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Abstract: Wearable sensors facilitate running kinematics analysis of joint kinematics in real running
environments. The use of a few sensors or, ideally, a single inertial measurement unit (IMU) is
preferable for accurate gait analysis. This study aimed to use a convolutional neural network (CNN)
to predict level-ground running kinematics (measured by four IMUs on the lower extremities) by
using treadmill running kinematics training data measured using a single IMU on the anteromedial
side of the right tibia and to compare the performance of level-ground running kinematics predic-
tions between raw accelerometer and gyroscope data. The CNN model performed regression for
intraparticipant and interparticipant scenarios and predicted running kinematics. Ten recreational
runners were recruited. Accelerometer and gyroscope data were collected. Intraparticipant and
interparticipant R2 values of actual and predicted running kinematics ranged from 0.85 to 0.96 and
from 0.7 to 0.92, respectively. Normalized root mean squared error values of actual and predicted
running kinematics ranged from 3.6% to 10.8% and from 7.4% to 10.8% in intraparticipant and
interparticipant tests, respectively. Kinematics predictions in the sagittal plane were found to be
better for the knee joint than for the hip joint, and predictions using the gyroscope as the regressor
were demonstrated to be significantly better than those using the accelerometer as the regressor.

Keywords: deep learning; convolutional neural network; running; kinematics; wearable sensor;
running kinematics analysis; accelerometer; gyroscope

1. Introduction

Although running is a popular recreational sport worldwide, injury incidence rates
ranging from 19.4% to 79.3% have been reported [1]. These injuries are mostly due to
overuse of the lower extremities. Among various lower extremity injuries, injuries in
the region surrounding the knee were found to be the most common and have severe
consequences [1], such as patellofemoral pain syndrome, anterior cruciate ligament in-
jury, iliotibial band friction syndrome, and patellar tendinopathy [2,3]. Therefore, the
investigation of lower extremity kinematics is important for the better understanding of
running-related injuries.

In human running kinematics analysis, a camera-based motion capture system is
considered the gold standard [4]. The capture system is constructed in a laboratory. The
research participant is surrounded by cameras and retroreflective markers are placed on
anatomical landmarks of the human body [4]. Despite the use of multiple cameras, a body
part or object can occlude the field of view between a marker and the cameras, decreasing
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the effectiveness of such motion tracking systems. In addition, despite the valid and reliable
measurements provided by such a system, the technology is confined to the laboratory
setting and requires expensive, sophisticated equipment that is permanently installed in
a large room [5–7]. Therefore, although camera-based motion capture systems are the
gold standard, making valid assessments of level-ground running kinematics using these
systems is still challenging.

With technological advancements in sensors and data analysis, real-time mobile sensor
devices have been developed. Wearable, mobile sensors can be used to analyze human gait
patterns in the real world and in outdoor running environments [8]. Inertial measurement
units (IMUs)—including accelerometers, gyroscopes, and magnetometers—have been
employed extensively in recent studies to detect acceleration and angular velocity [9–13].
Human gait kinematics, such as that pertaining to joint angles, can be estimated by merging
inertial data from two body segments [14–16]. Compared with camera-based motion
capture systems, wearable sensors are more portable and can monitor limb kinematics in
the field without obstructing normal gait [5].

Numerous studies have examined the validity and reliability of using wearable sensors
for joint angle estimation during level walking [17–20] and running [18,21–23]. Typically,
joint angle assessment requires at least two IMU sensors, with each placed on one body
segment of the joint studied [24–26]. Therefore, multiple sensors are required. Usually, 18
sensors are used in total, with 11 sensors placed on the upper body and 7 placed on the
lower extremities [16,27–31].

To reduce redundancy and cost, a study attempted to minimize the number of sensors
used during human kinematics analysis [32]. Two approaches have been proposed to re-
duce the number of sensors, namely, the model-based approach [33–35] and the data-driven
approach [5,36,37]. The model-based approach involves establishing a serial kinematic
chain model and calculating inverse kinematics to estimate the motion of the lower extrem-
ities [5,35]. Several studies have investigated lower extremities kinematics with reduced
numbers of IMU sensors [33–35]. A study has used a single IMU sensor to detect age- and
surface-related differences in walking with machine learning algorithms [38]. However,
model-based approaches have also been criticized for errors arising from the misalignment
of the sensors during the set-up or the trial (see [5,39]).

