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Summary

Petroleum-based plastics have replaced many natu-
ral materials in their former applications. With their
excellent properties, they have found widespread
uses in almost every area of human life. However,
the high recalcitrance of many synthetic plastics
results in their long persistence in the environment,
and the growing amount of plastic waste ending up
in landfills and in the oceans has become a global
concern. In recent years, a number of microbial
enzymes capable of modifying or degrading recalci-
trant synthetic polymers have been identified. They
are emerging as candidates for the development of
biocatalytic plastic recycling processes, by which
valuable raw materials can be recovered in an envi-
ronmentally sustainable way. This review is focused
on microbial biocatalysts involved in the degradation
of the synthetic plastics polyethylene, polystyrene,
polyurethane and polyethylene terephthalate (PET).
Recent progress in the application of polyester
hydrolases for the recovery of PET building blocks
and challenges for the application of these enzymes
in alternative plastic waste recycling processes will
be discussed.

Introduction

Plastics can be easily moulded into different shapes and
forms (Andrady, 2015b,d). Due to their low weight, dura-
bility and low production cost, they can be readily

manufactured to an expanding range of products used
for a variety of civil and industrial applications (Andrady
and Neal, 2009; Thompson et al., 2009; Andrady,
2015d). In many areas, they have substituted natural
materials as well as paper and glass in most of their for-
mer uses (Andrady and Neal, 2009). As a result, plastics
have become omnipresent in our daily life. Over the last
50 years, the global production of plastics has continu-
ously increased and reached 322 million tons in 2015
(PlasticsEurope, 2016). In Europe, packaging (39.9%),
building and construction (19.7%) and automotive (8.9%)
are the leading application sectors for the plastic industry
(PlasticsEurope, 2016). The majority of plastics are
made from fossil-based feedstocks (Hopewell et al.,
2009; Andrady, 2015d). Polyethylene (PE), polypropy-
lene (PP), polystyrene (PS), polyvinyl chloride (PVC),
polyethylene terephthalate (PET) and polyurethane
(PUR) are the main types of plastics, which correspond
to over 80% of the total demand in Europe (Plas-
ticsEurope, 2016; Fig. 1). It has been estimated that
nearly 8% of the total global fossil fuel production is uti-
lized as raw materials or to provide energy for the manu-
facturing of plastics (Hopewell et al., 2009; Andrady,
2015d).
As a result of the widespread use and consumption of

plastic products, up to 25.8 million tons of post-consu-
mer plastic wastes is annually generated in Europe
alone (PlasticsEurope, 2016). Packaging materials or
other short-lived disposable plastic items that are dis-
carded within a year of manufacturing make up nearly
60% of the total plastic waste in Europe (WRAP, 2016).
In 2014, 69% of post-consumer plastic waste in Europe
was recovered by recycling and energy generation pro-
cesses, whereas 31% still ended up in landfills (Plas-
ticsEurope, 2016).
Most of the petroleum-based plastics have been con-

sidered as notably resistant to microbial degradation
(Andrady, 1994; Zheng et al., 2005; Mueller, 2006;
Tokiwa et al., 2009). The majority of plastics manufac-
tured today are therefore estimated to persist in the envi-
ronment for a very long time (Hopewell et al., 2009;
Andrady, 2015a). In addition, the careless disposal of
plastics waste, especially in developing countries, is
aggravating the associated environmental problems
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(Andrady, 1994, 2015a; Rigamonti et al., 2014; Jam-
beck et al., 2015). The degradation process of plastic
waste causing serious environmental damages can be
expected to be considerably different in landfills, terres-
trial and marine environments (Kyrikou and Briassoulis,
2007; Andrady, 2015a; Gewert et al., 2015). It has
been shown that hazardous chemicals released from
plastic waste in landfills can contaminate the groundwa-
ter (North and Halden, 2013). An increasing amount of
plastic waste is also entering marine environments. A
calculated up to 12 million tons of plastics produced by
coastal countries worldwide has entered the oceans in
2010 and this amount is expected to grow steadily
(Jambeck et al., 2015). Plastic pollution has deadly
effects on marine mammals from ingestion or getting
entangled in plastic debris (Derraik, 2002; Andrady,
2015e; Wilcox et al., 2015; Nelms et al., 2016).
Microplastics, partially degraded plastic debris of less
than 5 mm in diameter, have been shown to pose an
even more serious impact on marine ecosystems by
concentrating persistent organic pollutants. These are
often hydrophobic compounds with a high affinity to
microplastics, thereby entering the food chains when
microplastics are ingested by marine wildlife (Andrady,
2011, 2015e; Van Cauwenberghe et al., 2013; Law and
Thompson, 2014).
The development of biodegradable plastics is provid-

