Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Phenyl 2,3,4-tri-O-benzyl-1-thio-α-Dmannopyranoside monohydrate

Maxime Durka, Bernadette Norberg, Yvain Roué, Stéphane P. Vincent and Johan Wouters*

Department of Chemistry, University of Namur, 61 Rue de Bruxelles, B-5000 Namur, Belgium

Correspondence e-mail: johan.wouters@fundp.ac.be

Received 27 April 2010; accepted 25 May 2010

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.003 Å; disorder in main residue; R factor = 0.030; wR factor = 0.062; data-to-parameter ratio = 13.0.

In the title compound, $C_{33}H_{34}O_5S \cdot H_2O$, the mannopyranoside ring adopts a chair conformation with the 2- α -thiophenyl group occupying an axial position. One of the pendant benzyl groups is disordered over two sets of sites in a 0.5:0.5 ratio. In the crystal, the water molecule makes two $O-H\cdots O$ hydrogen bonds to an adjacent sugar molecule with the O atoms of the primary alcohol and ether groups acting as acceptors. At the same time, the OH group of the sugar makes a hydrogen bond to a water molecule.

Related literature

For background to the synthesis and properties of mannopyranosides, see: Boons (1991); Szurmai *et al.* (1994); Caravano *et al.* (2003); Grizot *et al.* (2006); Dohi *et al.* (2008). For ring conformation analysis, see: Cremer & Pople (1975).

Experimental

Crystal data $C_{33}H_{34}O_5S \cdot H_2O$ $M_r = 560.69$ Monoclinic, $P2_1$ a = 12.628 (1) Å b = 8.084 (1) Å c = 14.832 (2) Å $\beta = 101.380 (5)^{\circ}$ $V = 1484.4 (2) \text{ Å}^{3}$ Z = 2

Mo
$$K\alpha$$
 radiation

 $\mu = 0.15 \text{ mm}^{-1}$ T = 150 K

Data collection

Oxford Diffraction Gemini Ruby CCD diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2009) $T_{\rm min} = 0.948, T_{\rm max} = 0.974$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.030$ $wR(F^2) = 0.062$ S = 0.975205 reflections 400 parameters 17 restraints 0.35 \times 0.30 \times 0.17 mm

12650 measured reflections 5205 independent reflections 4333 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.022$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{max} = 0.13 \text{ e } \text{ Å}^{-3}$ $\Delta \rho_{min} = -0.17 \text{ e } \text{ Å}^{-3}$ Absolute structure: Flack (1983), 2381 Friedel pairs Flack parameter: 0.01 (5)

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$OW-HW1\cdots O2$ 0.88 (3) 2.00 (3) 2.861 (2) $OW-HW2\cdots O6$ 0.78 (2) 2.07 (2) 2.827 (2)	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O_6 - H_6 \cdots O_W^2$ $0.87(2)$ $1.89(2)$ $2.745(2)$	$ \begin{array}{c} OW - HW1 \cdots O2 \\ OW - HW2 \cdots O6 \\ O6 - H6 \cdots OW^{i} \end{array} $	0.88 (3) 0.78 (2) 0.87 (2)	2.00 (3) 2.07 (2) 1.89 (2)	2.861 (2) 2.827 (2) 2.745 (2)	166 (2) 165 (2) 169 (2)

Symmetry code: (i) -x + 1, $y - \frac{1}{2}$, -z + 2.

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *PLATON* (Spek, 2009); software used to prepare material for publication: *PLATON*.

This work was supported in part by the Fonds National de la Recherche Scientifique (FNRS, Belgium).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB5424).

References

- Boons, G. J. (1991). J. Carbohydr. Chem. 10, 995-1007.
- Caravano, A., Mengin-Lecreulx, D., Brondello, J.-M., Vincent, S. & Sinay, P. (2003). Chem. Eur. J. 23, 5888–98.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Dohi, H., Perion, R., Durka, M., Bosco, Y., Roue, Y., Moreau, F., Grizot, S., Ducruix, A., Escaich, S. & Vincent, S. (2008). *Chem. Eur. J.* 14, 9530–9539.
 Flack, H. D. (1983). *Acta Cryst.* A39, 876–881.
- Grizot, S., Salem, M., Vongsouthi, V., Durand, L., Moreau, F., Vincent, S., Dohi, H., Escaich, S. & Ducruix, A. (2006). *J. Mol. Biol.* **363**, 383–394.
- Oxford Diffraction (2009). CrysAlis CCD, CrysAlis RED and CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

Szurmai, Z., Baaltoni, L. & Liptak, A. (1994). Carbohydr. Res. 254, 301-309.

