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Abstract: Array-based comparative genomic hybridization (aCGH) allows measuring DNA copy number at the whole genome scale. In 
cancer studies, one may be interested in identifying DNA copy number aberrations (CNAs) associated with certain clinicopathological 
characteristics such as cancer metastasis. We proposed to define test regions based on copy number pattern profiles across multiple 
samples, using either smoothed log2-ratio or discrete data of copy number gain/loss calls. Association test performed on the refined test 
regions instead of the probes has improved power due to reduced number of tests. We also compared three types of measurement of 
copy number levels, normalized log2-ratio, smoothed log2-ratio, and copy number gain or loss calls in statistical hypothesis testing. The 
relative strengths and weaknesses of the proposed method were demonstrated using both simulation studies and real data analysis of a 
liver cancer study.
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Introduction
DNA copy number is the number of copies of DNA 
at a genome region. Gain and/or loss of chromosomal 
regions have been associated with various human dis-
eases including cancer.1 Therefore detecting and map-
ping DNA copy number changes provide a systematic 
approach to understand the association between DNA 
copy number abnormality and human disease. DNA 
copy number changes in tumor tissues are often 
referred to as DNA copy number aberrations (CNAs) 
which vary in size from 1  Kb up to one complete 
chromosome arm. High resolution array-based com-
parative genomic hybridization (aCGH) allows mea-
suring DNA copy number at hundreds of  thousands 
of probes or locations throughout the genome.2,3

Different methods and algorithms have been devel-
oped to divide the genome into regions with the same 
copy number level for a single sample using diver-
sity techniques such as Hidden Markov Models,4 cir-
cular binary segmentation,5,6 mixture models,7 and 
Bayesian change point analysis.8 Recently research 
has been devoted to identify recurrent CNAs that are 
shared across multiple samples. This is an important 
issue because chromosome regions where recurrent 
CNAs occur may play important roles in the devel-
opment and progression of cancer and other human 
diseases. Rouveirol et al9 computed the recurrent min-
imal genomic alterations based on discretized CGH 
profiles. Shah et al10 extended single sample HMMs 
to multiple samples to identify recurrent CNAs by 
jointly inferring CNA patterns and making gain/loss 
calls. Zhang et al11 proposed simple scan and seg-
mentation algorithms based on the sum of the chi-
square statistics for each individual sample to give 
a sparse and intuitive cross-sample summary. Multi-
ple-sample segmentation and detection of recurrent 
CNAs are still challenging research areas both com-
putationally and conceptually. For more references, 
see the review paper.12

In clinical cancer studies, clinicians and research-
ers may be interested in identifying CNAs associated 
with patients’ clinical outcomes and tumor pathologi-
cal characteristics. Unfortunately, little research has 
devoted on this type of downstream analysis, which 
has more clinical significance and is different from 
identifying recurrent CNAs as in most of the previ-
ous studies. Moreover, some studies have performed 
downstream analysis on whole chromosome level or 

chromosome arm level. Due to a lack of fine mapping 
of chromosome regions, this approach may not be effi-
cient if only some regions rather than complete arm 
of the chromosome are associated with the interested 
clinical events. On the other hand, if association test 
is performed for each probe, a large number of tests 
(hundreds of thousands up to millions) are inevitable. 
In addition, probes adjacent on chromosome are more 
likely to have the same copy number status and will 
result in highly correlated tests. Here, we proposed to 
define test regions based on DNA copy number pat-
tern profiles across multiple samples, and perform 
association tests on these test regions instead of indi-
vidual probes. Furthermore, excluding non-variant 
test regions would result in smaller number of tests 
and improved power. We also compared the use of 
normalized log-ratio, smoothed log-ratio, and discrete 
copy number gain/loss calls in downstream analysis. 
The relative strengths and weaknesses of these mea-
surements and the proposed method were evaluated 
using simulation studies and real data analysis of a 
liver cancer study.

Methods
Measurements of copy number level
Normalized log2-ratio: In an aCGH experiment, the 
test sample and the reference sample are labelled with 
different dyes and co-hybridized on a microarray, 
which contains hundreds of thousands to millions of 
probes depending on the array platform. Usually, the 
test sample is labelled with Cy5 and the reference 
sample with Cy3. Log2-ratio of background-corrected 
Cy5  signal to background-corrected Cy3  signal is 
computed for each probe on the array. The resulting 
ratio at a probe provides an estimate to the ratio of 
copy numbers of the corresponding DNA sequences 
in the test and the reference samples. In general a 
normalization step is needed to remove systematic 
array effect.