ing a promising alternative to their counterparts made
from petrochemicals (Andrady, 2015d; Iwata, 2015). Due
to their lower durability and lack of compatibility with
existing equipment and end-of-life management systems,
the scale of production and use of biodegradable plas-
tics are, however, still very limited (Gourmelon, 2015). In
addition, not all of the so-called bioplastics derived from
renewable resources are readily biodegradable (Tokiwa

et al., 2009; Soroudi and Jakubowicz, 2013; Yates and
Barlow, 2013; Andrady, 2015d; Prieto, 2016). They may
also persist in the environment for a considerable long
time depending on local abiotic factors that facilitate their
breakdown and subsequent biodegradation (Swift, 2015;
Hopewell et al., 2009; Andrady, 2015a). The enzymatic
degradation of biodegradable plastics has been reviewed
elsewhere (Tokiwa et al., 2009; Bhardwaj et al., 2013;
Banerjee et al., 2014).
The biodegradation of recalcitrant plastics has become

a focus of research (for recent reviews, see Eubeler
et al., 2010; Gu, 2003; Krueger et al., 2015; Lucas et al.,
2008; Shah et al., 2008b; Sivan, 2011; Zheng et al.,
2005). The complex process of their biodegradation in
the environment has been considered as the result of a
combination of many abiotic and biotic factors (Mueller,
2006; Lucas et al., 2008; Sivan, 2011). As schematically
shown in Fig. 2, following a deterioration cooperatively
accomplished by abiotic factors and microorganisms, the
bulk polymer becomes fragmented with more exposed
surfaces available for biological attack. Inducible extra-
cellular enzymes play a crucial role in the further depoly-
merization process of the synthetic polymers (Lucas
et al., 2008; Sivan, 2011; Bhardwaj et al., 2013). Plant
polymers are the natural substrates for key enzymes
capable of attacking the polymer backbones of synthetic
plastics. For example, cutinases can hydrolyse cutin, an
aliphatic polyester found in the plant cuticle (Kolattukudy,
1981; Heredia, 2003). These enzymes are also able to
hydrolyse the ester bonds in PET and PUR (Chen et al.,
2013; Wei et al., 2014c; Schmidt et al., 2017). Several
enzymes involved in the metabolism of plant lignin are
also involved in the degradation of the thermoplastic
polyolefin PE (Sivan, 2011; Restrepo-Fl�orez et al.,
2014).

Fig. 1. Backbone structural formula of widely used petroleum-based plastics (PlasticsEurope, 2016).
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Once the molecular size of the synthetic polymers has
been reduced to a range of 10–50 carbon atoms, the
degradation products can be taken up into the cell for
further metabolization (Lucas et al., 2008; Restrepo-
Fl�orez et al., 2014). The intracellular enzymatic pro-
cesses involved are beyond the scope of this review.
We will briefly summarize recent advances in the

enzymatic degradation of the widely used recalcitrant
petroleum-based plastics PE, PS, PUR and PET and
discuss the challenges for the development of efficient
plastic-degrading enzymes and their potential use in
alternative recycling processes.

Physiochemical properties of synthetic plastics as
obstacles for their enzymatic degradation

Synthetic plastics show a high resistance to many physi-
cal, chemical and biological factors (Andrady and Neal,
2009; Thompson et al., 2009). However, this durability
also results in their extremely slow degradation in the
environment. The hydrophobicity, degree of crystallinity,
surface topography and molecular size of the synthetic
polymers are important factors restricting their
biodegradability (Tokiwa et al., 2009; Webb et al., 2013;
Restrepo-Fl�orez et al., 2014). Polymers with hydrolysa-
ble chemical bonds in their backbone such as PET
(Webb et al., 2013) and PUR (Cregut et al., 2013) are
more susceptible to biodegradation than PE, PS, PP
and PVC (Zheng et al., 2005; Tokiwa et al., 2009; Krue-
ger et al., 2015; Fig. 1). Their highly stable carbon-
carbon (C-C) bonds have to be oxidized first prior to
their further depolymerization (Zheng et al., 2005;
Restrepo-Fl�orez et al., 2014). Abiotic factors such as UV
irradiation, oxygen, temperature, as well as the presence
of chemical oxidants, therefore play a crucial role in the

degradation of PE and PP in the environment (Bon-
homme et al., 2003; Jakubowicz, 2003; Hakkarainen
and Albertsson, 2004; Koutny et al., 2006a,b; Arkatkar
et al., 2010; Fig. 3).
The high molecular weight of synthetic polymers with