Acta Cryst. (2010). E66, 01525 [doi:10.1107/S1600536810019604]

Phenyl 2,3,4-tri-O-benzyl-1-thio-A-D-mannopyranoside monohydrate

M. Durka, B. Norberg, Y. Roué, S. P. Vincent and J. Wouters

Comment

Oligosaccharides are natural ligands of lectins, which are important receptors involved in key biological processes. Efficient strategies for the regioselective transformations of monosaccharides to achieve glycosylation reactions or further functionalizations are of paramount importance. Furthermore, the knowledge of the conformations of carbohydrates alone or bound to protein gives access to key informations that can be exploited to understand biocatalytic processes or stereoelectronic effects (Caravano *et al.*, 2003).

Numerous strategies of protections of mannopyranosides have been described in the litterature (*e.g.* Boons, 1991; Szurmai *et al.*, 1994) in order to derivatise the primary alcohol. The title compound is also a key intermediate for the synthesis of heptosyl transferase inhibitors (Dohi *et al.*, 2008; Grizot *et al.*, 2006).

Crystal structure of the title compound confirms the expected relative stereochemistry : C1 *R*, C2 *S*, C3 *S*, C4 *R*, C5 *R*. The mannopyranoside adopts a chair conformation with puckering amplitude (Q) = 0.522 (3) Å, Theta = 3.6 (3) °, and Phi = 60 (5) ° (Cremer & Pople, 1975).

The 2-alpha-thiophenyl group on C1 and the *O*-benzyl group on C2 occupy an axial position, the two other *O*-benzyl groups (on C3 and C4) and carbon atom C6 occupying an equatorial position.

Thiophenyl-2,3,4-O-tri-benzyl-alpha-D-mannopyranoside co-crystallized with one water molecule (O_W). This water molecule is part of a H bond network involving the primary alcohol O6 and also secondary alcohol O2 (Table 1). Packing is further reinforced by van der Waals interactions involving the aromatic rings.

Experimental

The title compound was obtained by a six-step synthetic route that will be described in details elsewhere. Overall yield is 70%. Colourless prisms of (I) were obtained by evaporation of a solution in ethyl acetate.

Refinement

Disorder of the benzyl C(21) > C(27) moiety substituting oxygen O(4) was included in the refinement (0.5 occupacy for both parts that were restrained to have similar bond lengths and angles). H atoms on water oxygen atom O_W and on alcohol oxygen atom O(6) were located by Fourier difference maps and allowed to ride on their parent O atoms.

All other H atoms were placed at idealized positions and allowed to ride on their parent atoms, with C—H = 0.97 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for methylene groups, C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for aromatic carbons, and C—H = 0.96 Å and $U_{iso}(H) = 1.5U_{eq}(C)$ for the methyl group.

Figures

Fig. 1. The molecular structure of (I): C-bound H atoms are omitted and disorder is not presented for clarity. Displacement ellipsoids for non-H atoms are drawn at the 50% probability level.

Phenyl 2,3,4-tri-O-benzyl-1-thio-α-D-mannopyranoside monohydrate

Crystal data	
$C_{33}H_{34}O_5S{\cdot}H_2O$	F(000) = 596.0
$M_r = 560.69$	$D_{\rm x} = 1.255 {\rm ~Mg} {\rm m}^{-3}$
Monoclinic, P2 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: P 2yb	Cell parameters from 7534 reflections
a = 12.628 (1) Å	$\theta = 3.0-28.2^{\circ}$
b = 8.084 (1) Å	$\mu = 0.15 \text{ mm}^{-1}$
c = 14.832 (2) Å	T = 150 K
$\beta = 101.380 \ (5)^{\circ}$	Prism, colourless
V = 1484.4 (2) Å ³	$0.35\times0.30\times0.17~mm$
Z = 2	