By contrast, the data-driven approach employs supervised machine learning models
to estimate lower extremity kinematics [5,36]. Numerous studies have applied the machine
learning method to predict extremities kinematics during running or walking [32,33,36,37,40].
Zimmermann et al. [26] determined the time dynamic features of lower body kinematics
for improved orientation alignment and IMU-to-segment assignment tasks by using a deep
learning approach that included CNNs combined with long short-term memory networks
and generalized recurrent units. Lastly, Gholami et al. [5] developed a novel method using
a single shoe-mounted accelerometer and CNN to estimate lower extremity gait kinematics
in the sagittal plane during treadmill running. These data-driven approaches minimize the
number of IMUs while maximizing the accuracy of the measurements by using supervised
machine learning models.

Different types of IMUs, namely accelerometers and gyroscopes, have been used
to estimate human gait kinematics with differing performance [14–16]. Rhudy and Ma-
honey [41] reported that estimations in step counting were better when using gyroscopic
sensors than when using accelerometer sensors. Mahoney and Rhudy [42] also presented a
machine learning method in gait stride categorization (i.e., walking, jogging, or running).
Artificial neural network models trained with raw accelerometer data performed better
(specifically, categorizing gait stride more accurately) than those trained using gyroscopic
data (see [42]). These results demonstrate that different sensors have different advan-
tages for encoding level-ground gait characteristics. However, performance in predicting
running kinematics using accelerometers or gyroscopes is unconfirmed.

These studies [5,8,10–12,15–24,26–40] have pertained to the use of camera-based mo-
tion analysis systems to capture target kinematics. The myoMotion (Noraxon, Scottsdale,
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USA) sensors are a set of sensors for specific body locations (i.e., 7 sensors for the lower
extremities or 16 sensors for the full body), whereas IMeasureU (Vicon, Oxford, UK) sensors
can be used individually and independently to capture raw data at a given location. The
attachment of the IMeasureU sensor at the anteromedial tibia is also more convenient
for users. Because IMUs have been shown to be reliable and accurate for use outside of
laboratory settings, recent studies have aimed to reduce the number of sensors worn, with
the ultimate aim of using only a single IMU, to measure running kinematics. This study
used two sets of IMUs: one (myoMotion) was used to capture target joint kinematics,
whereas another one (IMeasureU) was used to capture regressor data for modeling the
target joint kinematics using a deep learning approach. This study aimed to (1) use a CNN
model to predict level-ground running kinematics, measured by four IMUs on the lower
extremities of the right side, using treadmill running kinematics training data, measured
using a single IMU on the anteromedial side of the right tibia and (2) compare the perfor-
mance of level-ground running kinematics predictions between raw accelerometer and
gyroscope data.

2. Materials and Methods
2.1. Participants

Five male and five female healthy recreational runners (age: 22.70 ± 1.34 years, height:
168 ± 6.32 cm, and weight: 61.33 ± 6.82 kg) were recruited to participate in this study.
The participants had no history of injury within the previous 6 months. Written informed
consent (approved by the Human Research Ethics Committee of the University) was
obtained from each participant before data collection.

2.2. Instruments

All participants were equipped with the two sets of IMUs. Specifically, myoMotion
sensors were used to capture lower limb movement. According to the sensor placement
for lower extremities recommended by the manufacturer (Noraxon), seven myoMotion
sensors were attached to the participants with either an elastic strap or belt on the pelvis,
left and right thighs, left and right shanks, and left and right feet. The sensors’ placement
is indicated in Figure 1. Only data collected by the four sensors attached on the pelvis
and right leg were considered and used for data analysis. Accelerations (on the x, y,
and z axes) and anatomical angles for the lower limbs (knee flexion/extension and hip
flexion/extension) were measured with a sampling rate of 100 Hz. Second, a single
IMeasureU sensor was attached to the anteromedial side of the right tibia, and tri-axial
accelerations and angular velocities were recorded. The raw data of the accelerometer and
gyroscope were acquired, at a sampling rate of 500 Hz, and used for data processing. The
two sets of sensors were synchronized with three vertical right foot strikes at the beginning
of each trial [40]. The directions of the axes of IMeasureU and myoMotion are indicated in
Appendix A Figures A1 and A2, respectively.
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2.3. Experiment Protocol and Data Collection