hydrophobic repeating units determines their insolubility
in water prohibiting a rapid assimilation by microorgan-
isms (Zheng et al., 2005; Arutchelvi et al., 2008;
Restrepo-Fl�orez et al., 2014; Krueger et al., 2015). Their
degradation by enzymes can be considered as a surface
erosion process that is strictly depending on the surface
properties of the polymers (Mueller, 2006; Lucas et al.,
2008; Restrepo-Fl�orez et al., 2014). A high degree of
hydrophobicity, a low specific surface area and a smooth
surface topography restrict the formation of a biofilm by
polymer-degrading microorganisms (Lucas et al., 2008;
Loredo-Trevino et al., 2012; Cregut et al., 2013;
Restrepo-Fl�orez et al., 2014; Wei et al., 2014a). The
hydrophobic polymer surface has also been shown to
prohibit an effective adsorption and catalytic perfor-
mance of polymer-degrading enzymes (Espino-Rammer
et al., 2013; Ribitsch et al., 2015, 2013; Sammond
et al., 2014). The microbial degradation is furthermore
restricted by the low surface-to-volume ratio of the plas-
tic debris. A micronization of different PET materials to
obtain particle sizes between 0.25 and 0.5 mm was
shown to markedly improve their subsequent degrada-
tion by a bacterial polyester hydrolase by increasing the
accessible surface area for the enzyme (Gamerith et al.,
2017). A pretreatment of plastic waste may therefore be
a prerequisite in biocatalytic recycling, thereby resulting
in further process costs.
Most petroleum-based plastics are semi-crystalline

polymers containing both crystalline and amorphous
regions, the latter being more susceptible to microbial

Fig. 2. Schematic illustration of plastic biodegradation (Lucas et al., 2008).
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attacks (Sarkar et al., 2006; Tokiwa et al., 2009; Loredo-
Trevino et al., 2012; Webb et al., 2013; Restrepo-Fl�orez
et al., 2014; Fig. 4). The degree of crystallinity of the
polymers has therefore a strong influence on their
biodegradability (Urgun-Demirtas et al., 2007; Brueckner
et al., 2008; Jenkins and Harrison, 2008; Eberl et al.,
2009; Ronkvist et al., 2009; Horn et al., 2012; Webb
et al., 2013; Restrepo-Fl�orez et al., 2014; Wei et al.,
2014a). However, the crystalline parts of synthetic plas-
tics can also be degraded enzymatically. For example,
the crystalline fraction of a thermally pretreated PE sam-
ple was also degraded following the complete consump-
tion of the amorphous parts (Manzur et al., 1997;
Restrepo-Fl�orez et al., 2014). The complete decomposi-
tion of low crystalline PET films by a fungal polyester
hydrolase has been shown to occur at an almost linear
rate, indicating that the crystalline parts were also
attacked by the enzyme (Ronkvist et al., 2009).

Enzymatic degradation of plastics with carbon-
carbon backbones

Biodegradation of PE, PP, PS and PVC is hampered by
the lack of hydrolysable functional groups in their back-
bones (Tokiwa et al., 2009; Restrepo-Fl�orez et al., 2014;
Krueger et al., 2015). The initial breakdown of the poly-
mers in the environment and the observed reduction in
their molecular weight have been mainly attributed to a
synergistic action of biotic and abiotic factors (Bon-
homme et al., 2003; Hakkarainen and Albertsson, 2004;
Eubeler et al., 2010; Restrepo-Fl�orez et al., 2014). The
carbonyl groups formed as a result of UV irradiation or
oxidizing agents have been considered as more

accessible for a subsequent microbial attack (Albertsson
et al., 1987; Karlsson et al., 1988; Albertsson and Karls-
son, 1990; Koutny et al., 2006a,b; Fontanella et al.,
2010; Fig. 3). Biodegradation studies of plastics with
C-C backbones have therefore mostly been carried out
with preoxidized or thermally pretreated substrates under
laboratory conditions (Motta et al., 2009; Ojeda et al.,
2009; Jeyakumar et al., 2013; Restrepo-Fl�orez et al.,
2014).
Polyethylene is the most common plastic with a C-C

backbone. Various types of PE have been subjected to
biodegradation studies in the last decades (Restrepo-

Fig. 3. Simplified scheme of the abiotic degradation of polyethylene by oxygen and light. Radicals (R�) can be generated by photo-oxidation
mediated by chemical oxidants (modified based on Koutny et al., 2006b).

