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Abstract. Unlike the wild-type asialoglycoprotein re- 
ceptor subunit H1 which is transported to the cell sur- 
face, endocytosed and recycled, a mutant lacking resi- 
dues 4-33 of the 40--amino acid cytoplasmic domain was 
found to be retained intracellularly upon expression in 
different cell lines. The mutant protein accumulated in 
the trans-Golgi, as judged from the acquisition of trans- 
Golgi-specific modifications of the protein and from 
the immunofluorescence staining pattern. It was local- 
ized to juxtanuclear, tubular structures that were also 
stained by antibodies against galactosyltransferase and 
-y-adaptin. The results of further mutagenesis in the cy- 
toplasmic domain indicated that the size rather than the 
specific sequence of the cytoplasmic domain deter- 

mines whether H1 is retained in the trans-Golgi or 
transported to the cell surface. Truncation to less than 
17 residues resulted in retention, and extension of a 
truncated tail by an unrelated sequence restored sur- 
face transport. The transmembrane segment of H1 was 
not sufficient for retention of a reporter molecule and it 
could be replaced by an artificial apolar sequence with- 
out affecting Golgi localization. The cytoplasmic do- 
main thus appears to inhibit interaction(s) of the exo- 
plasmic portion of H1 with trans-Golgi component(s) 
for example by steric hindrance or by changing the po- 
sitioning of the protein in the membrane. This mecha- 
nism may also be functional in other proteins. 

T 
RANSPORT of proteins through the secretory pathway 
appears to occur by default (Pfeffer and Rothman, 
1987). In contrast, localization to individual compart- 

ments (by retention or retrieval) requires specific signals 
(Pelham and Munro, 1993), such as the carboxy-terminal 
sequence KDEL and the cytoplasmic motif K(X)KXX for 
retrieval to the ER of lumenal and membrane proteins, re- 
spectively. The determinants for retention in Golgi com- 
partments have so far been shown to comprise the trans- 
membrane domain with or without flanking sequences. 
Proteins leaving the Golgi apparatus are sorted in the 
trans-Golgi network (TGN) largely by signal-dependent 
mechanisms into specific transport vesicles to secretory 
granules, apical or basolateral plasma membrane, or endo- 
somes. 

In the endoplasmic reticulum (ER), in addition, there 
are mechanisms to prevent improperly folded or oligomer- 
ized proteins from exiting and to degrade them. The ER 
thus performs a quality control function for secretory and 
membrane proteins (Hurtley and Helenius, 1989). Many 
natural and artificial mutations in such proteins have been 
observed to result in ER retention and degradation, ap- 
parently because they affect protein folding or oligomer- 
ization. Alterations in the signals for targeted exit from the 
TGN generally cause missorting rather than TGN localiza- 
tion of the mutant. Only very few mutations have been 

documented that cause a specific accumulation of the mu- 
tant protein in post-ER compartments of the secretory 
pathway. Such mutations may reflect properties of reten- 
tion or transport mechanisms in the Golgi. Here we de- 
scribe mutants of the asialoglycoprotein (ASGP) 1 receptor 
subunit H1 that specifically accumulate in the trans-Golgi. 

The ASGP receptor is an endocytic transport receptor 
responsible for the rapid clearance of glycoproteins with 
exposed galactoses from the circulation into hepatocytes 
(for review see Spiess, 1990). Ligand ASGPs are bound at 
the cell surface, internalized via clathrin-coated vesicles, 
and released in the acidic environment of endosomes for 
subsequent degradation in lysosomes. The ASGP receptor 
cycles constitutively between the cell surface and early en- 
dosomes. The human receptor is at least a trimer com- 
posed of two homologous subunits, H1 and H2, which 
both are required for high affinity ligand binding. The sub- 
units are single-spanning type II membrane proteins with 
amino-terminal cytoplasmic domains of 40 and 58 resi- 
dues, respectively. The major subunit H1, which is 2--4 
times more abundant than H2, contains all the signals nec- 
essary for endocytosis and specific basolateral transport in 

1. Abbreviat ions used in this paper: ASGP, asialoglycoprotein; M6P, man- 
nose-6-phosphate. 
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polarized epithelial cells (Geffen et al., 1989; Wessels et 
al., 1989). A tyrosine-containing signal necessary for effi- 
cient endocytosis and basolateral sorting has been identi- 
fied in the amino-terminal segment of residues 1-11 (Fuh- 
rer et al., 1991; Geffen et al., 1993). Mutation of the critical 
tyrosine at position 5 to alanine or deletion of residues 4-11 
result in apolar sorting in transfected MDCK cells and in 
accumulation of H1 at the plasma membrane in trans- 
fected fibroblast and MDCK cells. 

As part of these studies, an H1 mutant lacking most of 
the cytoplasmic domain (residues 4-33) was constructed 
(Geffen et al., 1993). Although this mutant protein exits 
the ER, it is not detectable at the cell surface. Here we 
show that it accumulates specifically in a trans-Golgi com- 
partment. The sequence requirement for retention or exit 
to the plasma membrane was investigated by further mu- 
tagenesis. The results indicate that the size of the cytoplas- 
mic domain determines the fate of the protein and modu- 
lates an intrinsic ability of the transmembrane and/or 
exoplasmic portion of H1 to interact with component(s) 
resident in the trans-Golgi. Such a mechanism may be 
functional also for other trans-Golgi/plasma membrane 
proteins. 

