; (2) decreased
connectivity of the SM1 and the left MTG and the SM1 and
the bilateral PCC and precuneus; (3) loss of superiority of
connectivity of the SM1 and the cerebellum and basal ganglia
in children with DCD; and (4) reduction of gray matter
volume in the right SFG and MFG and lower FA and axial
diffusivity in regions of white matter pathways were found
in DCD. Also, we investigated an intervention methodology
using MI as a neurorehabilitative technique for children with
DCD. Characteristically, MI intervention was performed before,
during, or after PP. Then, the motor skills were learned by
performing AO before MI. MI was performed from both internal
and external points of view to focus on the child’s weak motor
skills and to facilitate motor learning. It was considered possible
to activate the brain regions that form the neural base of DCD by
using MI and AO together and performing a visual-motor task.
Also, it is recommended that MI and physical practice be carried
out in an environment where they operate, and the method
includes self-practice at home. Furthermore, neuroimaging
studies suggested that it may be useful to verbalize the exercise
planning obtained by MI and AO, introspection accompanying
actual movements, and the flow of problem-solving.
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