Fig. 4. Schematic illustration of a semi-crystalline polymer containing
both amorphous and crystalline regions (grey areas). The
amorphous parts are more susceptible to enzymatic attacks.
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Fl�orez et al., 2014; Sen and Raut, 2015). Microbial
enzymes capable of degrading lignin, a heterogeneous
cross-linked phenolic polymer with oxidizable C-C bonds
found in plant cell walls (Freudenberg and Neish, 1968;
Suhas et al., 2007), have been reported to be involved
in the biodegradation of PE (Restrepo-Fl�orez et al.,
2014; Krueger et al., 2015). These include laccases (EC
1.10.3.2.), manganese peroxidase (MnP, EC 1.11.1.13)
and lignin peroxidases (LiP, EC 1.11.1.14). As the redox
potential required for the breakdown of lignin is consider-
ably lower than for the homogenous C-C backbone of
PE, an efficient degradation of PE by these enzymes
can, however, not be expected (Krueger et al., 2015).
A thermostable laccase from Rhodococcus ruber

C208 degraded UV-irradiated PE films both in culture
supernatants and in cell-free extracts in the presence of
copper (Santo et al., 2013). As a result of oxidations and
polymer chain scissions mainly within the amorphous
part of the PE films, an increased amount of carbonyl
groups and a reduction in the molecular weight were
observed after 2 weeks of incubation with the enzyme at
37°C. A laccase from Trametes versicolor also strongly
reduced the molecular weight of a PE membrane in the
presence of 1-hydroxybenzotriazole, which mediated the
oxidation of non-phenolic substrates by the enzyme
(Fujisawa et al., 2001). MnP from the white-rot fungi
Phanerochaete chrysosporium ME-446 and the isolate
IZU-154 have been described as key enzymes for the
degradation of a high molecular weight PE membrane
(Iiyoshi et al., 1998). Surfactants including Tween 80,
Tween 20 and CHAPSO have been shown to promote
the degradation of PE by the partially purified MnP
(Iiyoshi et al., 1998; Ehara et al., 2000). The genes
encoding the most active MnP from IZU-154 have been
identified and further characterized, however only with
respect to the oxidation of 2,6-dimethoxyphenol (Matsub-
ara et al., 1996) and the degradation of nylon-66
(Deguchi et al., 1998). Bacillus cereus also degraded
UV-irradiated PE associated with a pronounced extracel-
lular production of both laccases and MnP (Sowmya
et al., 2014). However, the incubation of similarly
pretreated PE with a partially purified laccase and a MnP
from Penicillium simplicissimum resulted only in a negligi-
ble weight loss of less than 1% (Sowmya et al., 2015).
The concentrated culture supernatants of lignocellulose-
degrading Streptomyces species containing LiP activity
were reported to degrade the PE fraction of a heat-
treated plastic blend (Pometto et al., 1992). Similarly, the
extracellular LiP and MnP of Phanerochaete chrysospo-
rium MTCC-787 were reported to degrade 70% of a
preoxidized high molecular weight PE sample within
15 days of incubation (Mukherjee and Kundu, 2014).
Alkane hydroxylases (AH) of the AlkB family (EC

1.14.15.3) can catalyse the degradation of hydrocarbon

oligomers by terminal or subterminal oxidation (Rojo,
2010). A recombinant AH from Pseudomonas sp. E4
expressed in Escherichia coli BL21 converted 20% of
the low molecular weight PE sample to CO2 after incu-
bation for 80 days at 37°C (Yoon et al., 2012). A recom-
binant E. coli strain simultaneously expressing the
complete AH system from Pseudomonas aeruginosa E7
including an alkane monooxygenase, rubredoxin and
rubredoxin reductase degraded about 30% of this PE
sample (Jeon and Kim, 2015).
A purified hydroquinone peroxidase (EC 1.11.1.7) of

the lignin-decolorizing Azotobacter beijerinckii HM121
degraded PS, an aromatic thermoplastic with a C-C
backbone (Fig. 1), in a two-phase system consisting of
dichloromethane and water. PS in the organic phase
was rapidly converted to small water-soluble products
within 5 min of reaction at 30°C in the presence of
hydrogen peroxide and tetramethylhydroquinone (Naka-
miya et al., 1997). However, this two-phase process has
apparently not been further developed for a recycling
process of PS waste. While the degradation of PE and
PS by novel bacterial strains isolated from the guts of
insect larva has been reported recently, the correspond-
ing enzymes involved have not been identified yet (Yang
et al., 2014, 2015).
The above-mentioned studies used only culture super-

natants or partially purified enzyme preparations and
required long incubation times. For PVC, another impor-
tant plastic with a C-C backbone, enzymes directly
involved in its degradation have not been reported yet.
The use of whole cells rather than isolated enzymes

has been proposed as a potentially better approach for
the biodegradation of plastics with C-C backbones.
Recently, the utilization of microbial communities or
mixed cultures with defined microbial strains has shown
an improved performance in the degradation of PS and
PE compared with the use of single microorganisms
(Roy et al., 2008; Esmaeili et al., 2013; Yang et al.,
2015; Mukherjee et al., 2016).