Materials and Methods 

Construction of Mutant Proteins 
Mutagenesis of the cDNAs encoding the mutants H1(A4-33A), HI(A4- 
11), and HI(A12-33) have been described previously (Beltzer et al., 1991; 
Geffen et al., 1993). Hl(A12-33/5A) was constructed using the mutagene- 
sis kit by Amersham Corp. (Arlington Heights, IL), the eDNA of HI(A12- 
33) subcloned into M13mp19 as the template, and the anti-sense oligonu- 
cleotide GGTCTTGAG..~CCTCCTTG as the primer (the mismatched 
nucleotides are underlined). To generate the cDNA of H1(A4-33m), two 
complementary oligonucleotides were synthesized, CCAGGAACAAAA- 
Gq'TGATrTCTGAAGAAGACITGGCTGCA and GCCAAGTCITCT- 
TCAGAAATCAACITITGTTC, which encode the e-myc epitope EQK- 
LISEEDLA recognized by the monoclonal antibody 9E10 (Evan et al., 
1985) and produce "sticky ends" for in-frame insertion between the StyI 
site at codons 2/3 and the PstI site at codons 32/33 of the H1 cDNA. 

The other eDNA constructs were made by polymerase chain reaction 
(PCR) using the wild-type eDNA of H1 (Spiess et al., 1985; Hind III-  
EcoRI subcloned into pSP64 or pGEM3) as the template, a mutagenic 
primer and a second primer corresponding to a flanking sequence in the 
plasmid vector. For Hl(~Pro), a 5' eDNA fragment containing codons 1-24 
and 31-33 was amplified using the oligonucleotide CGTCCTGCAG- 
GAGCCCTITrCTGAGCTG as the mutagenic primer. Codons 32 and 
33 correspond to a PstI restriction site that was used to ligate this ampli- 
fied 5' segment to the 3' rest of the H1 eDNA starting from this PstI site. 
The HI(A2-37) construct was made using the mutagenic primer CCTAC- 
CATGGGACCTCGCCTCCT to amplify an amino terminally truncated 
eDNA with an ATG and an NdeI restriction site for subcloning. The 
cDNAs of HI(A2-19), HI(A2-24), HI(A2-28), HI(A2-33), and HI(A26-40) 
were constructed by PCR and splicing by overlap extension according to 
Ho et al. (1989a), thereby retaining the original 5' untranslated sequence 
and ATG. 

To construct HIT, the cDNA corresponding to the cytoplasmic domain 
of the mouse transferrin receptor (from L. Kithn, ISREC) was amplified 
by PCR from the plasmid pMTR-1 using the mutagenic primer TCC- 
CCAGTCGACCATTAAAC, which introduces a SalI site (underlined) 
at the end, and a primer corresponding to a flanking sequence in the plas- 
mid vector. The cDNA corresponding to the transmembrane and exoplas- 
mic domains of H1 were amplified similarly with the primer CCGGAC- 
GTCGACTCCTCCTG, which introduces a SalI site at the beginning of 
the transmembrane domain. The PCR products were subcloned and li- 
gated to each other at the SalI site. The eDNA of H1TA was constructed 
by PCR from the plasmid encoding HIT using the mutagenic primer 
GGGGTACCATGGTCAGAAAACCCAAGAGG to amplify a trun- 
cated eDNA with a 5' ATG and a KpnI restriction site for subcloning. 

To construct the eDNA of AN2 and AN2A a BamHI site was intro- 
duced into the aminopeptidase N eDNA at codons 33/34 corresponding to 
the exoplasmic end of the transmembrane domain using the mutagenic 
anti-sense primer TCCTGGGATCCCACCACTG and the Amersham 
mutagenesis kit. The eDNA fragment 3' of this BamHI site was ligated to 
the 5' t-IindIfI-BamHI fragment of either H1 or Hl(A4-33A) eDNA. From 
the plasmid 19L, a gift from G. von Heijne (Karolinska Institute, Hud- 
dinge, Sweden) a sequence encoding 19 leucines, preceded by a KpnI site 
and the codons for Met-Gly-Pro-Arg, and followed by a BamHI site was 
amplified by PCR and ligated in front of the BamHI-EcoRI fragment of 
H1 eDNA to obtain the construct for H1ALeu19. The construct for 
H1Leu19 was made by ligating the HindlII-NruI fragment of plasmid 
pSAll/3 (Spiess and Handschin, 1987) to the H1ALeu~9 eDNA cut with 
KpnI and blunted. 

To generate the eDNA of H1(A4-33A) Ts, a variant of Hl(A4-33A) 
tagged with a tyrosine-sulfation peptide at the carboxy terminus, the 3' 
portion (BamHl-EcoRI) of the eDNA of Hl(A4-33A) was replaced by 
that of H1TM described by Leitinger et al. (1994). To construct Hl(A4- 
33A) myc, a variant containing a carboxy-terminal c-myc epitope tag, the 
tyrosine-sulfation tag sequence (KpnI-SacI) of the H1 rs eDNA was 
replaced by two complementary oligonucleotides, CGAACAAAAGTTGA- 
TITCTGAAGAAGACTrGAACTGAGCT and CAGTTCAAGTCT- 
TCITCAGAAATCAACITI ' rGTTCGGTAC,  which encode the pep- 
tide sequence EQKLISEEDLN followed by a stop codon and produce 
terminal protruding ends corresponding to a KpnI and a SacI site at the 5' 
and 3' end, respectively. All mutagenized segments were confirmed by 
DNA sequencing. 

Cell Culture and Transfection 
MDCK (strain II), COS-7, HepG2, and HeLa cells were grown in minimal 
essential medium (MEM) with 10% FCS, NIH 3T3 cells in Dulbeceo's 
modified MEM with 10% newborn calf serum, CaCo-2 cells in DMEM 
with 20% FCS and 1% nonessential amino acids (GIBCO BRL, Gaithers- 
burg, MD), and BHK-21 ceils in Glasgow MEM with 5% FCS and 10% 
tryptose phosphate broth (Gibeo). All culture media were supplemented 
with 2 mM L-glutamine, 100 U/ml penicillin, and 100 mg/ml streptomycin. 