Smoothed log2-ratio: A smoothing or segment 
detection method is applied to normalized log2-ratios 
to divide the genome into regions with the same copy 
number levels. Adjacent regions have different copy 
number levels. The segmented or smoothed log2-ratio 
is assigned to be the median or average of the normal-
ized log2-ratios of the probes contained in that region.

Gain or loss calls: DNA copy number gain or loss 
calls are usually made based on the smoothed log2-ratios. 
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For the regions where no copy number changes 
occur the smoothed log2-ratios are close to 0. When 
there are copy number gains (or losses), the smoothed 
log2-ratios are significantly greater (or less) than 0. 
However there are no hard thresholds on choosing 
the significance level to make gain or loss calls. 
Users decide whether there is sufficient evidence to 
call a probe having copy number gained or lost. For 
example, Aguirre et al13 considered a segment hav-
ing gain or loss if the corresponding smoothed log2-
ratio is more than four standard deviations away 
from the middle 50% quantile of data; Willenbrock 
and Fridlyand14 defined the threshold using three 
times median absolute deviation (MAD) of differ-
ence between observed and smoothed log2-ratios.

Defining test regions
When smoothed log2-ratios or gain/loss calls are used, 
we define “test regions” on which downstream anal-
ysis will be performed. Figure  1  shows DNA copy 
number profiles for three subjects on 90 contiguous 
probes. Each dot represents the normalized log2-
ratio at a probe. The solid (red) lines represent the 

smoothed mean log2-ratios. There are three, two and 
two segments for subject 1, 2 and 3, respectively, in 
this genomic region. When the test regions are defined 
based on the smoothed log2-ratios, there are three test 
regions consisting of probes 1–30, 31–60, and 61–90, 
respectively. When gain/loss calls are used, test regions 
depend on what criterion is used. Suppose we con-
sider copy number changed when the absolute value 
of smoothed log2-ratio is greater than 0.50, then there 
is no copy number change for probes 1 to 60, and there 
is copy number gain for probes 61–90, for subject 1. 
Thus there are two test regions consisting of probes 
1–60, and 61–90, respectively. The set of probes in a 
test region remains constant within a sample and shares 
the same profile across samples, therefore the associa-
tion tests for these probes will be exactly the same.

We formally define a test region as a set of contigu-
ous probes on the same chromosome in the following. 
Let sij represents the smoothed log2-ratio of DNA copy 
number for sample i (i = 1, …, n) at probe j (j = 1, …, G). 
Then a test region t of size |tj| is defined by
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where |tj| is the number of probes covered by this 
region. In addition we also require that DNA copy 
number profiles in any two neighboring test regions 
are different from each other. In this sense we are 
defining the maximum common region of the probes. 
It is possible that two or more non-adjacent test 
regions have the same copy number profile. When 
the gain/loss calls, zij, are used, the test regions can 
be defined in the same way as in (1) by replacing sij 
with zij. In general, the number of test regions using 
smoothed log2-ratios is bigger than that using gain/
loss calls, because different values of smoothed 
log2-ratios above a threshold could be called as gain 
simultaneously.

Identifying non-variable test regions
The purpose of hypothesis testing discussed in this 
paper is to identify genome regions which are associ-
ated with certain clinicopathological characteristics; 
therefore non-variable test regions will be excluded 
from further analysis. For example, the test region 
containing probes 61–90 (Fig. 1) are recurrent CNAs 
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Figure 1. An example of DNA copy number profiles for three subjects 
on 90 consecutive probes. The gray dots are the raw log2-ratios of copy 
number measurements, the red straight lines represent the smoothed 
log2-ratios for the identified segments, and the vertical dashed black lines 
represent the test regions based on the smoothed log2-ratios.
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which are an important characteristic for identifying 
disease-related biomarkers. With all subjects having 
the same copy number status, it indicates that this 
region is not associated with the interested clinical 
event and it will not be tested. Similarly the first 
test region (Fig. 1) where probes 1–30 have no copy 
number changes, is not of interest either and excluded 
from further analysis. When gain/loss calls are used to 
identify CNAs with clinical significance, usually only 
probes with CNA frequency greater than a threshold 
(such as .10% as used in)15 are included in the analy-
sis for clinical application value.