Enzymatic degradation of PUR

Polyurethane is a polymer composed of di- or polyiso-
cyanate and polyols linked by carbamate (urethane)
bonds (Seymour and Kauffman, 1992; Fig. 1). The
urethane bond connects the crystalline rigid segments
consisting of isocyanate and the chain extender with the
amorphous parts composed of a polyester or polyether
(Nomura et al., 1998; Ruiz et al., 1999; Urgun-Demirtas
et al., 2007). Depending on the polyols used for the
polycondensation reaction, polyether and polyester PUR
with different characteristic properties can be manufac-
tured (Seymour and Kauffman, 1992). The presence of
aromatic esters and the extent of the crystalline fraction
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of the polymer are important factors influencing the
biodegradation of PUR (Urgun-Demirtas et al., 2007;
Cregut et al., 2013). PUR can be depolymerized by
microbial ureases, esterases and proteases hydrolysing
the urethane and ester bonds of the plastic (Howard,
2012a; Loredo-Trevino et al., 2012; Cregut et al., 2013;
Fig. 5). Enzymes degrading polyester PUR from bacteria
(Nakajima-Kambe et al., 1995; Howard and Blake, 1998;
Stern and Howard, 2000; Howard et al., 2001, 2012b;
Schmidt et al., 2017; Shah et al., 2008a) and fungi
(Pathirana and Seal, 1984a,b; Crabbe et al., 1994; Rus-
sell et al., 2011) have been described. It has been pos-
tulated that proteases hydrolyse the amide and urethane
bonds, while ureases attack the urea linkages (Labow
et al., 1996; Ruiz et al., 1999; Matsumiya et al., 2010).
Esterases and proteases also hydrolyse the ester bonds
in polyester PUR as a major mechanism for its enzy-
matic depolymerization (Nakajima-Kambe et al., 1999;
Tang et al., 2001a,b; Howard, 2002). Although a cleav-
age of urethane bonds in polyether PUR by bacterial
(Akutsu-Shigeno et al., 2006) and fungal (Owen et al.,
1996) hydrolases has been reported, this type of PUR is
much more recalcitrant to enzymatic attack compared
with polyester PUR (Nakajima-Kambe et al., 1999; Chris-
tenson et al., 2006). However, a weight loss of a poly-
ether PUR of more than 60% following incubation with
fungal isolates has been reported recently without yet a
characterization of the enzymes involved (�Alvarez-
Barrag�an et al., 2016).
The enzymatic hydrolysis of insoluble PUR polymer is

a surface erosion process depending on the efficient
adsorption of the biocatalysts on the polymer surface

prior to the polymer breakdown (Akutsu et al., 1998).
Compared with the wild-type enzyme, an increased yield
in degradation products was observed following the incu-
bation of a solid polyester PUR with a polyamidase from
Nocardia farcinica fused to the hydrophobic polymer
binding module of the polyhydroxyalkanoate depoly-
merase from Alcaligenes faecalis (Gamerith et al.,
2016). In contrast, the enzyme with the fused binding
module did not show a better performance than the wild-
type enzyme in the hydrolysis of soluble PUR sub-
strates, confirming the importance of the initial enzyme
adsorption process in the degradation of solid PUR.
Two types of PUR esterases with apparent synergistic

activities in the degradation of PUR have been reported
(Nakajima-Kambe et al., 1995, 1999; Akutsu et al.,
1998; Howard and Hilliard, 1999). A membrane-bound
esterase of Delftia acidovorans was shown to be essen-
tial for the adhesion of the microorganism on the poly-
mer surface as well as its initial hydrolysis. A second
secreted PUR esterase benefitting from the close vicinity
to the substrate catalysed the subsequent depolymeriza-
tion of PUR, thereby increasing the surface area for fur-
ther cell adhesion mediated by the membrane-bound
esterase (Nakajima-Kambe et al., 1995, 1999; Cregut
et al., 2013).
While previously isolated PUR-degrading enzymes

showed only low catalytic efficiencies, whole-cell cataly-
sis has been suggested as a more promising approach
for a biotechnical recycling process of PUR waste mate-
rials (Cregut et al., 2013). PUR foam particles and frag-
ments, which represent the most abundant PUR waste
materials (Seymour and Kauffman, 1992), will be difficult

