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Abstract

Chronic obstructive pulmonary disease (COPD) poses a significant but heterogeneous bur-

den to individuals and healthcare systems. Policymakers develop targeted policies to mini-

mize this burden but need personalized tools to evaluate novel interventions and target

them to subpopulations most likely to benefit. We developed a platform to identify subgroups

that are at increased risk of emergency department visits, hospitalizations and mortality and

to provide stratified patient input in economic evaluations of COPD interventions. We relied

on administrative and survey data from Ontario, Canada and applied a combination of

microsimulation and multi-state modeling methods. We illustrated the functionality of the

platform by quantifying outcomes across smoking status (current, former, never smokers)

and by estimating the effect of smoking cessation on resource use and survival, by compar-

ing outcomes of hypothetical cohorts of smokers who quit at diagnosis and smokers that

continued to smoke post diagnosis. The cumulative incidence of all-cause mortality was

37.9% (95% CI: 34.9, 41.4) for never smokers, 34.7% (95% CI: 32.1, 36.9) for current smok-

ers, and 46.4% (95% CI: 43.6, 49.0) for former smokers, at 14 years. Over 14 years, smok-

ers who did not quit at diagnosis had 16.3% (95% CI: 9.6, 38.4%) more COPD-related

emergency department visits than smokers who quit at diagnosis. In summary, we com-

bined methods from clinical and economic modeling to create a novel tool that policymakers

and health economists can use to inform future COPD policy decisions and quantify the

effect of modifying COPD risk factors on resource utilization and morality.
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Introduction

Chronic obstructive pulmonary disease (COPD) is the third leading cause of death worldwide

and the fifth leading cause in Canada [1, 2]. Individuals with COPD have poorer quality of life,

a higher comorbidity profile, and shorter life expectancy when compared to the general popu-

lation [3, 4]. They are more frequent users of healthcare resources, accounting for at least one-

fifth of all healthcare services used in Ontario [5]. In 2017, COPD exacerbations and acute

bronchitis remained the leading causes of illness-related hospitalization in Canada [6]. In par-

ticular, in Ontario, individuals with COPD were responsible for 24% of hospital admissions

and emergency department (ED) visits [5]. Individuals with COPD are also at a higher risk of

ED readmission within 30 days (18.8%) [5]. The expected increase in COPD prevalence will

continue to greatly impact this health service utilization in Ontario and in turn, will pose a sig-

nificant financial challenge for provincial healthcare budgets [7].

Repeated COPD exacerbations have been shown to negatively affect both survival and qual-

ity of life, while also increasing healthcare costs [8–11]. As a result, prevention of COPD exac-

erbations has been identified as a key target of a number of large-scale policy interventions,

worldwide [12–14]. Risk-factor stratification of individuals with COPD can increase efficient

application of such interventions. A number of studies have attempted to identify risk factors

of COPD exacerbations or hospitalizations and to develop prediction models to identify sub-

populations at high risk of future exacerbations using administrative data [15–17].

Given the complex comorbidity profile of individuals with COPD, survival, hospitalizations

and ED visits can vary and may be the result of either a COPD-related complication (e.g. exac-

erbations) or the result of a "competing" comorbid condition. Therefore, statistical models

need to address the presence of competing risks, the frequency of transitions between states of

care, and the recurrent event nature of the disease (e.g. multiple hospitalizations). In epidemio-

logical and statistical literature, multi-state models are proposed as an extension of competing

risk models that can address the complexities described above [18]. They can be combined

with individual-level simulation (microsimulation) analysis to quantify the absolute and rela-

tive effects of time-dependent risk factors in a representative hypothetical population [19, 20].

Limited examples of such studies exist in the epidemiologic literature [21], and the combina-

tion of multi-state modeling and microsimulations has, to our knowledge, never been applied

within a COPD context.