All participants were required to complete the Physical Activity Readiness Ques-
tionnaire (PAR-Q, Canadian Society for Exercise Physiology, 2002. www.csep.ca/forms,
30 September 2020) and a medical history questionnaire before the study began. Those
with a “Yes” to one or more questions in the PAR-Q, or with any obvious anatomical
abnormalities, were excluded. Anthropometric data, including height, weight, and age,
were measured and collected. All running trials were conducted on a treadmill in the
laboratory. Participants were advised to wear their usual running attire with self-selected
running shoes and that they should not participate in any physical activity on the day
prior to testing. The IMeasureU and myoMotion sensors were equipped, calibrated, and
synchronized. After synchronization, participants warmed up at 1.5 m/s on the treadmill
for 30 s. Every 3 min, the speed of the treadmill was increased, first to 2.0 m/s, then to
2.5 m/s, to 3.0 m/s, and finally to 3.5 m/s [5,43]. The participants were then asked to run in
an indoor squash court for 3 min at their preferred speed (average speed: 2.44 ± 0.34 m/s),
which was recorded using a Brower Timing System (Brower Timing Systems, Draper, UT,
USA). The data obtained from the two sets of IMUs were compared.

2.4. The Deep Learning Regression Model

The CNN deep learning model used by Gholami et al. [5] was used to compare
the results. Gholami et al. [5] used four layers of one-dimensional convolutional layers
(Conv1D) to model the target variable array Y containing the hip, knee, and ankle flexion
values. A four-column array X was constructed with the first three columns corresponding
to the orthogonal accelerations (ax, ay, and az) and the last column corresponding to
the magnitude of the total accelerations, axyz. The rows of X correspond to the IMU
data collected at 100 Hz. X was separated into overlapping frames of dimension 60 × 4,
representing 0.6 s of IMU data, and a time window was applied to each frame to determine
Y at time t by considering the frame representing the 0.6 s of data from t −0.3 s to t +0.3 s.

The same parameters used by Gholami et al. [5] were used in this study. Specifically,
the first two Conv1D layers had 50 filters followed by a maximum pooling layer of 2:1
subsampling. The following two Conv1D layers had 100 filters, and the outputs were
flattened and fed into a dense layer of 100 neurons before being consolidated into Y with
3 neurons. A kernel size of 3 with a stride value of 1 and a rectified linear unit, abbreviated
as ReLU [44], was used for activation in all layers except the regression output. For
optimization, Adam [45] was used with a learning rate of 0.001 and batch size of 512 at
50 epochs to achieve rather a stable convergence. For the initialization of neuron weights,
the Glorot normal initializer [46] was used (also called the Xavier normal initializer). The
Python 3.7 with the Tensorflow and Keras packages were used for implementation.

Different arrangements of regressors for X and targets for Y were applied in our
study. Since accelerometer readings were likely to deform to different extents on different
running surfaces, the gyroscope was also used as a regressor because of the readings
being less subject to such deformations. For the accelerometer, the y-component, which
was more or less aligned with the tibial direction, was used as X. For the gyroscope, the
resultant of the x-component and the z-component was used, which more or less reflected
the angular motions on the sagittal plane. This selection of regressors was to minimize
variations in sensor orientation during the experiments. While Gholami et al. [5] used a
combined loss function for the hip, knee, and ankle and used a set of weights to favor
hip and ankle optimization in the regression, the three targets were separated for the best
optimization results in this study. Therefore, while X and Y were univariate in our case
and multivariate in Gholami et al. [5], the subsequent arrangement of X and Y as tensor
arrays for training was the same. Furthermore, to achieve similar convergence using a
fixed 50 epochs, the gyroscope data were scaled down by 100 times to a similar numerical
range as the accelerometer values. The parameters of the CNN network used in this study
are summarized in Table 1.

www.csep.ca/forms
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Table 1. Summary of parameters used in the CNN network.