Data collection

5205 independent reflections
4333 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.022$
$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 3.0^{\circ}$
$h = -15 \rightarrow 14$
$k = -9 \rightarrow 9$
$l = -17 \rightarrow 17$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.030$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.062$	$w = 1/[\sigma^{2}(F_{o}^{2}) + (0.0359P)^{2}]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
<i>S</i> = 0.97	$(\Delta/\sigma)_{\rm max} = 0.001$

5205 reflections	$\Delta \rho_{\text{max}} = 0.13 \text{ e } \text{\AA}^{-3}$
400 parameters	$\Delta \rho_{\rm min} = -0.17 \ e \ {\rm \AA}^{-3}$
17 restraints	Absolute structure: Flack (1983), 2381 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.01 (5)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	Occ. (<1)
C1	0.28677 (14)	0.7097 (2)	0.89516 (11)	0.0300 (4)	
H1	0.3281	0.7834	0.9416	0.036*	
C2	0.32672 (13)	0.7370 (2)	0.80557 (11)	0.0334 (4)	
H2	0.3072	0.8487	0.7825	0.040*	
C3	0.27664 (14)	0.6105 (2)	0.73342 (11)	0.0337 (4)	
Н3	0.1995	0.6349	0.7142	0.040*	
C4	0.28925 (14)	0.4357 (2)	0.77082 (10)	0.0297 (4)	
H4	0.3641	0.3989	0.7759	0.036*	
C5	0.25565 (14)	0.4210 (2)	0.86404 (10)	0.0276 (4)	
Н5	0.1771	0.4349	0.8547	0.033*	
C6	0.28498 (13)	0.2565 (2)	0.90995 (11)	0.0323 (4)	
H6A	0.2635	0.2547	0.9692	0.039*	
H6B	0.2466	0.1688	0.8725	0.039*	
C8	0.11808 (13)	0.7620(2)	0.98996 (11)	0.0308 (4)	
С9	0.02534 (15)	0.6816 (2)	1.00193 (13)	0.0370 (5)	
Н9	-0.0181	0.6284	0.9525	0.044*	
C10	-0.00307 (16)	0.6802 (2)	1.08781 (14)	0.0448 (5)	
H10	-0.0665	0.6283	1.0954	0.054*	
C11	0.06208 (17)	0.7552 (3)	1.16149 (13)	0.0489 (5)	
H11	0.0431	0.7537	1.2190	0.059*	
C12	0.15545 (18)	0.8325 (3)	1.14995 (13)	0.0453 (5)	
H12	0.2004	0.8810	1.2002	0.054*	
C13	0.18316 (15)	0.8388 (2)	1.06442 (13)	0.0378 (5)	
H13	0.2453	0.8945	1.0568	0.045*	
C14	0.50097 (18)	0.8655 (2)	0.81855 (16)	0.0507 (6)	
H14A	0.5083	0.9246	0.8764	0.061*	
H14B	0.4635	0.9367	0.7699	0.061*	