Policymakers commonly use economic evaluations to assess the long-term impact of imple-

menting interventions. These evaluations most frequently rely on decision models in order to

synthesize clinical and economic input from a variety of sources and to estimate the long-term

effectiveness and cost-effectiveness of interventions [22, 23]. The personalized nature of

COPD interventions poses a challenge in the development of such models, as they need to

appropriately capture the individual heterogeneity in their structure and input parameters

[24]. In addition, these models need to be validated against real-world data across different

population strata to ensure that individual heterogeneity is accurately captured. The use of the

combination of multi-state and microsimulation modeling in this study allows for subgroup-

specific risk estimates that can be directly used either as input or as validation targets in such

COPD policy models.

The aim of this study is to develop a platform that allows: 1) policymakers to identify sub-

groups of the COPD population that are at increased risk of ED visit, hospitalization and mor-

tality and 2) health economists to obtain input or validation targets for personalized decision

models in COPD. We achieved this through the estimation of a multi-state prediction model

comprising six mutually exclusive states (1) In the community, post-COPD Diagnosis, (2) In

the ED for a COPD-related reason, (3) In the ED for the non-COPD-related reason, (4) In the
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hospital for a COPD-related reason, (5) In the hospital for a non-COPD-related reason, (6)

Dead from all causes) and the development of a microsimulation which allows for policy-spe-

cific subgroup estimations over long-term horizons.

Methods

Study design and setting

This is a retrospective cohort study of individuals diagnosed with COPD between January 1,

2001 and December 31, 2014. We used linked health administrative data that were collected in

Ontario, Canada. In Ontario, healthcare resource use is routinely collected on all residents

who participate in the single-payer healthcare system. The datasets were linked using unique

encoded identifiers and analyzed at ICES in Toronto, Ontario, Canada.

Data sources

Data were extracted from 11 health administrative databases including (1) Canadian Institute

for Health Information-Discharge Abstract Database—diagnostic and discharge data, includ-

ing the reasons for admission; (2) the National Ambulatory Care Reporting System—all ED

visits in Ontario; and (3) Ontario Health Insurance Plan Claims Database—all physician

claims data (S1 Table). The administrative data above were linked to responses from the Cana-

dian Community Health Survey (CCHS), a survey that collects information on health status

and determinants of health (e.g. smoking status) and is administered to a nationally represen-

tative sample [25, 26]. CCHS is administered in waves and the 2001, 2003–2005, 2007, 2009

and 2011 waves were used in this study.

Study population and cohort

The study cohort was comprised of Ontario residents who completed at least one round of the

CCHS survey and had a COPD diagnosis between January 1, 2001 and December 31, 2014.

We identified COPD status using a previously validated case definition, specifically developed

for health administrative data [27]. This definition captured newly diagnosed individuals that

had one or more ambulatory claims and/or one or more hospitalizations for COPD and it has

demonstrated a sensitivity of 85.0% and a specificity of 78.4% [27]. The administrative nature

of the data allowed us to follow individuals with COPD throughout the entirety of their inter-

actions with the Ontario healthcare system.

COPD-related and non-COPD-related ED visits and hospitalizations were extracted from

the Institute of Clinical Evaluative Sciences data repository using International Statistical Clas-

sification of Diseases and Related Health Problems—9th and 10th revisions (ICD-9, ICD-10)

codes (S2 Table) [27]. Individuals in the cohort were followed from their date of COPD diag-

nosis onward, until death, censoring, or end of follow-up. Individuals who had missing infor-

mation for any of the covariates were excluded from the cohort. Individuals without at least

one CCHS response were also excluded, and if more than one CCHS response was present, the

most recent was used.