When smoothed log2-ratios are used in the anal-
ysis, it is not obvious to identify non-variable test 
regions as using discrete gain/loss calls. When each 
biological sample has technical replicates, one can 
separate the variation between the samples from the 
measurement errors which will help us evaluate the 
variation of the probes across samples. When there is 
no technical replicate, one can compute the variation 
or standard deviation of the log2-ratios across samples 
by employing similar strategy as in microarray stud-
ies. If the variation is small, it is more likely that the 
corresponding region is a non-variable test region.

Performing association tests
After defining test regions and excluding non-variable 
ones, association tests are performed. In this paper, as 
an example, survival analysis using Cox proportional 
hazards model16 for smoothed log2-ratios or log-rank 
test17 for gain/loss calls was applied to identify CNAs 
associated with cancer metastasis. Let yi = min(Ti, Ci) 
be the observed time, where Ti is the event time and 
Ci is the censoring time for the ith subject; let Sir be 
the copy number measurement for the ith subject at 
region r. The hazard function h(t) is defined as

	
h t

t T t t T t

tt( ) lim
Pr( | )

,= < ≤ + ∆ ≥
∆∆ →0

and it has the following proportional hazards structure

	 hi(t) = h0(t)exp(βr ⋅ Sir),	 (2)

where h0(t) is the baseline hazard function and βr is 
the log relative hazard for the rth test region, and 
i is the subscript for the ith subject. As some clinical 
variables such as tumor size and clinical stage might 

be associated with the interested event, the association 
between CNA and event time can be evaluated after 
adjusting these covariates by extending Equation (2) to

hi(t) = h0(t)exp(βr ⋅Sir + β1 ⋅xi1 
	 + β2 ⋅ xi2 + … + βk ⋅ xik),� (3)

where xij’s are the covariates. When the number of 
covariates k is bigger comparing with the number 
of subjects, high-dimensional variable selection and 
regularization techniques such as Lasso18 and SCAD,19 
have to be employed. Alternative approach would be 
performing variable selection on the clinical variables 
first and identifying a few important variables to be 
included in Equation (3) such that k will be small and 
the conventional estimation of the parameters for Cox 
model can be used.

For each test region, the P-value for testing whether 
βr is 0 in Equation (2) or (3) is computed. The adaptive 
false discovery rate (FDR) controlling procedure20,21 
is applied to the P-values to identify clinical event-
associated genome regions. Here the proportion of 
test regions which are not associated with clinical 
event is estimated by the bootstrap method22,23 and 
used in the adaptive FDR controlling procedure.

Liver cancer data
The proposed methods will be applied to a liver 
cancer data set. Sixty-three newly diagnosed HCC 
patients who underwent radically surgical therapy at 
Eastern Hepatobiliary Surgery Hospital, Shanghai, 
China, from December 2007 to March 2008 were 
recruited. All patients were ethnic Han Chinese, and 
none had received radiation therapy or chemotherapy 
before surgery. A total of 63 tumor tissue samples and 
11 matched surrounding non-tumor liver tissue sam-
ples were frozen in liquid nitrogen within 1 h after 
surgical removal and kept at −80 °C until DNA extrac-
tion. Final diagnoses were pathologically confirmed by 
pathologists from H&E-stained slides. Demographic 
data were obtained through in-person interviews at the 
first hospital admission. Information on tumor charac-
teristics, such as tumor differentiation, envelope status, 
thrombus status and tumor stage, was made on the basis 
of pathological and medical reports. The 63 patients 
have been followed for 2.5 years on average after 
the surgery and the clinical events including distant 
metastasis were recorded. In total, 8 (12.7%) subjects 
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developed distant metastasis during the follow-up, 
among which 7 subjects developed lung metastasis and 
1 developed bone metastasis. Diagnosis and presence 
of distant metastases were based on: (1) positive find-
ings on cytological or pathological examination, and/or 
(2) positive images on ultrasonography, CT, PET-CT, 
MRI and/or ECT bone scan. The study protocol was 
approved by the Institutional Review Board of the par-
ticipant hospital, and written informed consent for this 
study was obtained from all patients.

