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Abstract: The strong coupling between single quantum emitters and resonant optical micro/nanocavities is
beneficial for understanding light and matter interactions. Here, we propose a plasmonic nanoantenna
placed on a metal film to achieve an ultra-high electric field enhancement in the nanogap and an
ultra-small optical mode volume. The strong coupling between a single quantum dot (QD) and the
designed structure is investigated in detail by both numerical simulations and theoretical calculations.
When a single QD is inserted into the nanogap of the silver nanoantenna, the scattering spectra show
a remarkably large splitting and anticrossing behavior of the vacuum Rabi splitting, which can be
achieved in the scattering spectra by optimizing the nanoantenna thickness. Our work shows another
way to enhance the light/matter interaction at a single quantum emitter limit, which can be useful
for many nanophotonic and quantum applications.

Keywords: strong coupling; nanoantenna; single quantum dot

1. Introduction

Recently, the interactions between the emitters and an optical micro/nano cavity have
attracted huge interest [1–5]. The strong coupling approaching the single-photon limit
between an individual quantum emitter and an optical cavity, which can be described
by the cavity quantum electrodynamics (QED), is of particular interest and enables mul-
tiple optical applications, such as efficient single-photon sources, quantum information
processing [6,7], quantum communication [8,9], low-threshold lasers [10], and ultrafast
optical switching [11]. Strong coupling can be manifested in the optical spectrum of the
compound structure as a vacuum Rabi splitting. The coupling strength of the interaction
is proportional to the ratio of the quality factor of the cavity to the optical mode volume.
Therefore, one method to achieve strong coupling is to use dielectric optical cavities of
high Q, for example, micropillars [12], photonic crystals [13,14], and metasurfaces [15–17].
Realizing such a high Q requires complex experimental fabrication techniques or fastidious
experimental conditions. In addition, the coupling strength relies on the local electric
field. A higher local electric field leads to greater coupling strength [15]. Cavities made
of metal materials, that can support surface plasmons (SPs), can focus the electromag-
netic fields into the deep sub-wavelength mode volumes [18,19]. Therefore, utilizing such
optical nanocavities can simplify the experimental conditions for strong interactions be-
tween light and matter, and will benefit quantum optical experiments carried out under
ambient conditions.

At visible wavelengths, noble metals, such as gold and silver, are used to construct
micro/nano structures supporting SPs in many applications [20–22]. Although the Q factor
of an SP mode is relatively low compared with photonic cavities, their optical volume

Nanomaterials 2022, 12, 1440. https://doi.org/10.3390/nano12091440 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12091440
https://doi.org/10.3390/nano12091440
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0002-9841-2411
https://doi.org/10.3390/nano12091440
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12091440?type=check_update&version=1


Nanomaterials 2022, 12, 1440 2 of 9

can be drastically reduced. Many research studies have been conducted to study the
interactions between SP modes and quantum emitters. In recent years, strong coupling
has also been observed by using plasmonic gold dimers [23], silver nanorod [24], and
silver nanoprism [25], etc. Hundreds of quantum emitters or more were involved in these
experiments. However, for quantum information processing, one needs to reach the limit
of a single emitter coupled to the cavity. H. Groß et al. realized the strong coupling between
a scanning plasmonic nanoresonator probe and a single semiconductor QD under ambient
conditions [26]. K. Santhosh et al. demonstrated that the coupling ratio (of the quality
factor of the cavity to the optical mode volume) can be close to the strong coupling regime
when a single QD was placed in the nanogap of a silver bowtie [27]. By further increasing
the local electric field enhancement and reducing the optical mode volume, one can indeed
achieve strong coupling between individual quantum emitters and micro/nanocavities.

In this work, a plasmonic nanoantenna placed on a metal film is proposed, which
exhibits ultra-high electric field enhancements in the nanogap and ultra-small optical
volumes. Strong coupling between a single quantum dot and the designed structure can be
achieved. When a single QD is inserted into the nanogap of the silver nanoantenna, the
scattering spectra show a distinct spectral splitting and the vacuum Rabi splitting can be
up to 188 meV. Both the finite difference time domain (FDTD) simulations and the coupled-
mode theory (CMT) analysis confirm that the strong coupling regime is approached in
the hybrid system. This work offers a new way to fulfil strong light-matter interactions
at the single quantum emitter limit, which can be useful for quantum and nanophotonic
applications.