For transient expression, eDNA constructs were subcloned into the 
SV40-based expression vector pECE (Ellis et al., 1986) and transfected 
using DEAE-dextran as described by Cullen (1987). The next day trans- 
fected cells were trypsinized and seeded onto coverslips and processed for 
immunofluorescence microscopy 36--40 h after transfection. 

Preparation of the stable MDCK cell lines M1, M1A (= Ml[A4-33A]), 
M1 rs, M2, M12 (= M[Y+f]) has been described previously (Wessels et al., 
1989; Geffen et al., 1993; Leitinger et al., 1994; Fuhrer et al., 1994). To pro- 
duce stable cell lines, the eDNA of Hl(A4-33A) TM was cloned into pK21 
(with a eytomegalovirus promoter; provided by R. Gentz, Hoffmann-La 
Roche, Basel), and transfected into MDCK cells together with one tenth 
the amount of the resistance plasmid pSVneo using polybrene and di- 
methyl sulfoxide according to Kawai and Nishizawa (1984). Clonal cell 
lines resistant to 0.5 mg/ml G418-sulfate were isolated and screened for 
expression by immunofluorescence and immunoblot analysis using a poly- 
clonal antiserum directed against the ASGP receptor. The eDNA of 
Hl(A4-33A) was subcloned into pBamHis (with a murine leukemia virus 
promoter and the Salmonella his gene as a resistance marker; from R. 
Mulligan, Whitehead Institute, Cambridge, MA) and transfected into the 
cell line M2, an MDCK-derived cell line expressing the second ASGP re- 
ceptor subunit H2 and G418 resistance (Fuhrer et al., 1994). Clonal cell 
lines were selected in the presence of 2 mg/ml histidinol. The resulting cell 
lines were named M1A Ts and M2/1A, respectively. 

Biochemical Analyses 
The surface/intraeellular distribution of H1 variants was assayed by treat- 
ing intact cells with 1 mg/ml proteinase K in PBS containing 5 mM EDTA 
for 30 min at 4°C or 37°C. Digestion was stopped by adding 2 mM PMSF. 
Digested and control ceils were lysed in gel sample buffer and subjected to 
SDS-gel electrophoresis and immunoblot analysis using l~I-iodinated 
protein A. Autoradiographs were quantitated by densitometric scanning. 
The high mannose precursor form was used as an internal standard in cal- 
culating the fraction of resistant mature form. 

For carbohydrate analysis, cells were solubilized in lysis buffer (1% Tri- 
ton X-100, 0.5% deoxycholate, 2 mM PMSF in PBS) and incubated with 2 
mU endo-I~-N-acetylghicosaminidase H or 5 mU neuraminidase (Boeh- 
ringer Mannheim Corp., Indianapolis, IN) for 3 h at 37°C in 100 Ixl. Sam- 
ples were analyzed by SDS-gel electrophoresis and immunobloqting, 
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[35S]Sulfate labeling was performed as described by Leitinger et al. 
(1994). Cell lysates were immunoprecipitated with the polyclonal antise- 
rum directed against the ASGP receptor and protein A-Sepharose (Phar- 
macia LKB Biotechnology, Piscataway, NJ). The immunocomplexes were 
solubilized in SDS-gel sample buffer and analyzed by gel electrophoresis 
and fluorography. 

Antibodies 
Antisera used for detection of ASGP receptor subunits were raised in rab- 
bits against the purified human receptor (62-5) or against synthetic pep- 
tides corresponding to the carboxy-terminal sequence of either H1 
(anti-H1C) or H2 (anti-H2C). For immunofluorescence staining, IgG 
from anti-H1C and anti-H2C were isolated using protein A--Sepharose. 
Rabbit polyclonal antibodies anti-human milk galactosyltransferase (Nll ;  
from E. Berger, University of Ziirich), anti-bovine cation-independent 
M6P receptor (from B. Hoflack, EMBL), anti-rat TGN-38/41 (from G. 
Banting, University of Bristol), and anti-human aminopeptidase N (from 
O. Nordn and H. SjOstrSm, University of Copenhagen) were used as se- 
rum preparations. Mouse monoclonal antibodies anti-canine LAMP-1 
(AC17; from E. Rodriguez-Boulan, Cornell University), and anti-bovine 
~-adaptin (100:3; Sigma Immunochemicals, Buchs, Switzerland) were 
used as ascites preparations. Mouse anti-human c-myc antibody 9El0 was 
used as culture supernatant. Secondary antibodies fluorescein-conjugated 
anti-mouse IgG and anti-rabbit IgG, and rhodamine-conjugated anti-rab- 
bit IgG were from Cappel (Malvern, PA). 

Immunofluorescence Microscopy 
For indirect immunofluorescence staining, cells were grown on 14-ram glass 
coverslips. Cells were fixed in I% paraformaldehyde for 20 rain at room 
temperature for surface staining and with cold methanol for 6 mill at -20~C 
for internal staining. After fixation the coverslips were washed in PBS and 
incubated in 50 mM NH4C1 in PBS for 10 min at room temperature. Non- 
specific antibody binding was blocked by incubation for 30 min with PBS 
containing 0.2% gelatine (PBSG). Coverslips were placed onto drops of pri- 
mary antibody diluted in PBSG for 1 h. After washing three times with 
PBSG, cells were similarly incubated with secondary antibody for 30 min. 
After additional washes with PBSG, PBS, and water, the coverslips were 

mounted in Mowiol 4-88 (HOECHST), containing 2.5% 1,4-diazobicyclo- 
[2,2,2]-octane and analyzed using a Zeiss Axiophot microscope. Staining of 
cells with antibodies AC17 and N l l  was done essentially as described by 
Nabi et al. (1991) and Ktistakis et al. (1991), respectively. Internalization of 
fluorescein-conjugated dextran (FITC-dextran; Sigma) was done by prein- 
cubating the cells on ice for 10 rain, adding 10 mg/ml FITC-dextran in me- 
dium on ice to the cells, incubating for 10 rain on ice and for 5-15 rain at 
37°C. After several washes in PBS, the cells were fixed in 3% paraformalde- 
hyde and mounted in Mowiol. 