Each of these 74 samples was labelled with Cy5 
and was co-hybridized with pooled normal controls 
onto an Agilent Human Genome CGH Microarray 
Kit 244A, and the copy number levels for each of 
the 244K probes on the array were measured. Using 
the raw aCGH data, we first computed the log2-ratio 
of background-corrected Cy5 signal to background-
corrected Cy3 signal for each probe on each of the 74 
arrays. A simple median normalization approach was 
used to adjust the log2-ratios such that their median 
was 0 for each array. The CBS algorithm was applied 
to each sample separately to identify segments having 
different copy number levels. The default values of the 
parameters in the DNAcopy package were used. The 
outputs are the starting and ending positions, and 
the smoothed log2-ratios for each identified segment. 
The copy number levels are expected to be normal for 
non-tumor samples. Therefore the gain/loss calls (zij) 
for the tumor samples were determined using three 
standard deviations of the normalized log2-ratios of 
non-tumor samples as in the following:
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where sij is the smoothed log2-ratio for sample 
i at probe j, and σ  =  0.167 is the average standard 
deviation of the 11 non-tumor samples. That is, copy 
number gain is called when the smoothed log2-ratio is 
greater than 0.5, and copy number loss is called when 
the smoothed log2-ratio is less than −0.5.

Results
We applied the proposed method on both simulated 
data and a liver cancer data set. We realize that the 
accuracy of defined test regions depend on which 

segmentation algorithm is used to locate DNA copy 
number changes. However the sensitivity and the 
specificity of different algorithms are not the focus 
of this paper. Here, the R package DNAcopy which 
implements the non-parametric CBS algorithm5,6 was 
used for segmentation as it has been shown to have 
good operational characteristics.14,24

Simulation study
We performed simulation study on 90 consecutive 
probes. The copy number status for probes 1 to 30 
and 61 to 90 are normal for all 63 subjects. For probes 
31 to 60, on average 50% of the 63 samples have copy 
number aberrations. Suppose the clinical event of 
interest is cancer metastasis. When a probe or region 
is associated with the clinical event, subjects have 
different chance to get metastasis depending on their 
copy number status. To be specific, the probability of 
having cancer metastasis is 2/3 for subjects who have 
CNAs, and 1/3 for subjects who have normal copy 
number status. The raw log2-ratios were generated 
from N(µ,σ2), where µ = 0 for normal copy number 
status, µ = log2(3/2) = 0.585 for CNAs, and σ = 0.167 
was estimated from the liver cancer study discussed 
below. Segmentation was performed on these 63 
profiles and a copy number gain was called when 
the smoothed log2-raio is greater than 0.5. Logistic 
regression was applied to each probe when the raw 
log2-ratios were used and to each region when the 
smoothed log2-ratios were used. For the gain/loss 
calls, Fisher’s chi-square test was applied at each 
smoothed region. The false discovery rate (FDR) con-
trolling procedure developed by20 was used to control 
the proportion of falsely rejected probes or regions.

Figure 2 shows the mean sensitivity over 1000 sim-
ulated datasets for different thresholds of FDR, where 
sensitivity was computed as the proportion of cor-
rectly rejected probes among the total number of truly 
metastasis-associated probes. It is evident that both 
analysis, smoothed log2-ratio and discretized gain/
loss calls, performed on segmented regions resulted 
in greatly improved power and sensitivity comparing 
with the analysis using log2-ratios on the probe level, 
while smoothed log2-ratio yielded the highest sensi-
tivity. Figure 3 shows the average power over 1000 
simulated datasets for each of the 90 probes at FDR 
significance level 0.05. It can be seen that region-
based testing methods yielded improved power than 
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probe-based tests for every probe, although the power 
reduced for probes close to the breakpoints of the 
regions due to the variation of the segmentation meth-
ods. Table 1  shows the average power comparisons 
using smoothed log-ratio, gain/loss call, and raw log-
ratio for probes 31 to 60 which are truly associated 
with the event, at FDR level 0.05 for sample sizes 63 

and 100 respectively. It is clear that when the sample 
size increases, the statistical power increases no mat-
ter what measurement is used (smoothed log-ratio, 
gain/loss call, or raw log-ratio), and the performance 
of the gain/loss calls gets closer to that for smoothed 
log-ratios. However the underlying assumption for 
gain/loss calls being more powerful than the raw log-
ratios is that the gain/loss calls are made correctly. 
Otherwise, using gain/loss calls may lose power or 
even lead to the wrong conclusions.