C15	0.61013 (15)	0.8228 (2)	0.80096 (11)	0.0322 (4)	
C16	0.62073 (15)	0.7141 (2)	0.73104 (11)	0.0367 (4)	
H16	0.5595	0.6650	0.6961	0.044*	
C17	0.72045 (17)	0.6782 (3)	0.71287 (13)	0.0478 (5)	
H17	0.7264	0.6048	0.6659	0.057*	
C18	0.81128 (17)	0.7497 (3)	0.76340 (17)	0.0603 (6)	
H18	0.8787	0.7253	0.7505	0.072*	
C19	0.80278 (18)	0.8570 (3)	0.83291 (16)	0.0578 (7)	
H19	0.8647	0.9052	0.8673	0.069*	
C20	0.70225 (17)	0.8946 (2)	0.85263 (12)	0.0434 (5)	
H20	0.6968	0.9673	0.9001	0.052*	
O3	0.32582 (10)	0.61829 (18)	0.65476 (8)	0.0464 (4)	
C21	0.2578 (3)	0.6608 (6)	0.5714 (2)	0.0441 (11)	0.50
H21A	0.2135	0.7550	0.5805	0.053*	0.50
H21B	0.2102	0.5689	0.5495	0.053*	0.50
C22	0.3247 (5)	0.7026 (7)	0.5018 (4)	0.0280 (18)	0.50
C23	0.4047 (6)	0.8186 (9)	0.5201 (3)	0.043 (2)	0.50
H23	0.4207	0.8676	0.5779	0.051*	0.50
C24	0.4617 (5)	0.8638 (7)	0.4547 (5)	0.0407 (15)	0.50
H24	0.5178	0.9396	0.4692	0.049*	0.50
C25	0.4364 (5)	0.7974 (10)	0.3673 (5)	0.0456 (16)	0.50
H25	0.4748	0.8301	0.3229	0.055*	0.50
C26	0.3545 (7)	0.6830 (9)	0.3456 (3)	0.0481 (19)	0.50
H26	0.3372	0.6388	0.2866	0.058*	0.50
C27	0.2978 (6)	0.6338 (10)	0.4127 (4)	0.044 (2)	0.50
H27	0.2427	0.5562	0.3988	0.053*	0.50
C21'	0.2980 (4)	0.7526 (6)	0.5997 (2)	0.0413 (7)	0.50
H21C	0.3253	0.8515	0.6334	0.050*	0.50
H21D	0.2199	0.7608	0.5844	0.050*	0.50
C22'	0.3411 (10)	0.7456 (13)	0.5118 (7)	0.0413 (7)	0.50
C23'	0.4273 (9)	0.8369 (12)	0.4994 (6)	0.0413 (7)	0.50
H23'	0.4617	0.9043	0.5471	0.050*	0.50
C24'	0.4653 (6)	0.8333 (8)	0.4192 (7)	0.0413 (7)	0.50
H24'	0.5225	0.9015	0.4122	0.050*	0.50
C25'	0.4206 (7)	0.7315 (9)	0.3503 (6)	0.0413 (7)	0.50
H25'	0.4465	0.7287	0.2958	0.050*	0.50
C26'	0.3361 (8)	0.6316 (8)	0.3617 (6)	0.0413 (7)	0.50
H26'	0.3052	0.5596	0.3149	0.050*	0.50
C27'	0.2970 (8)	0.6377 (14)	0.4420 (8)	0.0413 (7)	0.50
H27'	0.2405	0.5687	0.4494	0.050*	0.50
C28	0.26726 (15)	0.2153 (3)	0.66005 (13)	0.0451 (5)	
H28A	0.3146	0.1422	0.7016	0.054*	
H28B	0.3101	0.2731	0.6224	0.054*	
C29	0.17992 (15)	0.1171 (2)	0.60016 (12)	0.0376 (5)	
C30	0.17758 (17)	0.1035 (3)	0.50676 (13)	0.0445 (5)	
H30	0.2310	0.1538	0.4812	0.053*	
C31	0.09579 (19)	0.0151 (3)	0.45124 (14)	0.0540 (6)	
H31	0.0945	0.0064	0.3885	0.065*	
C32	0.01714 (19)	-0.0592(3)	0.48815 (15)	0.0570 (6)	
			(10)		