Network Layer Output Shape Other Parameters Value/Type

Input (60, 1) Training data shape
X(N, 60, 1), Y(N, 1), where N is
the total number of 60 sample

frames (0.6 s) for training

Conv1D (58, 50) Kernel initializer GlorotNormal (all layers)

Conv1D (56, 50) Loss function Mean squared error

MaxPolling1D (28, 50) Number of filters 50 (first 2 Conv1D),
100 (last 2 Conv1D)

Conv1D (26, 100) Kernel
size/Stride/Padding 3/1/No padding (all Conv1D)

Conv1D (24, 100) Pool size 2 (for MaxPooling1D)

Flatten (2400) Activation
ReLU for all Conv1D and first

Dense layer, Linear for last
Dense layer

Dense (100) Epochs/Batch size 50/512

Dense (1) Learning rate 0.001

2.5. Evaluation Methods

In the present study, the CNN was adopted to evaluate two (intraparticipant and
interparticipant) scenarios. For the intraparticipant CNN model, the model was trained
on each participant’s treadmill running data separately and tested on that participant’s
level-ground running data. To obtain steady-state data, the first 15 s and last 15 s of the
treadmill running data from each participant at every speed were designated as the ingress
buffer and not included in the data analysis. The remaining treadmill running data (2.5 min)
of each participant at every speed were then segmented into three sets of 60, 60, and 30 s,
in which the first set of 60 s at each speed was extracted and concatenated as training data
(4 min total data, 1 min for each running speed). The level-ground running data of each
participant were treated similarly to extract test data. The ingress buffer was discarded, the
remaining 2.5 min was fragmented into three sets of 60, 60, and 30 s, and the first set of 60 s
was extracted and used as test data.

For the interparticipant evaluation, a leave-one-out scheme similar to that in Gholami et al. [5]
was adopted for analysis. With the same data fragmentation and assignment of training
and test data sets as those in the intraparticipant CNN model, the treadmill running data
of nine participants were used to train the model, and the data of the 10th participant were
used to test the model’s predictions. These training and testing procedures were performed
10 times with each participant designated as the left-out participant once.

Six parameters (Table 2) calculated using algorithms in Python 3.7 were used for the
analysis in the current study: (1) average correlation (R2), (2) average root mean squared
error (RMSE), (3) average normalized root mean squared error (NRMSE), (4) average
standard deviation (STD), (5) average normalized standard deviation (NSTD), and (6)
average range of motion (ROM). The average R2 reflects the goodness-of-fit of a regression
model. The average RMSE and NRMSE represent differences between actual and predicted
values. The average STD and NSTD indicate the amount of variation or dispersion in
a model. The average ROM is the overall movement of the hip and knee joints in the
sagittal plane.

Following Gholami et al. [5], in the calculation of RMSE, NRMSE, STD, and RSTD
as shown in Table 2, the peaks’ positions indicated in Figure 2 were used, i.e., the ‘small
peak’ for the knee flexion and the maximum position in the hip flexion. For R2, however,
all points in the curves were used.
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Table 2. Definitions and formulas of the six evaluation parameters: (1) average correlation (R2), (2) average root mean
squared error (RMSE), (3) average normalized root mean squared error (NRMSE), (4) average standard deviation (STD), (5)
average normalized standard deviation (NSTD), and (6) average range of motion (ROM).

Symbol Definition Formula

R2 Coefficient of determination:
Applied to all points of actual and predicted data values.

R2 = 1− ∑i(yi−ŷi)
2

∑i(yi−y)2

where {yi} is the set of data points of the target signal, y is
the mean of {yi}, and ŷi is the predicted value of yi in

the regression.

ROM Range of motion:
Applied to all points of actual and predicted data values.

ROM = ymax − ymin
where {yi} is the set of data points of the target signal and
ymax is the maximum and ymin is the minimum of {yi}.

RMSE

Root mean squared error:
Applied to data points at specific gait events:

For knee: peak flexion during stance (i.e., the ‘small’
peak, see Figure 1);

For hip: peak flexion (see Figure 1).

RMSE =

√
∑(pi−p̂i)

2

N
where {pi} is the set of data points at specific gait events
of the target signal (i.e., either at peak knee flexion during

stance or peak hip flexion), N is the total number of
points in {pi}, and p̂i is the predicted value of pi in

the regression.