Results for liver cancer data
Using normalized log2-ratios
In this paper, we focus on identifying CNAs which 
are associated with distant metastasis using three 
different types of measurements of copy number 
levels. We first performed the analysis using normal-
ized log2-ratios. P-values were computed using Cox 
proportional hazard model for each of the 226,000 
probes (probes mapped to the sex chromosomes were 
excluded) for the purpose of identifying CNAs asso-
ciated with cancer metastasis. For the multiple cor-
rections, the R package q value22 was used to compute 
the q-values, and the bootstrap method was used to 
estimate the proportion of true null hypotheses. The 
smallest q-value is about 0.269, indicating none of 
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the 226,000 probes is statistically significant if the 
false discovery rate (FDR) level chosen is less than 
0.26. As we mentioned earlier, adjacent probes result 
in correlated tests. The FDR controlling procedure 
employed here did not take into account the correla-
tion, which may lead to conservative results.

When the FDR level was increased to 0.30, there 
were 2441 statistically significant probes. CNAs usu-
ally occur on a relatively large genome region, one or 
two probes alone being statistically significant do not 
give reliable results for CNAs. Number of statistically 
significant probes was reduced from 2441 to 695 by 
restricting our examination to genome regions with at 
least three consecutive statistically significant probes.

Using smoothed log2-ratios
The total 226,000 probes were divided into 13,566 test 
regions after dropping the segments on sex chromo-
somes. Excluding the test regions which contain one or 
two probes only, we performed analysis on the remaining 

10,258 test regions. At FDR level 0.10, we identified 
119 statistically significant test regions covering a total 
of 2593 probes. The number of probes covered by each 
of the 119 test regions varies from 3 to 114.

Using gain and loss calls
We performed log-rank test using gain/loss calls to 
identify chromosome regions on which patients with 
different copy number status have different survival 
curves of metastasis. Non-variable test regions where 
the copy number levels are normal for all 63 patients 
were excluded from further analysis. We also excluded 
the test regions containing one or two probes only. 

Table 1. Average power at each probe for the three measurements (smoothed log-ratio, gain/loss call, and raw log-ratio) at 
FDR significance level 0.05 based on 1000 simulations using 63 subjects and 100 subjects, respectively.

Position 31 32 45 58 59 60
n = 100 Smoothed log-ratio 0.779 0.795 0.796 0.796 0.796 0.778

Gain/Loss call 0.730 0.746 0.745 0.745 0.743 0.720
n = 63 Raw log-ratio 0.581 0.566 0.594 0.589 0.57 0.566

Smoothed log-ratio 0.521 0.542 0.543 0.542 0.54 0.515
Gain/Loss call 0.438 0.457 0.460 0.460 0.459 0.436
Raw log-ratio 0.286 0.29 0.299 0.292 0.294 0.295

Smoothed log2-ratio
(2593) 

Gain/Loss calls
(1163) 

Normalized log2-ratio 
(659) 

1207
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337
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Figure 4. Numbers of statistically significant probes for the liver cancer 
study. The three types of DNA copy number measurements: smoothed 
log2-ratio, gain/loss call, and raw log2-ratio, are compared in terms of 
identification of statistically significant probes.

Table 2. Clinicopathological characteristics and their asso-
ciation with metastasis.