Results 

A Large Deletion in the Cytoplasmic Domain 
of i l l  Results in IntraceUular Accumulation of the 
Mutant Protein 

In the mutant protein H1 (A4-33A) amino acids 4-33 of the 
40--residue cytoplasmic domain have been replaced by an 
alanine (Fig. 1). In transfected fibroblast and MDCK cells, 
this mutant protein was efficiently expressed but could not 
be detected at the plasma membrane, Fig. 2 (A-D) shows 
immunofluorescence analysis of wild-type H1 and Hl(A4- 
33A) expressed by the two stable-transfected MDCK cell 
lines M1 and MIA, respectively, using an antiserum di- 
rected against the carboxy-terminal sequence of H1. The 
wild-type protein was stained on the surface of nonperme- 
abilized M1 cells (Fig. 2 A). Upon permeabilization the 
staining reflects the distribution of H1 throughout the 
secretory pathway, in endosomes and on the cell surface 
(B). In contrast, Hl(A4-33A) was not detectable on the 
surface of nonpermeabilized M1A cells (C). Instead, it ac- 
cumulated intracellularly in defined juxtanuclear struc- 
tures with mostly tubular appearance (D). A similar stain- 
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Figure 1. Cytoplasmic sequences of ASGP receptor H1 mutants. Deleted amino acids are indicated by dashes, mutated or inserted resi- 
dues are underlined. Sequences derived from the cytoplasmic domain of the transferrin receptor are shown in italics. To the right, the 
number of cytoplasmic residues (including the initiator methionine) are indicated and the predominant localization of the correspond- 
ing protein in expressing cells as judged by immunofluorescence microscopy: PM, plasma membrane; G, trans-Golgi structures (see 
text). 
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Figure 2. lmmunofluorescence localization of wild-type H1 and Hl(A4-33A). Cells expressing HI or Hl(A4-33A) were processed for 
indirect immunofluorescence microscopy with (B, D, E, and F) or without (A and C) permeabilization and stained using anti-ASGP re- 
ceptor antiserum. (A and B) M1 ceils, a stable MDCK cell line expressing wild-type HI. (C and D) M1A cells, a stable MDCK cell line 
expressing Hl(A4-33A). (E) Stable NIH/3T3 cells expressing Hl(A4-33A). (F) BHK-21 cells transiently transfected with Hl(A4-33A) 
cDNA. Bar, 5 txm. 

ing pattern could be observed for H1(A4-33A) expressed 
by a stable NIH/3T3 fibroblast cell line (E) and by tran- 
siently transfected BHK-21 (F), COS-7, CaCo-2, and 
HeLa cells (not shown). In 5-10% of the transiently trans- 
fected cells, but not in the stable cell lines, the mutant pro- 
tein could be detected also on the cell surface in addition 
to the typical intracellular structures. Since surface ap- 
pearance of Hl(A4-33A) was also observed in a small frac- 
tion of mock-transfected M1A cells, this phenomenon is 
probably caused by the transfection conditions. 

The absence of Hl(A4-33A) from the cell surface was 

confirmed biochemically by immunoblot analysis of pro- 
teinase K digested M1A and M1 cells (Fig. 3). In untreated 
cells, two immunoreactive forms of 40 kD and 45 kD for 
H1, and 35 kD and 40 kD for Hl(A4-33A) were detected. 
The two forms of each protein correspond to the high- 
mannose glycosylated precursor which is sensitive to en- 
doglycosidase H (endo H) digestion and to the complex 
glycosylated, endo H-resistant form (Fig. 4, lanes 1-5). 
Upon proteinase K digestion at 4°C, 50% of the mature 
form of H1 was degraded in M1 cells (normalized to the 
precursor form; Fig. 3, lanes 4 and 5). This corresponded 
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Figure 3. Surface expression of H1 and Hl(A4-33A). Intact 
HepG2, M1, and M1A cells were incubated at 4°C or 37°C for 30 
min with (PK) or without (-)  proteinase K as indicated. After 
blocking the protease, the cells were solubilized and subjected to 
gel electrophoresis and immunoblot analysis using anti-ASGP re- 
ceptor antiserum. Protection of the mature forms was quantified 
by densitometric scanning, and normalized to the high-mannose 
precursor form. The complex and high-mannose glycosylated 
forms of H1 are indicated by C and H, respectively. 

to the result obtained after similar treatment of the 
hepatoma cell line HepG2 which expresses the native 
ASGP receptor (lanes 1 and 2). Hl(A4-33A), however, 
was completely protected (lanes 7 and 8). During a 30-rain 
incubation at 37°C with proteinase K, all complex H1 
(97%) was digested (lanes 3 and 6), reflecting surface ap- 
pearance of initially intracellular protein. In contrast, 
Hl(A4-33A) was 100% protected even at 37°C, indicating 
that the mutant protein did not pass through the plasma 
membrane to a significant extent within 30 rain (lane 9). 