NRMSE Normalized root mean squared error:
Normalized the RMSE with overall range of data values.

NRMSE = RMSE
ROM = RMSE

ymax−ymin
where {yi} is the set of data points of the target signal and
ymax is the maximum and ymin is the minimum of {yi}.

STD

Standard deviation of the residuals:
Calculated at points of specific gait events:

For knee: peak flexion during stance (i.e., the
‘small’ peak);

For hip: peak flexion.

Standard deviation of the set of residuals
{ri | ri = pi − p̂i}

where {pi} is the set of data points at specific gait events
of the target signal (i.e., either at peak knee flexion during
stance or peak hip flexion) and p̂i is the predicted value

of pi in the regression.

NSTD Normalized standard deviation of the residuals:
Applied to all points of actual and predicted data values.

NSTD = STD
ROM = STD

ymax−ymin
where {yi} is the set of data points of the target signal and
ymax is the maximum and ymin is the minimum of {yi}.
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2.6. Statistical Analysis

Paired sample t-tests were used to compare the average R2, average RMSE, average
NRMSE, average STD, and average NSTD between an accelerometer regressor and a
gyroscope regressor. The associated interpretation of the R2 was used in accordance
with Schober et al. [47]. Correlation coefficient with 0–0.10, 0.10–0.39, 0.40–0.69, 0.70–
0.89 and 0.90–1.00 were interpreted as negligible correlation, weak correlation, moderate
correlation, strong correlation and very strong correlation, respectively [47]. The results
were considered significant if p < 0.05.

3. Results

The actual and predicted angles in the sagittal plane of Participant 1 at typical 6 s
intervals for intraparticipant and interparticipant models are presented in Figure 3.
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3.1. Intraparticipant CNN Model

The average (standard deviation) R2, RMSE, NRMSE, STD, and NSTD of the ac-
celerometer and gyroscope regressors for the knee and hip joint angle predictions are
presented in Table 3a. In the intraparticipant CNN model, the average (standard deviation)
R2, RMSE, NRMSE, STD, and NSTD for predicting the joint kinematics of both the knee
and hip using the gyroscope regressor were found to be significantly better than those
using the accelerometer regressor (see Table 3a).

Table 3. Average correlation (R2), average root mean squared error (RMSE), average normalized root mean squared error
(NRMSE), average standard deviation (STD), average normalized standard deviation (NSTD), and range of motion (ROM)
for predicting knee and hip kinematics using an accelerometer and a gyroscope. Paired sample t-tests were used to compare
each parameter between using an accelerometer and a gyroscope, with statistical significance (p) (in bold for p < 0.05).

a. Intraparticipant model

R2 RMSE (◦) NRMSE (%) STD (◦) NSTD (%) ROM

Mean (SD) p Mean (SD) p Mean (SD) p Mean (SD) p Mean (SD) p Mean (SD)

Knee_Accel 0.93 (0.043)
0.009

4.4 (2.0)
0.025

4.9 (1.8)
0.023

3.2 (1.1)
0.019

3.2 (1.1)
0.037

88.7◦

(17.0◦)Knee_Gyro 0.96 (0.012) 3.2 (1.0) 3.6 (0.9) 2.4 (0.6) 2.4 (0.6)

Hip_Accel 0.85 (0.075)
0.01

7.1 (2.6)
0.026

10.8 (3.4)
0.025

5.2 (2.1)
0.044

5.2 (2.1)
0.044

64.5◦

(10.7◦)Hip_Gyro 0.90 (0.064) 5.2 (1.7) 8.0 (1.9) 4.1 (1.2) 4.1 (1.2)

b. Interparticipant model

R2 RMSE (◦) NRMSE (%) STD (◦) NSTD (%) ROM

Mean (SD) p Mean (SD) p Mean (SD) p Mean (SD) p Mean (SD) p Mean (SD)

Knee_Accel 0.90 (0.060)
0.18

7.7 (2.6)
0.26

8.8 (3.1)
0.30

4.0 (1.9)
0.15

4.6 (2.4)
0.15

88.7◦

(17.0◦)Knee_Gyro 0.92 (0.065) 6.3 (3.1) 7.4 (4.0) 3.0 (1.1) 3.4 (1.1)