Fig. 5. Cleavage of linkages in polyurethane by esterases, proteases and ureases (modified from Phua et al., 1987 and Loredo-Trevino et al.,
2012).
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to attack by microbial catalysts in an aqueous recycling
system. A mechanical size reduction in the PUR foam
and the use of immobilized biomass have been sug-
gested to overcome the low bioavailability of this PUR
waste material (Cregut et al., 2013). However, an effi-
cient biocatalytic degradation approach of PUR with
application potential in a biotechnical recycling process
has not yet been demonstrated.

Enzymatic degradation of PET

Polyethylene terephthalate is a polymer of terephthalic
acid and ethylene glycol linked by ester bonds (Webb
et al., 2013). Owing to its widespread uses in packaging
materials, beverage bottles and the textile industry, the
global PET production has exceeded 41.6 million tons in
2014 (Research and Markets, 2015). The durability and
the resulting low biodegradability of PET are due to the
presence of repeating aromatic terephthalate units in its
backbone and the corresponding limited mobility of the
polymer chains (Marten et al., 2003, 2005). The semi-
crystalline PET polymer also contains both amorphous
and crystalline fractions with a strong effect on its
biodegradability (see Physio-chemical properties of syn-
thetic plastics as obstacles for their enzymatic degrada-
tion, Fig. 4). At industrial processing conditions such as
fibre spinning, injection moulding and film blowing, PET
materials with different degrees of crystallinity are
obtained as a result of flow-induced crystallization which
determines the final structure and properties of the semi-
crystalline polymer (Lamberti, 2014; Wang et al., 2016).
PET beverage bottles with a crystallinity of over 30%
(Liu et al., 2004) and PET fibres up to 40% (Lee et al.,
2013) are common PET products which pose a high
recalcitrance to enzymatic degradation.
At a temperature close to the glass transition tempera-

ture (Tg) of PET above 65°C (Alves et al., 2002), the
amorphous parts of the polymer become flexible and
more accessible to an enzymatic attack (Parikh et al.,
1993; Ronkvist et al., 2009). Consequently, the high Tg

of PET requires enzymes with a high stability in this tem-
perature range (Ronkvist et al., 2009; Sulaiman et al.,
2014; Wei et al., 2014b; Then et al., 2016). Recently, an
enzymatic hydrolysis of amorphous PET at a reaction
temperature of 30°C has also been reported. However,
only very low degradation rates could be observed
(Yoshida et al., 2016). A number of lipases (Vertommen
et al., 2005; Eberl et al., 2009; Ronkvist et al., 2009),
esterases (Liebminger et al., 2007) and cutinases (M€uller
et al., 2005; Alisch-Mark et al., 2006; Araujo et al., 2007;
Nimchua et al., 2007; Ronkvist et al., 2009; Herrero
Acero et al., 2011; Chen et al., 2013; Wei et al., 2014c)
from fungal and actinomycete species hydrolyse amor-
phous PET and modify the surface of PET films and

fibres (Zimmermann and Billig, 2011). Carboxylesterases
from Bacillus licheniformis, Bacillus subtilis and Ther-
mobifida fusca also partially hydrolysed PET fibres and
showed a high activity against PET oligomers (Billig
et al., 2010; Oeser et al., 2010; Ribitsch et al., 2011;
L€ulsdorf et al., 2015; Barth et al., 2016). Lipases display
low activity against PET due to their lid structure cover-
ing the buried hydrophobic catalytic centre and the
resulting limited accessibility for polymeric substrates
(Guebitz and Cavaco-Paulo, 2008; Eberl et al., 2009;
Zimmermann and Billig, 2011). In contrast, cutinases
lacking a lid structure were able to cause significant
weight losses from amorphous PET films (Ronkvist
et al., 2009; Sulaiman et al., 2014; Wei et al., 2016).
Structural analyses of both fungal (Martinez et al., 1992;
Longhi et al., 1997) and bacterial cutinases (Kitadokoro
et al., 2012; Roth et al., 2014; Sulaiman et al., 2014;
Miyakawa et al., 2015) revealed an exposed active site
close to the surface of the enzymes, which is essential
for the recognition and interaction with polymeric sub-
strates (Guebitz and Cavaco-Paulo, 2008; Kitadokoro
et al., 2012).
The thermostable cutinase HiC from Thermomyces