H1(A4-33A) Undergoes Trans-Golgi Modifications 

The fact that H1(A4-33A) was found in an endo H-resis- 
tant form (Fig. 4, lanes 1-5) indicated that the mutant pro- 
tein exited the ER and reached at least the medial-Golgi. 
To test whether Hl(A4-33A) reached the trans-Golgi, we 
analyzed the incorporation of sialic acid and sulfation of 
tyrosine residues, two trans-Gol~-specific modifications 
(Roth et al., 1985; Baeuerle and Huttner, 1987). Upon 
neuraminidase digestion of M1 and M1A cell lysates, the 
endo H-resistant forms of wild-type H1 and of Hl(A4- 
33A) were both slightly shifted on immunoblots, indicative 
of desialylation (Fig. 4, lanes 6-9). Subunit H1 is not natu- 
rally sulfated. However, we have recently shown that addi- 

tion of a 9--residue tyrosine sulfation peptide to the exo- 
plasmic carboxy terminus of the protein allows efficient 
labeling with laSS]sulfate in a stable-transfected MDCK 
cell line (Leitinger et al., 1994). The tyrosine sulfation tag 
was introduced into the mutant Hl(A4-33A) and stable 
expressing MDCK cell lines, named M1A rs, were gen- 
erated. The tagged protein Hl(A4-33A) rs accumulated 
intracellularly like Hl(A4-33A), as judged by immuno- 
fluorescence microscopy and proteinase K digestion (not 
shown). Upon labeling with [35S]sulfate, radioactivity was 
incorporated into the endo H-resistant form of Hl(A4- 
33A) rs with similar efficiency as into H1 xs, the tagged ver- 
sion of H1 (Fig. 4, lanes 10--12). These results indicate that 
Hl(A4-33A) reaches the trans-GolgitTGN. 

Hl(A4-33A) Accumulates in a Late Golgi Compartment 

To determine whether Hl(A4-33A) is localized in the 
trans-Gol#, endosomes, or lysosomes, the immunofluores- 
cenee staining pattern of Hl(A4-33A) was compared to 
that of defined markers. As markers for endosomes and 
lysosomes we used fluorescein-conjugated dextran inter- 
nalized for 5-15 rain at 37°C, and the lysosomal membrane 
protein LAMP-I, respectively. As illustrated in Fig. 5 (A- 
C), the staining patterns of these markers differed consid- 
erably from the labeling of Hl(A4-33A). Trans-Golg~ was 
visualized using antibodies directed against human galac- 
tosyltransferase transiently expressed in MDCK cells, 
yielding a staining pattern similar to that of Hl(A4-33A) 
(E). Furthermore, endogenous ~/-adaptin (a TGN marker; 
D) and the cation-independent mannose-6-phosphate (M6P) 
receptor (present in the TGN, endosomes, and the plasma 
membrane; F) were predominantly immunolocalized to a 
similar j uxtanuclear region as H1(A4-33A). 

To allow double-labeling experiments, Hl(A4-33A) was 
tagged at its carboxy terminus with an antigenic epitope of 
the e-myc oncogene product (mutant Hl[A4-33A]my¢). 
This modification did not alter the intracellular distribu- 
tion. Double labeling of MDCK cells cotransfected with 
Hl(A4-33A) myc and human galactosyltransferase cDNAs 
showed that the tubular structures characteristic for Hl(A4- 
33A) were almost indistinguishable from the structures la- 
beled with anti-galactosyltransferase antibody (Fig. 6, A 
and B). In the stable cell line M1A, the structures labeled 
with the HI-specific antibody also overlapped with the or- 

Figure 4. Golgi-specific modification 
of H1 and Hl(A4-33A). M1 and MIA 
cells were solubilized, digested without 
(-)  or with endoglycosidase H (H; 
lanes 2-5) or neuraminidase (N; lanes 
6-9), and analyzed by gel electrophore- 
sis and immunoblot analysis. The sta- 
ble MDCK cell lines M1Ts (lane 10) 
and M1A "rs (lanes 11 and 12; two clonal 
lines with different expression levels) 
expressing H1 rs or Hl(A4-33A) zs, re- 
spectively, were labeled with [35S]sul- 
fate, solubilized, and subjected to im- 
munoprecipitation using anti-ASGP 
receptor antiserum. The immunopre- 
cipitates were analyzed by gel electro- 
phoresis and fluorography. 
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Figure 5. Immunofluorescence localization of H1(A4-33A) and different marker proteins. M1A cells were processed for immunofluo- 
rescence microscopy using antibodies directed against Hl(A4-33A) (A), LAMP-1 (C; as a marker for lysosomes), ~/-adaptin (D; as a 
marker for TGN), transfected human galactosyltransferase (E; as a marker for trans-Golgi), or cation-independent M6P receptor (F). 
To stain endosomes, M1A cells were loaded for 10 min with FITC-dextran before fixation (B). Bar, 5 Ixm. 

ganelles stained by the anti--,v-adaptin antibody (Fig. 6, C 
and D). Similar overlap of signals was observed in BHK- 
21 cells (used because of the species specificity of the anti- 
body) for endogenous TGN-38/41 and transfected Hl(A4- 
33A) myc (not shown). These experiments strongly indicate 
that the mutant Hl(A4-33A) accumulates in the Golgi, 
and based on the modification by sialyltransferase and 
protein sulfotransferase most likely in the trans-Golgi and/ 
or TGN. 