Ethics statement. The study protocol was approved by the research ethics board at The

Hospital for Sick Children in Toronto, Ontario. The use of data in this project was authorized

under section 45 of Ontario’s Personal Health Information Protection Act, which does not

require review by a Research Ethics Board and allows ICES to receive and use health informa-

tion without consent for purposes of analysis and compiling statistical information about the

health care system of Ontario. The data used contained no personal identifiers and have been

anonymized before being accessed by the study team.
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Outcomes

Individuals with a COPD diagnosis were assumed to occupy one of the following six mutually

exclusive states at any point in time: (1) In the community, post-COPD diagnosis; (2) COPD

and (3) Non-COPD-related ED visit; (4) COPD and (5) Non-COPD-related hospitalization;

(6) All-cause mortality (Fig 1). An event was classified as COPD-related based on ICD codes

for both primary and secondary diagnoses [28] (S2 Table). COPD-related ED visits and hospi-

talizations were used as a proxy for severe COPD exacerbations [29]. Instead of COPD and

non-COPD-related mortality, all-cause mortality was used because COPD is known to be

underreported as a cause of death [30]. We constructed 17 possible direct transitions for indi-

viduals with COPD using the six mutually exclusive and/or competing states (Fig 1).

Predictors

In order to gather relevant predictors, we conducted a thorough review of COPD literature

[31–47]. Through this review, we deemed 18 predictors to be clinically and epidemiologically

relevant to incorporate in the model of transitions between the states in our cohort (S3 Table).

These predictors fell into three main categories, clinical, behavioral, and sociodemographic,

with five of them being time-dependent (age and number of COPD-related and non-COPD-

related ED visits and hospitalizations).

Smoking status, rurality and deprivation index were treated as categorical variables; age,

ED visits, and hospitalizations were treated as continuous variables; and the remaining 10 pre-

dictors were treated as binary. Information regarding smoking history was collected from

Fig 1. Model states and transitions of individuals with COPD. Six states: (1) In the community, post-COPD Diagnosis, (2) In the ED for a COPD-related reason, (3)

In the ED for the non-COPD-related reason, (4) In the hospital for a COPD-related reason, (5) In the hospital for a non-COPD-related reason, (6) Dead from all causes.

Abbreviations: COPD, Chronic Obstructive Pulmonary Disease; ED, Emergency Department; Hosp., Hospitalization.

https://doi.org/10.1371/journal.pone.0236559.g001
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CCHS [26]. Smoking has been widely recognized as a main cause of COPD in high-income

countries, and as such, it was important information for this cohort [48, 49]. Rurality and dep-

rivation index were included to account for heterogeneity in healthcare access across the prov-

ince. Additionally, we explored two other smoking-related covariates, second-hand smoking

exposure and years smoked at diagnosis. Second-hand smoking information was limited

within our cross-sectional survey data, without any historical exposure information, therefore

it did not provide meaningful estimates. Years smoked at diagnosis was explored as an interac-

tion with smoking history, but it did not improve our model fit. Finally, given the cross-sec-

tional nature of the survey data and the temporality of smoking status, we fit a prediction

model to impute smoking cessation for individuals that took the survey prior to their COPD

diagnosis. This model was fit using individuals that had taken the survey after their COPD

diagnosis, as this allowed us to observe the temporal effects of diagnosis on smoking.

Statistical analysis

Our statistical analysis for the estimation of survival and resource use across different sub-

groups of the COPD population was comprised of two parts: 1) the estimation of multi-state

and multinomial models and 2) the development of a microsimulation model.

Estimation. We used a combination of multi-state parametric regression modeling and

multinomial logistic regression to estimate the daily transition probabilities between COPD

states [18, 50–52]. Multi-state models are statistical models, rooted in survival analysis, which

can accommodate the transition of individuals across multiple discrete states over time [18].