H32	-0.0373	-0.1189	0.4506	0.068*
C33	0.01817 (17)	-0.0461 (3)	0.58167 (15)	0.0516 (6)
Н33	-0.0359	-0.0957	0.6067	0.062*
C34	0.09947 (16)	0.0405 (3)	0.63681 (13)	0.0430 (5)
H34	0.1007	0.0480	0.6996	0.052*
O1	0.30602 (9)	0.54559 (13)	0.92705 (7)	0.0281 (3)
O2	0.44079 (9)	0.71853 (15)	0.82204 (8)	0.0383 (3)
O4	0.21835 (9)	0.32927 (16)	0.71031 (8)	0.0385 (3)
O6	0.39918 (10)	0.22905 (16)	0.92224 (9)	0.0376 (3)
OW	0.55620 (12)	0.4829 (2)	0.94836 (10)	0.0379 (3)
S1	0.14464 (4)	0.77358 (5)	0.87681 (3)	0.03636 (13)
HW1	0.528 (2)	0.551 (4)	0.9035 (18)	0.084 (9)*
HW2	0.5117 (18)	0.417 (3)	0.9508 (13)	0.047 (7)*
Н6	0.4137 (16)	0.142 (3)	0.9571 (13)	0.050 (6)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0308 (10)	0.0249 (9)	0.0353 (10)	0.0021 (8)	0.0090 (8)	0.0008 (7)
C2	0.0287 (10)	0.0296 (10)	0.0436 (10)	0.0051 (8)	0.0111 (8)	0.0099 (8)
C3	0.0279 (10)	0.0449 (11)	0.0295 (9)	0.0067 (9)	0.0089 (8)	0.0063 (8)
C4	0.0231 (10)	0.0371 (11)	0.0284 (9)	0.0003 (8)	0.0037 (7)	-0.0026 (8)
C5	0.0255 (10)	0.0274 (10)	0.0303 (9)	-0.0021 (8)	0.0061 (7)	-0.0032 (8)
C6	0.0313 (10)	0.0333 (10)	0.0333 (8)	-0.0040 (9)	0.0088 (7)	-0.0021 (8)
C8	0.0266 (10)	0.0275 (9)	0.0394 (9)	0.0041 (8)	0.0093 (7)	-0.0005 (9)
C9	0.0277 (11)	0.0346 (11)	0.0477 (11)	0.0026 (8)	0.0048 (8)	0.0003 (8)
C10	0.0356 (11)	0.0380 (12)	0.0662 (14)	0.0049 (9)	0.0232 (10)	0.0098 (10)
C11	0.0597 (14)	0.0457 (12)	0.0468 (11)	0.0112 (12)	0.0238 (10)	0.0057 (11)
C12	0.0497 (13)	0.0427 (12)	0.0427 (11)	0.0021 (10)	0.0073 (9)	-0.0073 (9)
C13	0.0318 (11)	0.0327 (10)	0.0501 (12)	0.0001 (8)	0.0105 (9)	-0.0028 (9)
C14	0.0534 (14)	0.0313 (12)	0.0750 (14)	-0.0061 (10)	0.0314 (11)	-0.0078 (10)
C15	0.0386 (11)	0.0282 (10)	0.0313 (9)	-0.0064 (8)	0.0103 (8)	0.0023 (8)
C16	0.0331 (11)	0.0442 (11)	0.0312 (9)	-0.0001 (9)	0.0024 (8)	0.0017 (8)
C17	0.0458 (13)	0.0565 (14)	0.0441 (11)	0.0070 (11)	0.0165 (10)	0.0045 (10)
C18	0.0344 (13)	0.0552 (15)	0.0942 (17)	0.0017 (12)	0.0198 (12)	0.0163 (14)
C19	0.0390 (14)	0.0482 (14)	0.0751 (16)	-0.0134 (11)	-0.0160 (12)	0.0203 (12)
C20	0.0600 (15)	0.0312 (10)	0.0345 (10)	-0.0123 (10)	-0.0011 (10)	0.0050 (8)
O3	0.0426 (8)	0.0664 (9)	0.0334 (7)	0.0167 (7)	0.0157 (6)	0.0184 (7)
C21	0.031 (2)	0.065 (3)	0.032 (2)	-0.020 (2)	-0.0058 (17)	0.002 (2)
C22	0.036 (3)	0.022 (4)	0.025 (3)	0.011 (3)	0.007 (3)	0.010 (3)
C23	0.049 (5)	0.065 (4)	0.011 (2)	0.006 (4)	0.001 (2)	-0.004 (2)
C24	0.033 (3)	0.046 (3)	0.041 (4)	-0.012 (2)	0.000 (3)	-0.004 (3)
C25	0.052 (4)	0.052 (4)	0.041 (4)	0.009 (3)	0.030 (3)	0.010 (3)
C26	0.080 (5)	0.047 (4)	0.017 (2)	0.012 (4)	0.008 (3)	-0.002 (2)
C27	0.038 (3)	0.036 (3)	0.052 (6)	-0.011 (2)	-0.007 (4)	-0.002 (4)
C21'	0.0536 (15)	0.0354 (13)	0.0370 (14)	0.0045 (11)	0.0144 (11)	0.0001 (11)
C22'	0.0536 (15)	0.0354 (13)	0.0370 (14)	0.0045 (11)	0.0144 (11)	0.0001 (11)
C23'	0.0536 (15)	0.0354 (13)	0.0370 (14)	0.0045 (11)	0.0144 (11)	0.0001 (11)