This localization is supported by the effect of agents 
known to perturb specific organelles. Treatment of MIA 
cells with okadaic acid or nocodazole, which are known to 
induce fragmentation of the Golgi apparatus (Lucocq et 
al., 1991; Ho et al., 1989b; Turner and Tartakoff, 1989), re- 

suited in redistribution of Hl(A4-33A) staining through- 
out the cytoplasm (not shown). The fungal metabolite 
brefeldin A was recently shown to cause the formation of 
tubules of the TGN in MDCK cells, while the medial- 
Golgi stacks were unaffected (Wagner et al., 1994). Under 
similar conditions, we observed the appearance of thin tu- 
bules containing Hl(A4-33A) as well as galactosyltrans- 
ferase extending from the juxtanuclear region into the cy- 
toplasm (not shown). In contrast, the distribution of 
Hl(A4-33A) was not affected by chloroquine, which 
causes lysosomal proteins to be depleted from lysosomes 
(Lippincott-Schwartz and Fambrough, 1987). 

Proteins with mutations affecting folding and oligomer- 
ization are mostly retained in the ER by chaperones. Mu- 
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Figure 6. Double-immunofluorescence localization of Hl(A4-33A) and trans-Golgj marker proteins. (A and B) MDCK cells transiently 
transfected with Hl(A4-33A) my¢ and human galactosyltransferase cDNAs were fixed, permeabilized, and stained with anti-myc (A) and 
anti-galactosyltransferase antibodies (B) followed by corresponding secondary antibodies coupled to fluorescein and rhodamine, re- 
spectively. (C and D) M1A cells were double-labeled with antibodies to H1 (C) and ~/-adaptin (D). Bound antibody was visualized using 
secondary antibodies coupled to rhodamine and fiuorescein, respectively. Arrowheads point at some of the structures costained by dif- 
ferent antibodies. Bar, 5 ixm. 

tant Hl(A4-33A), however, passes these quality control 
mechanisms and accumulates in a later compartment of 
the secretory pathway. The kinetics of ER-to-Golgi trans- 
port of Hl(A4-33A), as judged from the conversion of the 
endo H-sensitive precursor to the endo H-resistant ma- 
ture form of the protein in pulse-chase experiments, were 
similar to those of wild-type H1 with 50% conversion after 
~3  h (Fig. 7 A). Cross-linking experiments using difluo- 
rodinitrobenzene (Shia and Lodish, 1989) in M1 and M1A 
cells showed similar formation of homodimers and -tri- 
mers of wild-type and mutant H1 (not shown). 

Because conversion to the complex glycosylated form is 
slow, the half-lives of the mature wild-type and mutant 
proteins were determined using their sulfatable variants 
H1Ts and Hl(A4-33A) Ts which can be specifically labeled 
in their final forms with [35S]sulfate. The mature mutant 
protein has a half-life of ~5  h which is somewhat shorter 
than that of the wild-type H1Ts of ~7  h (Fig. 7 B). In addi- 
tion, inhibition of protein synthesis for 3.5 h with 100 ixg/ 
ml cycloheximide did not change the distribution of 
Hl(A4-33A). Together these results argue against rapid 
missorting of Hl(A4-33A) to lysosomes with transient ac- 

cumulation in the Golgi, but rather suggest an efficient 
mechanism of retention of Hl(A4-33A) in the Golgi. 

Trans-Golgi Localization Depends on the Size of  the 
Cytoplasmic Domain 

To define the determinants for trans-Golgi accumulation, 
we prepared a series of H1 cDNA constructs with alter- 
ations in the cytoplasmic domain, shown in Fig. 1. These 
constructs were transiently expressed in MDCK cells and 
analyzed by indirect immunofluorescence microscopy for 
accumulation in the typical juxtanuclear, tubular Golgi 
structures vs transport to the plasma membrane. The re- 
sults are summarized in Fig. 1. The immunofluorescence 
patterns of the most relevant constructs are shown in Fig. 8 
(A-C). 

Two previously prepared mutants, HI(A4-11) (lacking 
the signal for basolateral sorting from the TGN) and 
HI(h12-33), were both transported to the cell surface in 
stable expressing MDCK cell lines (Geffen et al., 1993). 
This is in contrast to Hl(A4-33A) with the combined dele- 
tion. Mutation of tyrosine-5 of HI(A12-33) to alanine in 
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Figure 7. Maturation and degradation kinetics of H1 and Hl(A4- 
33A). (A) M1 and M1A ceils were pulse labeled with [35S]me- 
thionine for 30 min and chased for up to 7.5 h. H1 and Hl(A4- 
33A) were immunoprecipitated and analyzed by gel electro- 
phoresis and fluorography. The scanned intensity of the complex 
form in percent of the total of complex and high-mannose precur- 
sor forms is shown. (B) M1 rs and M1A Ts cells were pulse labeled 
with [35S]sulfate for 30 min and chased for up to 20 h. H1Ts and 
Hl(A4-33A) Ts were immunoprecipitated and analyzed by gel 
electrophoresis and fluorography. The scanned intensity of each 
sample is expressed in percent of that without chase. 

the construct Hl(A12-33/5A) also resulted in transport to 
the cell surface, arguing against a role of the tyrosine sig- 
nal in surface transport. 

In a series of amino-terminal deletions, HI(A2-19) and 
HI(A2-24) were expressed on the cell surface, whereas 
HI(A2-28), HI(A2-33), and HI(A2-37) accumulated intra- 
cellularly in the typical tubular structures. HI(A2-24) and 
HI(A2-28) differ only by the four consecutive prolines 25- 
28. Separate deletion of the proline-rich segment 25-30 in 
HI(APro), however, did not significantly affect the wild- 
type distribution. Furthermore, deletion of the juxtamem- 
branous segment of residues 26-40 did not prevent surface 
transport. These results show that no single sequence ele- 
ment in the cytoplasmic domain can be made responsible 
either for retention in the Golgi or for surface transport. 