Hip_Accel 0.73 (0.348)
0.16

6.6 (2.3)
0.72

10.3 (3.8)
0.60

5.6 (1.5)
0.002

8.6 (1.8)
0.002

64.5◦

(10.7◦)Hip_Gyro 0.83 (0.160) 6.8 (3.4) 10.8 (5.9) 4.6 (1.4) 7.0 (1.6)

3.2. Interparticipant CNN Model

The average (standard deviation) R2, RMSE, NRMSE, STD, and NSTD of the accelerom-
eter and gyroscope regressors for the knee and hip joint angle predictions are presented in
Table 3b. The use of the gyroscope regressor improved the average (standard deviation)
R2, RMSE, NRMSE, STD, and NSTD relative to the use of the accelerometer regressor,
despite most of these improvements being statistically nonsignificant (see Table 3b). Only
the difference in the prediction of average STD and NSTD of hip kinematics by the two
models was found to be significant (see Table 3b).

4. Discussion

This study investigated the performance in predicting level-ground running kine-
matics of deep learning algorithms trained on kinematics data obtained from individuals
running on a treadmill. The performance of accelerometer and gyroscopic data as regres-
sors in kinematics prediction was compared. A CNN model was used to predict knee joint
and hip joint angles in intraparticipant and interparticipant scenarios. To the best of our
knowledge, this is the first study to use this deep learning approach technique to predict
level-ground running kinematics.

The kinematic prediction for the knee joint angle was better than that for the hip
joint angle in the sagittal plane in both intraparticipant and interparticipant scenarios.
The average R2 of the knee joint angle prediction with both accelerometer and gyroscope
regressors had strong correlations [47]. The average R2 of the hip joint angle prediction
with both accelerometer and gyroscope regressors also had strong correlations [47]. For the
intraparticipant scenarios, the gyroscope regressor yielded significantly better predictions
than the accelerometer regressor did. The results for the average R2 of the knee joint angle
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prediction with the accelerometer and gyroscope regressors were strongly correlated [47].
The results for the average R2 of the hip joint angle prediction with the accelerometer
and gyroscope regressors were strongly correlated [47]. Although the gyroscope regres-
sor yielded more accurate predictions compared with the accelerometer regressor, these
improvements were statistically significant in the intraparticipant scenario. When the
intraparticipant and interparticipant results were combined, the average R2 of the knee
joint angle predictions exhibited a stronger correlation than that for the hip joint angle pre-
dictions. The average NRMSE percentage was also lower for the knee joint angle prediction.
Intraparticipant predictions were better than interparticipant predictions overall.

Predictions for level-ground running joint angle kinematics from the use of gyroscope
regressors were significantly more accurate than those from the use of accelerometer
regressors. Rhudy and Mahoney [41] and Mahoney and Rhudy [42] did not verify the
capabilities and performance of accelerometer and gyroscope IMUs, but they reported
that the performance of gyroscopes and accelerometers differed depending on the specific
kinematics measured. These results demonstrate that using the gyroscope yielded better
predictions of running kinematics compared with using the accelerometer for both knee and
hip joint angles and in both intraparticipant and interparticipant scenarios. Consequently,
the gyroscope may be considered a better regressor than the accelerometer in running
kinematics prediction.

The performance differences between using the accelerometer versus the gyroscope
might be due to the stiffness of the running surface and the flexibility of the treadmill.
The treadmill is flexible and shock absorbent, thus absorbing impact forces to a larger
extent than when running on level ground. Because data from treadmill running were
used to train the CNN model, the stiffness of the treadmill surface may have affected the
predictions of the accelerometer and the gyroscope regressors differently, contributing
to the inferior performance of the accelerometer. The acceleration data collected by the
accelerometers were possibly attenuated by the treadmill belt, which should be further
investigated in a future study.

The present study is the first to use kinematics data from treadmill running for CNN
training to make predictions of level-ground running kinematics. The model predicted
knee and hip angles during running using intraparticipant and interparticipant data. In
contrast with studies [5,35–37] that were limited to predict treadmill running kinematics,
this study provides new insight into and inspiration for techniques for predicting level-
ground running kinematics. The results for both the intraparticipant and interparticipant
scenarios were strongly to very strongly correlated and indicated that level-ground running
kinematics could be predicted by treadmill running kinematics. Nevertheless, more studies
are required to further investigate predictions of kinematics in other running surfaces and
elucidate the kinematics of real-world running.