In the multi-state model, states are considered to be discrete, and can be either transient (e.g.

hospitalization) or absorbing (e.g. death). Such models are an extension of competing risks

methods that can also address the presence or recurrent entry to a given state e.g. multiple hos-

pitalizations [53]. Transition among states is governed by transition intensities, which are

defined as the instantaneous risk of moving from one state to another. Parametric multi-state

models allow for time-dependent and non-proportional effects [54, 55]. Including multiple

risk factors in the models allowed us to estimate their impact on each of the 17 transitions (Fig

1). The same covariates were used for each transition model. Time-dependent covariates (age,

number of previous hospitalizations and ED visits) were incorporated in the models for the

purpose of improving prediction accuracy [52]. Time-dependency is especially important for

COPD as it allows for event history to be incorporated into the model [56, 57]. Each of our

time-based transitions was modeled using six different distributions (Weibull, exponential,

log-normal, log-logistic, gamma, and generalized gamma). We used multinomial regression

with the same risk factors identified above, to estimate the probability of transition from ED to

hospital, community, or death, as we assumed that transitions would occur within the same

day of ED admission.

Model fit was assessed for all models using Akaike Information Criterion (AIC), Bayesian

Information Criteria (BIC), and through visual assessment of survival curves [54, 58]. If the

difference in AIC and BIC between distributions were negligible, we used the most parsimoni-

ous model.

Simulation and prediction. Covariate inference in such multi-state parametric models is

typically hampered by two challenges: 1) the multiple transient states and recurrent events,

and 2) the competing-risk nature of our data [59]. To address these challenges, we developed a

microsimulation that was informed by the multi-state and multinomial model parameter esti-

mates. This allowed us to quantify the absolute and relative parameter effects while also taking

competing risks and recurrent events into consideration. Specifically, we implemented a

Monte Carlo simulation approach similar to that described by Crowther and Lambert [54].
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We incorporated both individual-level and parameter-level uncertainty using a two-level

nested simulation. Below, we first describe the simulation and then apply the simulation to

two different scenarios.

First, we generated a hypothetical synthetic cohort of individuals with a COPD diagnosis

(n = 10,000) using baseline characteristics and their joint distributions from the real-world

data. We then estimated absolute and relative effect measures I) across different cohort strata

(stratified scenario) and II) in a counterfactual scenario. In the counterfactual scenario, the

independent effect of a modifiable risk factor on outcomes can be achieved by rerunning the

analysis with only the risk factor variable being modified in the original cohort, while all other

characteristics remain the same.

Five events of interest (COPD-related and non-COPD-related ED visits and hospitaliza-

tions and all-cause mortality) were estimated using survival and cumulative event counts, in

addition to length of stay (LOS). For cumulative or recurrent events, we employed an exten-

sion of the Mean Cumulative Count cohort study method by Dong et al., an extension of Nel-

son’s Mean Cumulative Function, which accounts for both the recurrent and competing risk

nature of the events [60]. This approach allowed to report easily-interpretable mean event

counts, instead of transition specific odd rations and hazard ratios. To propagate parameter-

level uncertainty, the simulation was run 200 times using randomly sampled values from the

multivariate distribution of each fitted model covariate set (S6 and S7 Tables). The outcomes

of these simulations were used to generate and plot mean values and spline-based 95% empiri-

cal confidence intervals (CI) around the means were constructed. All analyses were completed

using the statistical software R and several packages were used including “flexsurv”, “doParal-

lel”, and “foreach” [52, 61–63].

Illustration of the approach. For the purposes of showcasing the functionality from the

combined approach presented above, we investigated a stratified and a counterfactual sce-

nario. Absolute and relative effect measures were estimated across (1) strata of current smok-

ers, Former and never smokers and (2) Current smokers who continued smoking after

diagnosis (non-quitters) and a counterfactual cohort of current smokers that quit smoking at

diagnosis (quitters). Users of these models can easily estimate outcomes for any risk factors

they wish, as we provide the annotated and easily reproducible R code and the parameter val-

ues for all modes in a GitHub repository (https://github.com/lizbond/COPD-SIM).