There is, however, a correlation between the size of the 
cytoplasmic domain and the fate of the mutant proteins 
(see Fig. 1). Constructs with cytoplasmic domains of 17 or 
more residues were all transported to the plasma mem- 
brane; those with domains of 13 or fewer amino acids were 
retained in the Golgi. To test this correlation, the cytoplas- 

mic sequence of Hl(A4-33A) was extended by insertion of 
an unrelated sequence of 10 residues, the human c-myc 
epitope, in place of the initial deletion. The cytoplasmic 
domain of the resulting mutant Hl(A4-33m) thus consists 
of 21 amino acids. Upon expression in transfected MDCK 
cells, the protein did not accumulate intracellularly but 
was detected on the cell surface (Fig. 8 D). In addition, the 
cytoplasmic domain of H1 was replaced with that of the 
transferrin receptor. The resulting fusion protein H1T, 
with a cytoplasmic tail of 65 residues, was efficiently trans- 
ported to the plasma membrane (Fig. 8 E). However, upon 
truncation of this domain to only 11 residues, the fusion 
protein H1TA was completely retained in the typical Golgi 
structures (Fig. 8 F). These results confirm that the local- 
ization of H1 does not depend on the sequence of the cyto- 
plasmic domain, but rather on its size. 

The Exoplasmic Domain in Combination with a Tailless 
Anchor is Sufficient for Golgi Localization 

The transmembrane and/or exoplasmic portions of trun- 
cated H1 thus appear to be responsible for Golgi retention, 
modulated by the cytoplasmic domain. To test whether the 
transmembrane segment is sufficient for Golgi retention, 
this domain with the wild-type or the truncated cytoplas- 
mic portion of H1 was fused to the exoplasmic portion of 
human aminopeptidase N, a type II cell surface protein. 
Both fusion proteins (constructs AN2 and AN2A, illus- 
trated in Fig. 9) were expressed on the cell surface of tran- 
siently transfected MDCK cells and did not accumulate in 
the Golgi (Fig. 9, A and B). Conversely, we tested whether 
the exoplasmic domain of H1 is sufficient for Golgi local- 
ization if anchored in the membrane by an artificial trans- 
membrane segment. In the construct H1ALeUl9 (Fig. 9), 
the lumenal domain of H1 was fused to a generic hydro- 
phobic sequence of 19 leucine residues preceded by the 
positively charged sequence MGPR, to warrant efficient 
membrane insertion. For a control, this short cytoplasmic 
tail was extended by the cytoplasmic sequence of wild-type 
H1 in the construct H1Leu19. Whereas H1Leu w was effi- 
ciently expressed on the cell surface of transfected MDCK 
cells, H1ALeuw accumulated in Golgi structures like Hl(A4- 
33A) (Fig. 9, C and D). The particular sequence of the 
transmembrane segment of HI  is thus not necessary for 
Golgi localization, whereas the exoplasmic portion of H1 is 
sufficient for Golgi retention in combination with a mem- 
brane anchor that lacks a sizable cytoplasmic domain. 

Association with Subunit H2 Partially Restores Surface 
Expression of Hl(A4-33A) 

In the functional ASGP receptor, H1 is part of a hetero- 
oligomeric complex with subunit H2, which has a cytoplas- 
mic domain of 58 amino acids. To test whether association 
with H2 influences the localization of Hl(A4-33A), a sta- 
ble MDCK cell line expressing mutant H1 and wild-type 
H2 was created. Localization of Hl(A4-33A) and H2 was 
assayed separately by immunofluorescence using subunit- 
specific antisera. In nonpermeabilized cells, both subunits 
could be visualized on the surface (Fig. 10, A and C). Fur- 
thermore, functional receptors could be detected on the 
cell surface by specific binding of 125I-iodinated asia- 
loorosomucoid (not shown) which is indicative of correct 
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Figure 8. Intracellular localization of cytoplasmic domain mutants of H1 in transfected MDCK ceils. MDCK cells were transiently 
transfected with the cDNAs of wild-type H1 (A), HI(A2-24) (B), HI(A2-28) (C), H1(A4-33m) (D), HIT (E), and HITA (F). After fixa- 
tion and permeabilization, the cells were stained with anti-H1 antiserum and fluorescein-conjugated secondary antibodies. Bar, 5 ~m. 

hetero-oligomer formation. Thus, association with H2 res- 
cued Hl(A4-33A) transport to the cell surface. In perme- 
abilized cells, however, both subunits were also detected 
in typical Golgi structures (Fig. 10, B and D), indicating 
that hetero-oligomers were partially retained in the Golgi. 

Discussion 

Most mutations in secretory or membrane proteins either 
do not prevent surface transport or, if they perturb folding 
or oligomerization, cause retention and degradation in the 
ER. Very few mutants have been described that escape 
ER retention and accumulate in a Golgi compartment on 

the way to the cell surface. It is conspicuous that in most of 
these cases the mutation involves the membrane anchor of 
the protein or the immediate flanking sequences, which 
have been identified as the segments important for reten- 
tion of natural Golgi resident proteins. Well characterized 
cases are growth hormone fused to the transmembrane 
and cytoplasmic domain of vesicular stomatitis virus G 
protein (Guan and Rose, 1984), or to an uncleaved trans- 
membrane segment of a GPI-anchored membrane protein 
(Moran and Caras, 1992); the insertion of an arginine into 
the signal/anchor domain of influenza virus neuraminidase 
(Sivasubramanian and Nayak, 1987); two point mutations 
close to the transmembrane segment of fowl plague virus 
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Figure 9. Intracellular localization of H1 fusion proteins. MDCK cells were transiently transfected with the cDNAs of the fusion pro- 
teins AN2 (A), AN2A (B), H1Leu19 (C), and H1ALeu19 (D). The cells were fixed, permeabilized, and stained with anti-aminopeptidase 
N (A and B) or anti-H1 antibodies (C and D). The structure of the fusion proteins is illustrated schematically (APN, aminopeptidase N). 
The predominant intracellular localization of the constructs is indicated as in Fig. 1 (PM, plasma membrane; G, trans-Golgi structures). 
Bars, 5 Izm. 

hemagglutinin (Naruse et al., 1986; Garten et al., 1992); re- 
placement of the transmembrane domain of dipeptidyl 
peptidase IV by that of aminopeptidase N (Low et al., 
1994). 