2. Materials and Methods

The scattering spectra of the silver nanoantenna placed on the silver film and the
substrate, as well as the hybrid structures, were numerically simulated by using three-
dimensional (3D) FDTD (Lumerical FDTD Solutions).

The refractive index of silver was obtained from the data provided by Johnson
and Christy [28]. The permittivity of the QDs can be approximated using a Lorentz
oscillator model:

ε(ω) = ε∞ +
fω2

0
ω2

0 −ω2 − iΓ0ω
(1)

where ε∞, f, ω0 and Γ0 are the high-frequency dielectric constant, the oscillator strength,
the exciton transition frequency, and the exciton linewidth, respectively. In this work, these
parameters were chosen as ε∞ = 6.1, f = 0.6,ω0 = 1.879 eV, and Γ0 = 80 meV [27].

A total-field scattered-field (TFSF) source with a polarized transverse electric (TE) field
(polarization along the y-axis) is used to calculate the scattering spectra of the designed
structures. Perfectly matched layer (PML) boundary conditions were employed surround-
ing the whole structures. A finer mesh region with a size of 0.5 × 0.5 × 0.5 nm3 was applied
in the nanogap while a coarser mesh with a size of 1 × 1 × 1 nm3 was applied elsewhere.

3. Results and Discussion
3.1. The Proposed Plasmonic Nanoantenna on a Metal Film

Figure 1 schematically shows the designed structure, which comprises the plasmonic
nanoantenna, a metal (silver) film, and a substrate. The perspective, side, and top view
of the structure are depicted in Figure 1a–c, respectively. The coordinate system and
parameters of the structure are also given in these figures. As shown in Figure 1a, the
plasmonic nanoantenna is made of two identical parts, which both have a cuboid and four
frustums of a pyramid. The parameter denotations are shown in Figure 1b,c. The thickness
of this nanoantenna is h. A nanogap is formed between two parts of the nanoantenna with
length g and width wg. These two parameters have the same values. The length and width
of the rectangle is L1 and w, and the height of the trapezoid is L2. In this work, the material
of the plasmonic nanoantenna is chosen as silver due to its relatively low losses and a
higher quality factor Q when compared with other metal materials. The thickness of the
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silver film is t = 200 nm, which is thick enough to block the incident wave to transmit the
structure. The above structure is placed on top of the silica (n = 1.47) substrate. By varying
the structural parameters of the nanoantenna, the resonance of the localized SP can be
tuned. In order to support the resonant mode with ultra-large electric field enhancements
and ultra-small optical volumes in the nanogap, the parameters of the silver nanoantenna
were chosen as follows: L1 = 370 nm, L2 = 126 nm, w = 70 nm, and wg = 7 nm. Consequently,
when a single quantum emitter was inserted into the nanogap, strong coupling between
the plasmonic nanoantenna and the quantum emitter can be achieved.
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Figure 1. (a) Schematic diagram of the proposed silver nanoantenna on a silver film. (b) Side view of
the structure in the y-z plane. (c) Top view of the structure in the x-y plane.