Validation. To ensure the validity of our analysis, we compared the model generated pre-

dictions to the extracted administrative data (internal validity) as well as to a different cohort

of Canadians with COPD (external validity) [64]. Internal validation was conducted using the

outcomes of survival probability and mean cumulative event counts, while external validation

was conducted by comparing estimates of the average hospital LOS.

Results

Study cohort

Of the 811,477 Ontario residents diagnosed with COPD between 2001 and 2014, 19,372 com-

pleted at least one round of the CCHS survey. Our final analyses included 14,416 individuals

(Table 1), as 4,956 of the survey respondents were excluded due to a missing smoking-related

variable history (n = 4,433) or sociodemographic data (n = 523) (S1 Fig). The characteristics of

the study cohort and those excluded were not appreciably different (S4 Table). During the

study period, 0.6% (n = 83) of individuals were lost to follow-up and 19.5% (n = 2,804) of indi-

viduals died, leaving 79.9% (n = 11,529) of the cohort being alive at the end of follow-up. The

mean length of observation was 5.9 years. From 2001 to 2014, there were 80,799 ED visits and

24,097 hospitalizations. Finally, just over half (n = 1,463) of the deaths occurred in-hospital,
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while only 5% (n = 158) of deaths occurred in the ED. A little more than half (55.1%) of our

cohort was female, which was slightly higher than other population level studies performed in

Ontario [65]. Similarly to another COPD, population study, in a different high-income

Table 1. Baseline characteristics of the individuals diagnosed with COPD, 2001–2014, Ontario, Canada

(N = 14,416).

Characteristic No. of Participants %

Age at Diagnosis, years

Median (IQR) 64 (54–74)

Mean (SD) 63.9 (13.8)

Female 7,953 55.2

Deprivation Index

1 (most advantaged) 1,971 13.7

2 2,538 17.6

3 3,006 20.9

4 3,376 23.4

5 (least advantaged) 3,525 24.5

Rurality Index of Ontario

Urban 6,681 46.3

Suburban 5,663 39.3

Rural 2,072 14.4

Smoking Status

Current 6,331 43.9

Former 5,637 39.1

Never 2,448 17.0

Comorbid Conditions

Congestive Heart Failure 1,588 11.0

Ischemic Heart Disease 2,527 17.5

Cancer 1,964 13.6

Diabetes 2,804 19.5

Asthma 2,758 19.1

Dementia 568 3.9

Depression 681 4.7

Anxiety 2,577 17.9

Hypertension 7,583 52.6

Years of follow up

Median (IQR) 5 (2–9)

Mean (SD) 5.9 (3.9)

Status in 2014

Alive 11,529 80.0

Lost to follow-up 83 0.6

Death 2,804 19.5

No. COPD-Related ED Visits

Median (IQR) 0 (0–1)

Mean (SD) 0.7 (1.8)

No. COPD-Related Hospitalizations

Median (IQR) 0 (0–1)

Mean (SD) 0.5 (1.2)

COPD, chronic obstructive pulmonary disease; ED, emergency department

https://doi.org/10.1371/journal.pone.0236559.t001

PLOS ONE Understanding resource utilization and mortality in COPD

PLOS ONE | https://doi.org/10.1371/journal.pone.0236559 August 20, 2020 7 / 16

https://doi.org/10.1371/journal.pone.0236559.t001
https://doi.org/10.1371/journal.pone.0236559


country where 16.2% of individuals with COPD reported that they had never smoked, 17.2%

of our cohort reported that they had never smoked [66]. Among the never smokers, 25% had a

previous Asthma diagnosis (S5 Table). Interestingly, another large Canadian cohort study of

individuals with COPD, where spirometry was used to identify individuals with COPD, found

that 29% of individuals with COPD had never smoked [67]. Given differing COPD screening

and identification methods and smoking definitions, one would expect some variation

between these studies and estimates.