(formerly Humicola) insolens is the most active fungal
polyester hydrolase reported so far (Ronkvist et al.,
2009). After a reaction time of 96 h at 70°C, HiC hydrol-
ysed a low crystalline (7%) PET film almost completely,
suggesting that the crystalline part of the PET film was
also degraded at this reaction temperature. The ther-
mostable bacterial LC-cutinase hydrolysed approximately
25% of a low crystalline PET film for 24 h at the same
reaction temperature (Sulaiman et al., 2014). The gene
encoding this enzyme is homologous to the polyester
hydrolases of Thermobifida species (Herrero Acero
et al., 2011) and has been isolated from a plant compost
metagenome (Sulaiman et al., 2012). Bivalent metal ions
such as Ca2+ and Mg2+ enhanced the thermostability of
several polyester hydrolases from actinomycetes and
resulted in an increased hydrolytic activity against PET
near the Tg of PET (Thumarat et al., 2012; Kawai et al.,
2014; Sulaiman et al., 2014; Miyakawa et al., 2015;
Then et al., 2015, 2016; Wei et al., 2016). By substitu-
tion of the metal binding site with a salt bridge or a disul-
fide bridge, variants of the polyester hydrolase TfCut2
from Thermobifida fusca KW3 also readily degraded
amorphous PET films at 70°C in the absence of metal
ions (Then et al., 2015, 2016). The stabilizing effect of
phosphate anions at a concentration of up to 1 M (Jen-
sen et al., 1995; Park et al., 2001) also promoted the
activity of these enzymes against PET (Schmidt et al.,
2016).
Although some polyester hydrolases displayed high

activity against amorphous PET materials at reaction
temperatures above 50°C, crystalline and biaxially
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oriented PET was degraded to a much lesser extent at
the same reaction conditions (Eberl et al., 2009; Ronk-
vist et al., 2009; Wei et al., 2016; Gamerith et al., 2017;
Fig. 6). It is therefore presently not possible to com-
pletely degrade PET fibres and beverage bottles with a
higher percentage of crystallinity (Liu et al., 2004; Lee
et al., 2013) or biaxially oriented PET within short reac-
tion times with these enzymes (Zhang et al., 2004; Zim-
mermann and Billig, 2011; Carniel et al., 2016; Yoshida
et al., 2016; Gamerith et al., 2017).
The enzymatic hydrolysis of PET is also a surface ero-

sion process (Zhang et al., 2004; M€uller et al., 2005;
Mueller, 2006; Wei et al., 2014a). The hydrophobic nat-
ure of PET represents a barrier which hampers the
effective adsorption of enzymes to the polymer surface
for the hydrolytic reaction (Atthoff and Hilborn, 2007).
Unlike enzymes hydrolysing natural polymers such as
polyhydroxyalkanoates (Knoll et al., 2009) or cellulose
(Atthoff and Hilborn, 2007), specific binding domains
responsible for substrate adsorption are absent in cuti-
nases (Chen et al., 2013; Wei et al., 2014c). Their initial
adsorption to the surface of PET is presumably mediated
by hydrophobic regions surrounding the catalytic site
(Herrero Acero et al., 2011). By site-directed mutagene-
sis of selected amino acids in these regions, variants
with enhanced activity against PET could be obtained
(Wei, 2011; Herrero Acero et al., 2013). The fusion of
polymer and cellulose binding domains (Ribitsch et al.,
2013) or hydrophobins (Ribitsch et al., 2015) also
enhanced the adsorption of cutinases to the surface of
PET and resulted in higher yields of hydrolysis products.
A truncation of 71 N-terminal residues of an esterase
from Clostridium botulinum exposed a hydrophobic
patch, which facilitated its adsorption to PET and
improved its hydrolytic activity (Biundo et al., 2016).
Selected amino acid residues in close vicinity to the

catalytic centre were suggested to be important for the
recognition and interaction with the polymeric substrate
by various polyester hydrolases (Guebitz and Cavaco-
Paulo, 2008; Kitadokoro et al., 2012). By modification of

the size and the hydrophobicity of these residues, the
hydrolytic activity against PET of a polyester hydrolase
from Fusarium solani (Araujo et al., 2007) and Thermobi-
fida fusca (Silva et al., 2011) could be increased.
In addition to ethylene glycol, terephthalate, mono-