The plasmonic behavior of the single silver nanoantenna placed directly on a silver
film and a substrate was investigated by using the finite-difference time-domain (FDTD)
method (Lumerical FDTD Solutions). The detailed simulations can be found in the Materi-
als and Methods section. The calculated scattering spectra are depicted in Figure 2a. From
this figure, under both conditions, the structure possesses longitudinal mode due to the
dipolar coupling between the two parts of the silver nanoantenna. When placed on the
silica substrate, the blue line in Figure 2a shows that the plasmonic nanoantenna supports
a localized SP mode at 744 nm and the Q factor is 12.6. However, for the nanoantenna on
the silver film, the resonant frequency of the mode has a blue shift and exhibits a higher
Q factor, i.e., 22.2. The electric field distributions at the plane x = 0 for the nanoantenna
placed on the silver film is shown in Figure 2b. It can be seen clearly that the electric
field is highly confined in the nanogap of the nanoantenna. Figure 2c shows the enlarged
electric field distributions in the nanogap. Furthermore, the electric hot spot is concen-
trated at the top of the nanogap. The electric field is maximized at the vicinity of the
nanoantenna, which is enhanced as high as 470-fold. There is no noticeable electric field en-
hancement in the other parts of the structure. The electric field distributions at the top plane
(z = 40 nm) of the nanoantenna are drawn in Figure 2d. Similarly, the enlarged electric
field distributions in the nanogap at this plane are shown in Figure 2e. When getting
close to the four vertexes of the nanogap, the electric field is greatly enhanced and can be
more than 600 times the incident wave. As depicted in Figure 2e, the electric field will be
enhanced more than 200 times in the center of the nanogap. The calculated optical volume
of the resonant longitudinal mode is ultra-small, only 1.61 × 10−6 λ3 (due to the highly
confined electric field in the nanogap), which is one order lower than that of a plasmonic
waveguide–slit structure on a metallic substrate reported by G. Zhang et al. [29].
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Figure 2. (a) Simulated scattering spectra of the silver nanoantenna placed on a silver film (red line)
and directly on a silica substrate (blue line). (b) The electric field distribution of the longitudinal
mode on the plane x = 0 for the silver nanoantenna placed on the silver film. (c) The magnified
electric field distribution in the nanogap in (b). (d) The electric field distribution of the longitudinal
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In addition, the electric field distributions at the plane x = 0 of the nanoantenna
placed on the silica substrate are shown in Figure 3a. The electric field is highly focused
in the nanogap as well. However, when compared with Figure 2b, the electric hot spot is
concentrated at the bottom of the nanogap, which is different from the nanoantenna placed
on the silver film. The electric field distributions at the bottom plane (z = 0 nm) of the
nanoantenna are depicted in Figure 3b. The electric field in the nanogap is the strongest
and the electric field enhancements are observed surrounding the nanoantenna and the
silica substrate. In the plane x = 0 nm, the electric field is enhanced at a maximum more
than 150 times and this is much lower than that of the silver nanoantenna placed on the
silver film. It can be found that the silver film can help the concentrations of the electric
fields in the nanogap of the nanoantenna.
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Local electric field enhancement is important to realize the strong coupling between
light and matter. The effects of the size of the nanogap on the Q factor and the local
electric field enhancements were studied numerically and the results are shown in Figure 4.
Figure 4a is the relation between the calculated scattering spectra on the excitation wave-
length and the nanogap size wg (from 3 nm to 11 nm). When wg increases from 3 nm to
11 nm, the linewidth of the resonance increases and the resonance exhibits a blueshift. This
means that the corresponding Q factor decreases when the size of the nanogap wg increases.
The obtained Q factors and the maximum electric field enhancement (|Emax/E0|) for
different nanogap sizes wg are depicted in Figure 4b. When wg is 3 nm, the Q factor of
the resonance is 43.1 and the maximum electric field enhancement can be as high as 1599.
The Q factor and the maximum electric field enhancement then decrease with the increase
of wg. For example, when wg is 11 nm, the Q factor only reaches 13.9 and the maximum
electric field enhancement is 334. Therefore, one can vary the size of the nanogap to study
the light and matter interactions in the nanogap of the silver nanoantenna. The proposed
nanoantenna can be fabricated by electron beam lithography (EBL), metal deposition, and
liftoff, arranged in an appropriate sequence. The gap can be as small as 8 nm by using the
advanced EBL process [30]. Atomic layer lithography was developed to create patterned
nanogaps in metallic structures via atomic layer deposition (ALD) [31]. Because the lateral
dimension is defined by ALD in this method, the fabricated gaps can be as small as 1 nm.
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3.2. Strong Coupling between the Antenna and Single QD

In this work, the QD with an exciton transition at 660 nm was modeled by a Lorentz
oscillator model, which was detailed in the Materials and Methods section. The calculated
permittivity of the QD is displayed in Figure 5a. A series of silver nanoantennas was
designed with the thickness h ranging from 34 nm to 43 nm in 1 nm steps, to tune the bare
plasmon resonance from approximately 627 nm to 684 nm, covering the exciton resonance
of the QD. Figure 5b shows the scattering spectra of the silver nanoantenna with different
thicknesses. It can be found that the scattering spectra show a redshift while the Q factor
remains unchanged when the thickness increases from 34 nm to 43 nm.