Clinical variables Number of patients P-value2

Age 0.096
  50 31
  .50 32
Sex 0.045
  Female 17
  Male 46
Liver cirrhosis 0.207
  No 25
 Y es 38
Tumor differentiation1 0.157
  II 13
  III 50
Complete envelope 0.866
  No 41
 Y es 22
Cancer thrombus 0.474
  Negative 32
  Positive 31
Tumor stage 0.008
  I 26
  II 13
  III or IV 24

Notes: 1According to the Edmondson-Steiner grading system; 2Cox 
proportional hazard regression model, adjusted for each other.
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Finally, from the clinical standpoint, a log-rank test is 
performed on a test region if and only if there are at 
least 6 subjects (6/63 ≈ 10%) in at least two of the three 
copy number status (gain, normal, and loss). If the fre-
quency of CNA is less than 10% for a copy number sta-
tus at a test region, patients having the corresponding 
status will be excluded from the log-rank test on that 
region. This is very important as extreme values may 
have a huge effect on the log-rank test. It is important 
to note that different patients may be excluded at dif-
ferent test regions. To summarize, there were 4190 test 
regions and the log-rank tests were performed on 1409 
of them, total of 10 statistically significant test regions 
covering 1163 probes were yielded at FDR level 0.10.

Comparisons of methods
Since using normalized log2-ratio does not yield any 
statistically significant regions with FDR level below 
0.269, we compared results using normalized log2-
ratio at FDR level 0.30 with those for smoothed log2-
ratio and gain/loss calls at FDR level 0.10 (Fig. 4). 
For the purpose of comparisons numbers of probes 
covered by statistically significant test regions were 
listed. The three types of measurements of copy num-
ber levels gave overlapping results, and analysis using 
the smoothed log2-ratio yielded the largest number of 
statistically significant results. The identified metasta-
sis-associated CNAs in common by all three methods 
are on the short arm of chromosome 12. In addition 
smoothed log2-ratios identified regions on chromo-
some 2. Statistically significant results detected by 
normalized log2-ratio or gain/loss calls alone consist 
of a relatively small proportion of probes.

Detection of significant CNAs in association 
with metastasis
The association between clinicopathological variables 
and metastasis in 63 patients with HCC is summarized 

in Table  2. Among the 7 variables evaluated, only 
tumor stage (P  =  0.008) and sex (P  =  0.045) are 
statistically associated with metastasis. The CNAs 
associated with metastasis are evaluated using Cox 
proportional hazards model after adjusting for 
tumor stage and sex. As shown in Table 3, patients 
with loss on chromosome region 3p14.2, 5q13.2, 
7p15.2, and 12p13.31-11.22 have a 8.94-fold (95% 
CI = 1.73–46.15), 5.24-fold (95% CI = 1.18–23.24), 
14.64-fold (95% CI  =  1.52–141.21), and 9.19-fold 
(95% CI  =  1.41–60.08) increased hazard ratios of 
developing metastasis when compared with patients 
without the loss, respectively.

Discussions and Conclusions
Chromosomal aberrations such as gains, losses, struc-
tural rearrangements and other genetic mutations are 
hallmarks of human cancers.3,25 Among them, genomic 
CNA has been regarded as an essential component in 
multiple types of cancers including HCC.26 CNAs may 
contribute to the development and progression of vari-
ous cancers by inducing gene expression alterations 
with or without other genetic mutations.25 Identifying 
genomic CNAs in association with clinicopathologi-
cal characteristics may provide some insights into the 
initiation and progression of cancer, and improve the 
diagnosis, prognosis, and treatment strategies.

In this paper we discussed the statistical framework 
for downstream analysis in copy number studies, using 
identification of CNAs associated with cancer metas-
tasis as an example. When downstream analysis is 
performed at probe level and the correlation structure 
among adjacent probes is ignored, the power for detect-
ing clinical event-associated CNAs is reduced. Here, 
we defined test regions based on DNA copy number 
patterns across samples, using either smoothed log2-
ratios or discrete data of gain/loss calls. Segmentation 
could be done for each sample separately, or for all 

Table 3. The copy number aberrations (CNAs) in association with metastasis.