(2-hydroxyethyl) terephthalate (MHET) and bis-(2-hydro-
xyethyl) terephthalate (BHET) are the main water-soluble
products obtained by the enzymatic hydrolysis of PET
(Vertommen et al., 2005; Wei et al., 2012; Fig. 7). The
polyester hydrolase TfCut2 is strongly inhibited by MHET
and BHET (Barth et al., 2015a). By performing the
hydrolysis of amorphous PET films in an enzyme reactor
fitted with an ultrafiltration membrane, the product inhibi-
tion could be avoided by the continuous removal of
MHET and BHT (Barth et al., 2015b). As a result, a 1.7-
fold higher amount of hydrolysis products were obtained
from amorphous PET films after a reaction time of 24 h.
With a dual enzyme reaction system composed of a
polyester hydrolase and the immobilized car-
boxylesterase TfCa from Thermobifida fusca KW3, a
twofold higher yield of degradation products could be
obtained compared with those without TfCa (Barth et al.,
2016). In this one-pot process, TfCa prevented the inhi-
bition of TfCut2 by specifically binding and hydrolysing
MHET and BHET in the reaction medium. Similarly, a
reaction system composed of the fungal polyester hydro-
lase HiC and the lipase CalB from Candida antarctica
also showed a 7.7-fold increase in the yield of terephtha-
late obtained due to the concomitant degradation of
MHET catalysed by CalB (Carniel et al., 2016). A
recently described enzyme from Ideonella sakaiensis
201-F6, which catalysed specifically the hydrolysis of
MHET (Yoshida et al., 2016), could be a further candi-
date for a one-pot system to promote PET hydrolysis in
an enzyme reactor. The susceptibility of TfCut2 to pro-
duct inhibition could also be mitigated by modifying a
key amino acid residue involved in the interaction with a
low molecular weight PET model compound (Wei et al.,
2016). As a result, a 2.7-fold higher weight loss of an
amorphous PET film was obtained with this variant after

Fig. 6. Schematic illustration of the biaxial stretching of an amorphous polymer and the stretch-induced crystallization (Zhang et al., 2016). Due
to the small crystallite size below the wavelength of visible light, the resulting material remains transparent after the biaxial stretching
(Jariyasakoolroj et al., 2015).
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a reaction time of 50 h compared with the wild-type
enzyme.

Prospects for a biocatalytic recycling of recalcitrant
plastic waste

The recovery of chemical feedstocks that can be used
for the production of virgin polymers in a closed-loop
recycling process is considered as the most sustainable
option to solve the plastic waste problem (Al-Salem
et al., 2009; Andrady, 2015c). A drastic increase in the
amount of plastic waste being recycled instead of dis-
carded will therefore be necessary in the future (World
Economic Forum, 2016). Increasing knowledge on
microbial enzymes able to degrade petroleum-based
recalcitrant plastics will promote the further development
of environmentally friendly plastic recycling processes
(M€uller et al., 2005; Barth et al., 2015b, 2016). Although
several redox enzymes have been found to contribute to
the degradation of PE, a complete biocatalytic degrada-
tion of plastics with C-C backbones has not been
demonstrated yet. The identification of suitable enzymes
and a better understanding of the degradation mecha-
nism will be necessary before an application of enzymes
for a recycling of PE waste could be envisaged. Instead,
whole-cell catalysis with single microorganisms or even
microbial communities might provide an alternative strat-
egy for a biotechnical PE recycling.
Synthetic polyesters such as PET and also polyester

PUR have been shown to be susceptible to enzymatic
degradation by microbial polyester hydrolases. A range
of fungal and bacterial enzymes has been described
recently able to modify and degrade PET films and
fibres. As a proof of principle, the conversion of

amorphous PET in an enzyme reactor to its monomers
has been demonstrated recently (Barth et al., 2015b).
Although the crystalline parts of PET can also be
degraded by the enzymes, this process is still too slow
to be applied for a biocatalytic recycling of PET bever-
age bottles or textile fibres. Metagenomic approaches
have already shown to facilitate the access to novel
polyester hydrolases from the environment (Sulaiman
et al., 2012). Directed evolution strategies can be
applied for the identification of mutation hot spots in
polyester hydrolases complementing enzyme optimiza-
tion strategies by semi-rational re-design (Thumarat
et al., 2012; Kawai et al., 2014). In the search for
improved biocatalysts, high-throughput screening meth-
ods specifically designed to monitor polyester hydro-
lase activities enable a rapid identification of these
enzymes and their variants (Wei et al., 2012). The dis-
covery of novel microbial polyester hydrolases and the
construction of highly active variants therefore remain
a key challenge for the development of a viable bio-
catalytic recycling process for post-consumer PET
waste.
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