Multi-state model fit

Six distributional assumptions were assessed for fit and parsimony for each of the nine transi-

tions in the multi-state model. The log-logistic distribution provided the best fit for five of the

models (post-diagnosis to COPD-related ED visit, COPD-related hospitalization to post-diag-

nosis, COPD-related hospitalization to mortality, non-COPD-related hospitalization to post-

diagnosis, and non-COPD-related hospitalization to mortality). The Weibull distribution pro-

vided the best fit for transitions to non-COPD-related ED visits and hospitalizations. Finally,

the log-normal distribution provided the best fit post-diagnosis to COPD-related hospitaliza-

tion and post-diagnosis to mortality.

Scenario event prediction

Scenario 1: The probability of survival was 65.3% (95% CI: 63.1, 67.9%) for current smokers,

53.6% (95% CI: 51.0, 56.4%) for former smokers and 62.1% (95% CI: 58.6, 65.1) for never

smokers, at 14 years. This finding is likely the result of differences in comorbidity and age

among three categories (S5 Table). The Mean Cumulative Count of COPD-related ED visits

for current smokers remained higher than both former and never smokers, over the entirety of

the simulated, 14 year observation period (Fig 2). At 14 years, current smokers have experi-

enced, on average, 0.73 (95% CI: 0.64, 0.84) more COPD-related ED visits than never smokers,

while former smokers have experienced 0.39 (95% CI: 0.33, 0.43) more COPD-related ED vis-

its as never smokers.

Scenario 2: The probability of survival was 65.2% (95% CI: 62.7, 67.4) for non-quitters and

68.9% (95% CI: 66.3, 71.1) for quitters, at 14 years. Additionally, non-quitters averaged 16.4%

(95% CI: 9.6, 38.4%) more COPD-related ED visits and 20.4% (95% CI: 6.1, 34.9%) more

COPD-related hospitalizations than quitters, at 14 years.

Validation. Regarding internal validation, when stratifying both the real-world data and

synthetic data by smoking history, the results were very similar, with each of the real-world

survival probabilities falling within the 95% CI of the synthetic cohorts. For example, at 14

years, real-world, former smokers had a survival probability of 0.53, while the simulated for-

mer smokers had a survival probability of 0.54 (0.51, 0.56). Real-world, current smokers had a

survival probability of 0.68, while the simulated current smokers had a survival probability of

0.65 (0.63, 0.68). Similarly, the predicted Mean Cumulative Count of COPD-related ED visits

(0.64) was also very similar to the observed cohort (0.68). Regarding external validation, a

2010 report from the Canadian Thoracic Society noted that the average LOS for a COPD

exacerbation was 10 days [64]. Similarly, our simulation demonstrated that the average COPD

LOS, when discharged alive, was 10.17 days (95% CI: 10.15, 10.19). Computational barriers

did not allow for cross-validation.

Discussion

In this study, we developed a COPD microsimulation model that can be used to identify and

quantify actionable risk factors and resource-intensive subgroups. Furthermore, the
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simulation allowed us to investigate and quantify the independent impact that specific covari-

ates have on both resource use and survival. We quantified the impact of smoking and other

risk factors on COPD-related and non-COPD-related ED visits and hospitalizations as well as

all-cause mortality. Given the importance of reproducibility, the simulation was developed in

such a way that it can be applied and replicated by both policy makers and researchers alike.

Methodologically, the simulation model demonstrates how multi-state modeling approaches

can be applied in retrospective administrative data to identify risk factors for events of interest

in the presence of competing risks, complex pathways and recurrent events. We used a

parametric survival modeling approach that allows for extrapolation over a time horizon that

extends over the data follow up. We used a microsimulation approach to generate meaningful

estimates of covariate effects, similar to methods developed by Crowther and Lambert [54].