The movement planes and the degrees of freedom being investigated should also be
considered. The prediction of the knee joint angle was better than that of the hip joint
angle in the sagittal plane, and the errors for knee joint angle predictions were also lower
than those for hip joint angle predictions. Because the knee joint has less freedom of
movement in the frontal plane and transverse planes, only sagittal plane data were used
for the comparison of knee joint angle and hip joint angle predictions. These findings are
similar to those of other studies reporting that consistent trajectories explain the lower
prediction error for the knee joint angle [5,33,36]. Furthermore, the prediction results could
be affected by noise artifacts due to the attachment and alignment of the IMU sensors
and magnetic distortion in the motion lab [48]. Therefore, in terms of running kinematics
predictions, the knee joint angle is more consistent and predictable than the hip joint angle
in the sagittal plane. Hip joint angle data were also affected by offset problems during data
collection, influencing the prediction results. Considering the movement planes, degrees of
freedom, and alignment errors, the knee joint is particularly suitable for angular kinematic
estimates made with the use of a single IMU.
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Finally, the results from the leave-one-out scheme adopted in the interparticipant
trials demonstrated that the CNN model successfully learned from the knee joint angle
data. The gyroscope regressor consistently outperformed the accelerometer regressor,
corroborating the findings of [5]. Furthermore, training with hip joint angle data resulted
in poorer test results compared with training with knee joint angle data. However, the
intraparticipant results indicate that a training set of 10 participants was insufficient for
general kinematics predictions.

5. Limitations

The small sample size of 10 recreational runners was a limitation of this study in that it
limited the generalizability of the findings. Future studies could recruit more participants,
accelerating the project of establishing a universal model for predicting running kinematics.
Another way for building a more representative model is by carefully selecting subjects with
a balanced distribution of physical characteristics such as height, weight, age, and gender
as in a study by Sun et al. [49]. In that study, gait data of ten subjects were chosen with a
balanced distribution and used to build an ideal gait database, which was subsequently
used in conjunction with a novel neural network controller for actuating their prosthetic
knee design in a speed-adaptive manner. As illustrated in Figure 3, prediction results were
occasionally suboptimal, especially for the accelerometer regressor, which were the results
of more difficult cross-field and cross-subject prediction. A better training set could be
obtained either by enrolling more subjects or carefully choosing a more representative
group [49].

As Gholami et al.’s [5] architecture and parameters were fully adopted in the current
study for comparison purposes, it is conceivable that fine tuning of the network and other
hyperparameters could improve the prediction accuracy. This is especially true when
considering the use of a powerful and deep network of four Conv1D with two dense layers,
in which more optimal parameter values can be grid searched and validated.

Another key limitation of this study was that the ankle joint angle data collected were
very unstable with substantial errors. Offset errors and abnormalities were observed for the
ankle joint waveforms; therefore, the ankle joint angle kinematics data were removed from
the analysis. Interference caused by the magnetic field in the laboratory was suspected
to be the main cause. The interference is likely largest closest to the ground and would
therefore primarily affect the ankle joint sensors [48]. Instability of foot-mounted sensors
may also have contributed to the poor data quality. Improving the placement and fixation
of the sensors could be a goal of future studies collecting ankle kinematics data.

Finally, different placements of sensors may affect the prediction performance. In this
study, the IMU sensor used to collect kinematics data was placed on the anteromedial side
of the right tibia. Further studies may attempt different placements of the single sensor
on the lower extremities to investigate the best placement of the single sensor and obtain
better predictions.

6. Conclusions

In this study, a CNN deep learning model was used to predict level-ground run-
ning kinematics by treadmill running kinematics measured by a single IMU sensor. The
predictions of knee and hip angles in the sagittal plane were mostly with strong to very
strong correlations. The predictions of knee angles were better than that of hip angles.
The predictions from using the gyroscope regressor were significantly more accurate than
using the accelerometer regressor. Future studies may investigate predictions of running
kinematics on different fields by using deep learning approaches. Predictions of running
kinematics on different fields may enhance the understanding of running-related injury on
different running surfaces.
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