As shown in Figure 1, a single QD with a diameter of 6 nm was inserted into the top
center of the nanogap, which then led to great electric field enhancements. Two methods
can be utilized to insert a single QD into the nanocavity. One method is to use interfacial
capillary forces to drive the QDs even to the single limit into the nanogaps, as presented
by Santhosh et al. [27]. The other method takes the advantage of atomic force microscopy
(AFM) to manipulate a single QD into the nanocavity [32,33]. Figure 5c shows the scattering
spectra of the mixed structure with different silver nanoantenna thicknesses h. As the
curves in Figure 5b show, the resonance of the plasmon increases when the thickness h
increases. As the thickness h increases, the resonance of the plasmon mode will shift across
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the exciton resonance. As shown in Figure 5c, all the scattering spectra show a clear mode
splitting with two new peaks, which are different from the individual plasmon and exciton
resonances. The scattering peaks are the result of the strong light-matter interactions
between the plasmon and the exciton resonances.
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The purple dots and green dashed curve correspond to the FDTD simulation and the
CMT results, respectively. The blue and red curves represent the individual resonances of
the exciton and the plasmon modes, respectively. As shown in the scattering spectra in
Figure 5d, unique anticrossing upper (UB) and lower (LB) bands are obtained. Such an
anticrossing trend proves the robustness of the nanogap-exciton coupling in the hybrid
structure. Coupled mode theory (CMT) was used to describe the two new states and was
fitted for the exciton-plasmon coupling dispersion. The eigen energies of the coupling
modes ELB,UB are given by [34]:[

Ep + ih̄γp g
g Ee + ih̄γe

][
α

β

]
= ELB,UB

[
α

β

]
(2)

Here, Ep and Ee are the energies for the bare plasmon mode and the exciton resonance,
respectively. γp and γe are the half-bandwidths of the bare plasmon and the exciton
resonances, respectively. g is the coupling rate characterizing the interaction between the
plasmon mode and the exciton resonance. α and β are the Hopfield coefficients, which
meet |α|2 + |β|2 = 1. |α|2 and |β|2 stand for the fractions of the plasmon mode and the
excitons in the new states, respectively. The eigenvalues are achieved as:

ELB,UB =
1
2
[Ee + Ep + i(γe + γp)/2]±

√
g2 +

1
4
[Ee − Ep + i(γp − γe)]

2 (3)



Nanomaterials 2022, 12, 1440 7 of 9

Using Equation (3), with zero detuning for the two new hybrid bands, the Rabi
splitting energy of:

h̄Ω = 2
√

g2 − (γp − γe)
2/4 (4)

can be obtained from the FDTD and the CMT fitting results in Figure 5d. To meet the strong
coupling criteria, one of the following conditions should be satisfied:

N1 = h̄Ω/(γp + γe) > 1 and N2 = g/
√
(γ2

e + γ
2
p)/2 > 1 (5)

where γe = 40 meV and γp = 42.0 meV. The Rabi splitting h̄Ω = 188.0 meV at zero detuning
is extracted from the FDTD calculated results. An interaction strength g = 100.8 meV was
obtained. Thus, from the FDTD simulations, N1 = 2.29 and N2 = 2.46 were calculated,
which satisfy the strong coupling criteria. According to the CMT, the dispersion of the
exciton-polaritons can be fitted and the results are plotted as shown in Figure 5d. From
the fitting curve, we can obtain g = 99.5 meV and h̄Ω = 185.1 meV, hence N1 = 2.20 and
N2 = 2.43, which will satisfy the strong coupling criteria as well. Therefore, both the
CMT and the FDTD results confirm that strong coupling is achieved. In addition, the
Rabi splitting can be further increased when the QD is inserted very closely to the silver
nanoantenna.

4. Conclusions

In summary, a plasmonic nanoantenna placed on a metal film, which has an ultra-high
electric field enhancement and an ultra-small optical volume in the nanogap, was designed.
When compared with the nanoantenna directly placed on the substrate, the metal film
contributes to increase the local field enhancement further. The strong coupling between the
silver nanoantenna placed on a metal film and a QD has been confirmed both theoretically
and numerically. The simulation results show strong coupling between the exciton and the
plasmon modes in scattering spectral splitting. Furthermore, the anticrossing behavior with
the two new states can be achieved by changing the thickness of the silver nanoantenna.
The unique coupling can also be used to realize strong light−matter interactions in a single
quantum emitter, and the hybrid structure designed here will be beneficial to quantum
information operations and other nanophotonic applications.
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