C24'	0.0536 (15)	0.0354 (13)	0.0370 (14)	0.0045 (11)	0.0144 (11)	0.0001 (11)
C25'	0.0536 (15)	0.0354 (13)	0.0370 (14)	0.0045 (11)	0.0144 (11)	0.0001 (11)
C26'	0.0536 (15)	0.0354 (13)	0.0370 (14)	0.0045 (11)	0.0144 (11)	0.0001 (11)
C27'	0.0536 (15)	0.0354 (13)	0.0370 (14)	0.0045 (11)	0.0144 (11)	0.0001 (11)
C28	0.0364 (11)	0.0497 (13)	0.0494 (11)	0.0013 (10)	0.0092 (9)	-0.0137 (10)
C29	0.0362 (11)	0.0329 (10)	0.0443 (12)	0.0027 (9)	0.0097 (9)	-0.0077 (9)
C30	0.0488 (13)	0.0425 (12)	0.0447 (12)	-0.0036 (10)	0.0152 (10)	-0.0046 (9)
C31	0.0657 (15)	0.0514 (14)	0.0423 (12)	-0.0035 (12)	0.0040 (11)	-0.0069 (10)
C32	0.0486 (15)	0.0532 (15)	0.0629 (14)	-0.0103 (11)	-0.0046 (12)	-0.0147 (11)
C33	0.0439 (14)	0.0417 (13)	0.0709 (15)	-0.0084 (10)	0.0157 (11)	-0.0053 (11)
C34	0.0427 (12)	0.0416 (11)	0.0464 (11)	0.0025 (10)	0.0124 (9)	-0.0043 (9)
01	0.0309 (7)	0.0244 (6)	0.0286 (6)	-0.0002 (5)	0.0054 (5)	0.0000 (5)
02	0.0307 (7)	0.0340 (7)	0.0521 (7)	-0.0014 (6)	0.0127 (6)	0.0108 (6)
O4	0.0283 (7)	0.0484 (8)	0.0378 (7)	0.0024 (6)	0.0042 (5)	-0.0151 (6)
06	0.0350 (8)	0.0285 (8)	0.0494 (7)	0.0019 (6)	0.0082 (6)	0.0079 (6)
OW	0.0299 (8)	0.0340 (8)	0.0469 (8)	-0.0020 (7)	0.0005 (6)	0.0019 (6)
S1	0.0316 (3)	0.0396 (3)	0.0383 (2)	0.0082 (2)	0.00785 (19)	0.0010 (2)

Geometric parameters (Å, °)

C101	1.414 (2)	O3—C21	1.403 (3)
C1—C2	1.528 (2)	C21—C22	1.496 (6)
C1—S1	1.8355 (17)	C21—H21A	0.9700
С1—Н1	0.9800	C21—H21B	0.9700
C2—O2	1.421 (2)	C22—C23	1.366 (8)
C2—C3	1.524 (2)	C22—C27	1.412 (7)
С2—Н2	0.9800	C23—C24	1.366 (7)
C3—O3	1.427 (2)	C23—H23	0.9300
C3—C4	1.515 (3)	C24—C25	1.382 (7)
С3—Н3	0.9800	C24—H24	0.9300
C4—O4	1.425 (2)	C25—C26	1.377 (8)
C4—C5	1.529 (2)	C25—H25	0.9300
С4—Н4	0.9800	C26—C27	1.393 (8)
C5—O1	1.4347 (18)	C26—H26	0.9300
C5—C6	1.506 (2)	C27—H27	0.9300
С5—Н5	0.9800	C21'—C22'	1.510 (8)
C6—O6	1.435 (2)	C21'—H21C	0.9700
С6—Н6А	0.9700	C21'—H21D	0.9700
С6—Н6В	0.9700	C22'—C23'	1.356 (10)
С8—С9	1.381 (2)	C22'—C27'	1.384 (10)
C8—C13	1.386 (2)	C23'—C24'	1.370 (9)
C8—S1	1.7777 (17)	C23'—H23'	0.9300
C9—C10	1.390 (3)	C24'—C25'	1.346 (9)
С9—Н9	0.9300	C24'—H24'	0.9300
C10-C11	1.372 (3)	C25'—C26'	1.375 (9)
С10—Н10	0.9300	C25'—H25'	0.9300
C11—C12	1.375 (3)	C26'—C27'	1.377 (9)
C11—H11	0.9300	C26'—H26'	0.9300
C12—C13	1.382 (3)	С27'—Н27'	0.9300