Cytoband1 CNA type Map position 
(start–end)1

Size (bp) HR (95% CI)2 P-value2

3p14.2 Loss 60996566–61019967 23 402 8.94 (1.73–46.15) 0.009
5q13.2 Loss 70622715–50716337 93 623 5.24 (1.18–23.24) 0.029
7p15.2 Loss 26136974–46162024 25 051 14.64 (1.52–141.21) 0.020
12p13.31-11.22 Loss 9626736–69596274 19 969 539 9.19 (1.41–60.08) 0.021

Notes: 1Cytoband and map position are based on the public UCSC database [Human Genome Browser, May 2004 Assembly (hg 17)]; 2Cox proportional 
hazard model with the adjustment for sex and tumor stage.

http://www.la-press.com


Statistical analysis for aCGH-based copy number aberrations

Cancer Informatics 2011:10	 257

samples simultaneously. Downstream analysis such 
as survival analysis is performed on these test regions 
instead of individual probes yielding improved power 
due to reduced number of tests. The advantages of 
using test regions instead of probes are at least twofold. 
One is that the number of tests performed is reduced 
from hundreds of thousands of probes to thousands of 
test regions. The other is that the adjacent test regions 
are not correlated with each other, and the false dis-
cover rate controlling procedures can be applied with-
out losing power.

We further compared the effects of using different 
types of copy number measurements on downstream 
analysis. The raw log-ratios are usually very noisy 
even after normalization. The large number of probes 
makes it more difficult to detect statistically significant 
CNAs with limited number of subjects. New mul-
tiple testing methods which can take into account 
the correlations among the neighbouring probes are 
needed. Gain/loss calls are convenient for medi-
cal practitioners to explain the clinical significance. 
Survival curves for different copy number status 
(gain, loss or normal) can be visually presented. How-
ever the results are heavily relied on which threshold 
is used to call a test region having copy number gain 
or loss. In our analysis, we used the copy number 
measurements from non-tumor (control) samples as 
the reference. In many experiments, the control sam-
ples are not included in the experiment. In addition, 
summarizing log2-ratios into gain/loss calls may lose 
information present in the original measurements.27 
When inappropriate criterion is used, it may lead to 
unreliable categorization of true copy number level; 
hence the threshold used for making gain/loss calls 
has a deterministic effect on downstream analysis. For 
a potential improvement, the uncertainty of gain/loss 
calls should be incorporated into downstream analy-
sis, which would be a topic for future research. From 
the simulation study and real data analysis, smoothed 
log2-ratio has the largest power in detecting genome 
regions with CNAs associated with clinical outcomes 
due to the reduced number of test regions from the 
huge number of probes, and the accurate and reliable 
measurement of copy number levels by borrowing 
strength from neighbouring probes. 

Array-based CGH analyses of HCC have identi-
fied a number of recurrent chromosomal CNAs and 
some of these have been associated with tumor stage, 

differentiation, and survival.26,28,29 However, no study 
has focused on the identification of the CNAs which 
play a key role in the determination of distant metas-
tasis of HCC patients. We reported here for the first 
time that chromosome region loss on 3p14.2, 5q13.2, 
7p15.2, and 12p13.31-11.22 are associated with dis-
tant metastasis of HCC. It has been reported 12p loss 
was frequently found in high-grade tumors and recur-
rent tumors in uterine leiomyosarcomas.30 Further-
more, loss on 12p13.31 has been reported to be one 
of the most powerful independent markers for poor 
outcome in multiple myeloma.31 Taken together, these 
results indicated that 12p loss is associated with the 
progression of malignant tumors, in support of the 
present observation of 12p13.31-11.22 loss in associ-
ation with distant metastasis in HCC. In the 19.97 Mb 
window within 12p13.31-11.22, there locates many 
cancer-related genes including CDKN1B which may 
contribute to metastasis by copy number-induced 
down-regulation in gene expression level.32 Other 
metastasis-associated region (3p14.2, 5q13.2, and 
7p15.2.22) identified in the present study are relatively 
short, and contains no known gene. It should be noted 
that the high-resolution 244K aCGH platform used 
in the present study is different from low-resolution 
platforms, which are frequently used in clinical stud-
ies, in respect to sensitivity and specificity, and thus 
the extent to which our results apply to low-resolution 
platform detection remains to be determined.

 In this paper, we have presented a simple but effi-
cient dimension reduction method to identify genome 
regions with CNAs associated with clinical outcomes. 
We recommend the use of smoothed log2-ratio for 
downstream association test because it demonstrated 
the best statistical power. Even though the proposed 
method is demonstrated using aCGH data, the concept 
of test region can be applied to cancer-related CNAs 
studies using SNP arrays or sequencing technologies. 
This method has the potential to be applied for clini-
cal screening of CNAs, thus help develop more accu-
rate strategies in diagnosis, prognosis and therapy.
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