The results of this study can directly inform policy through identifying target actionable fac-

tors. For example, in our study, individuals who continued smoking at diagnosis averaged

40% more COPD-related ED visits, over 14 years. This finding reinforces the importance of

policies and interventions dealing with smoking cessation programs that target newly

Fig 2. COPD microsimulation results. Predictions of all-cause mortality with 95% CI (left column), MCC with 95% CI of COPD-related ED visits (middle column),

and MCC with 95% CI of COPD-related hospitalizations (right column). Current smokers vs. Former smokers vs. Never smokers (top row). Current smokers who

continued smoking at diagnosis (non-quitters) vs. Current smokers who quit at diagnosis (quitters) (bottom row). Plots (A-C), Current smokers in dark gray, Former

smokers in medium gray, and Never smokers in light gray; Plots (D-E), Current smokers [who continued smoking at diagnosis] in dark gray, Current to former

smokers [smokers who quit at diagnosis] in medium gray. Abbreviations: CI, Confidence Interval; ED, Emergency Department; MCC, Mean Cumulative Count.

https://doi.org/10.1371/journal.pone.0236559.g002
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diagnosed individuals. Additionally, the findings of this study can also indirectly affect deci-

sion making as they can serve as inputs in personalized, population-level simulation models in

COPD. For example, reference policy models for COPD have recently been developed [68–

70]. These models typically use estimates of COPD-related ED and hospitalization risk from

prospective observational studies or clinical trials, which are based on relatively strict inclusion

criteria and are at risk of protocol-driven disturbances in outcome measurement. The popula-

tion-based nature of our data can make them an alternative choice for parameterizing such

models. The multi-state and multinomial models from this analysis can directly be used as

input parameters in models or can serve as calibration targets in the validation of the platform

in an Ontario-based context. To facilitate reproducibility and reusability of this work we used

R, an open-source language, and posted the simulation code and model estimates in a public

repository on GitHub (https://github.com/lizbond/COPD-SIM). This allows other researchers

to be able to reproduce the results and be able to estimate the absolute or relative effect of dif-

ferent combinations of covariates on the outcomes.

Our study is faced with a number of limitations. Regarding the available data, the informa-

tion on some of the covariates of interest, such as smoking history, is cross-sectional. Addition-

ally, because of the nature of survey data, as responses are self-reported, it is possible that

smoking history of some individuals may have been misclassified. Due the administrative

nature of the data, potentially informative clinical covariates, such as pulmonary function or

FEV1, could not be included in the model [71]. However, history of hospitalization has been

shown to be a proxy for exacerbations, a risk factor for future hospitalizations, declining lung

function and mortality [15, 72–74]. Although we consulted experts in the field and completed

a literature review, it is possible that we have missed ICD codes that may be considered

COPD-related or relevant to a COPD-related event. Finally, while the narrow population in

which the study was conducted may limit its generalizability, the work highlights a useful

approach that is currently being tested in other populations. Future work examining how this

approach may fare in other populations and jurisdictions may be warranted.

The methodology that we relied on provides powerful solutions that can possibly extend

beyond what was utilized in this study (e.g. assuming interval censoring misclassification on

the covariates or outcome). However, an important limitation, especially in the context of

large administrative data and microsimulation, is the computational power that is required for

such solutions to be implemented. Alternative approaches to simulation modeling such as the

use of a discrete event simulation approach could possibly reduce computational needs [75].

Finally, the computational challenges in the estimation of the multi-state models reduced our

ability to investigate model performance through time-dependent receiver operating charac-

teristic curve and area under the curve or cross validation methods [76].

Despite the limitations, the models and subsequent simulation contribute to the progress of

policy-level COPD predictions. Future plans for the simulation include further testing the

validity and generalizability of our model, using external cohorts of individuals with COPD.

We also plan to apply the simulation to cost prediction in this same Ontario-based COPD pop-

ulation. We will fit statistical models to individual-level administrative cost data, pooling

together multiple sources of data from both inpatient and outpatient settings. Results from

these cost models will then be integrated with the existing microsimulation in order to draw

inference from individual-level predictors with regard to the economic burden of COPD.
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