C12—H12	0.9300	C28—O4	1.403 (2)
C13—H13	0.9300	C28—C29	1.500 (3)
C14—O2	1.417 (2)	C28—H28A	0.9700
C14—C15	1.493 (3)	C28—H28B	0.9700
C14—H14A	0.9700	C29—C30	1.384 (3)
C14—H14B	0.9700	C29—C34	1.389 (3)
C15—C16	1.386 (2)	C30—C31	1.386 (3)
C15—C20	1.388 (3)	С30—Н30	0.9300
C16—C17	1.370 (3)	C31—C32	1.365 (3)
C16—H16	0.9300	C31—H31	0.9300
C17—C18	1.368 (3)	C32—C33	1.389 (3)
С17—Н17	0.9300	С32—Н32	0.9300
C18—C19	1.368 (3)	C33—C34	1.372 (3)
C18—H18	0.9300	С33—Н33	0.9300
C19—C20	1.392 (3)	С34—Н34	0.9300
С19—Н19	0.9300	О6—Н6	0.87 (2)
C20—H20	0.9300	OW—HW1	0.88 (3)
O3—C21'	1.362 (4)	OW—HW2	0.78 (2)
O1—C1—C2	111.21 (14)	C21—O3—C3	116.2 (2)
O1—C1—S1	114.34 (12)	O3—C21—C22	109.4 (4)
C2—C1—S1	108.15 (11)	O3—C21—H21A	109.8
O1—C1—H1	107.6	C22—C21—H21A	109.8
C2—C1—H1	107.6	O3—C21—H21B	109.8
S1—C1—H1	107.6	C22—C21—H21B	109.8
O2—C2—C3	108.46 (14)	H21A—C21—H21B	108.2
O2—C2—C1	109.45 (13)	C23—C22—C27	119.2 (6)
C3—C2—C1	110.59 (14)	C23—C22—C21	120.9 (5)
O2—C2—H2	109.4	C27—C22—C21	119.5 (5)
C3—C2—H2	109.4	C22—C23—C24	121.0 (5)
C1—C2—H2	109.4	С22—С23—Н23	119.5
O3—C3—C4	108.00 (14)	C24—C23—H23	119.5
O3—C3—C2	110.94 (15)	C23—C24—C25	120.4 (4)
C4—C3—C2	111.68 (13)	C23—C24—H24	119.8
O3—C3—H3	108.7	C25—C24—H24	119.8
С4—С3—Н3	108.7	C26—C25—C24	120.3 (5)
С2—С3—Н3	108.7	С26—С25—Н25	119.9
O4—C4—C3	108.98 (12)	С24—С25—Н25	119.9
O4—C4—C5	105.68 (14)	C25—C26—C27	119.5 (5)
C3—C4—C5	112.09 (14)	С25—С26—Н26	120.2
O4—C4—H4	110.0	С27—С26—Н26	120.2
C3—C4—H4	110.0	C26—C27—C22	119.6 (6)
C5—C4—H4	110.0	С26—С27—Н27	120.2
O1—C5—C6	106.70 (11)	С22—С27—Н27	120.2
O1—C5—C4	111.58 (13)	O3—C21'—C22'	113.2 (5)
C6—C5—C4	112.98 (14)	O3—C21'—H21C	108.9
O1—C5—H5	108.5	C22'—C21'—H21C	108.9
С6—С5—Н5	108.5	O3—C21'—H21D	108.9
C4—C5—H5	108.5	C22'—C21'—H21D	108.9
O6—C6—C5	110.21 (14)	H21C—C21'—H21D	107.8

O6—C6—H6A	109.6	C23'—C22'—C27'	117.2 (8)
С5—С6—Н6А	109.6	C23'—C22'—C21'	122.1 (10)
О6—С6—Н6В	109.6	C27'—C22'—C21'	120.6 (9)
С5—С6—Н6В	109.6	C22'—C23'—C24'	122.3 (7)
Н6А—С6—Н6В	108.1	C22'—C23'—H23'	118.9
C9—C8—C13	119.53 (16)	C24'—C23'—H23'	118.9
C9 - C8 - S1	117.95 (13)	C25'-C24'-C23'	120 4 (7)
C13 - C8 - S1	122 40 (14)	C25'—C24'—H24'	119.8
C8 - C9 - C10	120.02(17)	C23'—C24'—H24'	119.8
С8—С9—Н9	120.02 (17)	$C_{24}' - C_{25}' - C_{26}'$	119.0 (7)
C10-C9-H9	120.0	$C_{24}' - C_{25}' - H_{25}'$	120.5
$C_{11} - C_{10} - C_{9}$	120.0	$C_{26} = C_{25} = H_{25}$	120.5
$C_{11} - C_{10} - H_{10}$	110.0	$C_{25} = C_{25} = C_{25}$	120.3 (8)
$C_{11} = C_{10} = H_{10}$	119.9	$C_{25} = C_{26} = C_{27}$	110.0
$C_{10} = C_{11} = C_{12}$	119.9	$C_{23} = C_{20} = H_{20}$	119.9
$C_{10} = C_{11} = C_{12}$	119.72 (10)	$C_{27} = C_{20} = 1120$	119.9
	120.1	$C_{20} = C_{27} = C_{22}$	120.7 (9)
	120.1	$C_{20} = C_{27} = H_{27}$	119.7
	120.66 (17)	$C_{22} = C_{27} = H_{27}$	119.7
CII—CI2—HI2	119.7	04-028-029	108.24 (15)
C13C12H12	119.7	04—C28—H28A	110.0
C12—C13—C8	119.79 (18)	C29—C28—H28A	110.0
С12—С13—Н13	120.1	04—C28—H28B	110.0
С8—С13—Н13	120.1	C29—C28—H28B	110.0
O2—C14—C15	109.44 (16)	H28A—C28—H28B	108.4
O2—C14—H14A	109.8	C30—C29—C34	118.92 (17)
C15—C14—H14A	109.8	C30—C29—C28	120.18 (18)
O2—C14—H14B	109.8	C34—C29—C28	120.90 (17)
C15—C14—H14B	109.8	C29—C30—C31	120.1 (2)
H14A—C14—H14B	108.2	C29—C30—H30	119.9
C16—C15—C20	118.96 (19)	C31—C30—H30	119.9
C16-C15-C14	120.41 (16)	C32—C31—C30	120.32 (19)
C20-C15-C14	120.61 (18)	C32—C31—H31	119.8
C17—C16—C15	120.65 (18)	C30—C31—H31	119.8
C17—C16—H16	119.7	C31—C32—C33	120.20 (19)
C15-C16-H16	119.7	С31—С32—Н32	119.9
C18—C17—C16	120.4 (2)	С33—С32—Н32	119.9
С18—С17—Н17	119.8	C34—C33—C32	119.5 (2)
С16—С17—Н17	119.8	С34—С33—Н33	120.2
C19—C18—C17	119.9 (2)	С32—С33—Н33	120.2
C19—C18—H18	120.0	C33—C34—C29	120.89 (18)
C17—C18—H18	120.0	С33—С34—Н34	119.6
C18—C19—C20	120.51 (19)	С29—С34—Н34	119.6
С18—С19—Н19	119.7	C1—O1—C5	114.61 (11)
С20—С19—Н19	119.7	C14—O2—C2	116.02 (14)
C15—C20—C19	119.52 (19)	C28—O4—C4	116.34 (13)
C15—C20—H20	120.2	С6—О6—Н6	106.8 (14)
C19—C20—H20	120.2	HW1—OW—HW2	106 (2)
C21'-O3-C21	40.1 (2)	C8—S1—C1	101.91 (8)
C21'—O3—C3	115.02 (19)		(~)
	× /		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D -\!\!\!-\!\!\!\!- \!$
OW—HW1···O2	0.88 (3)	2.00 (3)	2.861 (2)	166 (2)
OW—HW2···O6	0.78 (2)	2.07 (2)	2.827 (2)	165 (2)
O6—H6…OW ⁱ	0.87 (2)	1.89 (2)	2.745 (2)	169 (2)
Symmetry codes: (i) $-x+1$, $y-1/2$, $-z+2$.				

Fig. 1