Here we describe mutants of a cell surface receptor, the 
ASGP receptor subunit HI ,  that pass the quality control 
mechanisms of the ER, but are retained in a later compart- 
ment of the secretory pathway and do not reach the plasma 
membrane. The site of accumulation was identified as the 
trans-Golgi/TGN based on biochemical and morphologi- 
cal evidence for the mutant Hl(A4-33A). The retained 

protein was modified by the trans-Golgi-specific enzymes 
sialyltransferase and (when tagged with an appropriate ac- 
ceptor sequence) tyrosylprotein sulfotransferase. By indi- 
rect immunofluorescence microscopy, the mutant was 
found in juxtanuclear structures that are distinct from en- 
dosomes and lysosomes, and that are also stained with an- 
tibodies directed against galactosyltransferase and ~,-adap- 
tin. Furthermore, the effects of nocodazole, okadaic acid, 
brefeldin A, and chloroquine on the distribution of H1 (A4- 
33A) in MDCK cells were consistent with a trans-Golgi lo- 
calization. 
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Figure 10. Coexpression of Hl(A4-33A) and subunit 1-I2. Cells of the stable MDCK cell line M2/1A (expressing H2 and Hl[A4-33A]) 
were fixed without (A and C) or with permeabilization (B and D) and stained with antibodies specific for subunit H1 (A and B) or for 
subunit H2 (C and D). Bar, 10 Ixm. 

The nature of the alteration in H1 resulting in Golgi ac- 
cumulation was analyzed by a series of mutations in the 
cytoplasmic domain. The results cannot be explained by 
the accidental generation of a retention motif or the dele- 
tion of a hypothetical export signal. However, the localiza- 
tion of H1 mutants correlates with the size of their cyto- 
plasmic domains. Deletion of more than two-thirds of the 
40 cytoplasmic residues caused Golgi retention. Extension 
of the truncated tail of Hl(A4-33A) by insertion of 10 un- 
related residues of c-myc again resulted in surface trans- 
port. Similarly, the 65-residue cytoplasmic domain of the 
transferrin receptor fused to the transmembrane and exo- 
plasmic portion of H1 allowed surface transport, whereas 
truncation of the fusion protein's tail to only 11 residues 
yielded efficient Golgi retention. In contrast, tailless trans- 
ferrin receptors have been reported to be transported to 
the cell surface (Giron~s et al., 1991; Kundu and Nayak, 
1994). Cytoplasmic sequences have been shown by muta- 
tional analysis to be necessary for endocytosis, basolateral 
transport, and sorting to lysosomes (summarized by San- 
doval and Bakke, 1994). Mutant proteins lacking cytoplas- 
mic sequences may be missorted to inappropriate post- 
Golgi compartments, but are generally not blocked in exit 
from the Golgi. Golgi retention of truncated H1 therefore 
appears to be due to a specific interaction of the trans- 

membrane and/or exoplasmic portions of H1 with Golgi 
resident components. This interaction is impeded by large 
cytoplasmic domains. Coexpression of Hl(A4-33A) with 
wild-type H2 resulted in the formation of functional 
ligand-binding hetero-oligomers detectable on the cell sur- 
face. However, since both subunits could also be detected 
by immunofluorescence microscopy in the typical Golgi 
pattern, association with H2 only weakened the interac- 
tion of Hl(A4-33A) with the trans-Golgi. 

The membrane anchor of Hl(A4-33A) was found not to 
be sufficient to retain a reporter protein, the exoplasmic 
portion of aminopeptidase N, in the Golgi. In addition, the 
particular sequence of the transmembrane segment is also 
not necessary for Golgi localization, since it can be re- 
placed by an artificial sequence of 19 consecutive leucines 
without affecting the fate of the protein. The exoplasmic 
domain is thus responsible for the interaction of truncated 
H1 mutants with Golgi components. It remains to be in- 
vestigated what the potential interaction partners in the 
trans-Golgi might be. 

Mutagenesis of Golgi resident membrane proteins (gly- 
cosyltransferases and coronavirus M protein) revealed an 
involvement of the transmembrane domain and/or the 
exoplasmic flanking sequence in retention (Nilsson et al., 
1991; Munro, 1991; Aoki et al., 1992; Burke et al., 1992; 
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Colley et al., 1992; Russo et al., 1992; Tang et al., 1992; 
Teasdale et al., 1992; Wong et al., 1992; Dahdal and Colley, 
1993; Machamer et al., 1993; Ponnambalam et al., 1994). 
Two models for Golgi retention mechanisms have been 
proposed. According to the "kin recognition" hypothesis 
(Nilsson et al., 1994) homodimeric proteins may form large 
hetero-oligomers with other residents of the same Golgi 
compartment by interaction via their transmembrane and/ 
or stalk regions. The size of these kin oligomers would pre- 
vent their inclusion into transport vesicles. The retained 
mutants of H1 might participate in trans-Golgi hetero-oli- 
gomers by an interaction that is stericaUy hindered by 
larger cytoplasmic domains. 

An alternative model proposed by Bretscher and Munro 
(1993) implicates the length of the transmembrane seg- 
ment in relation to the differing lipid compositions in the 
compartments of the secretory pathway. Shorter transmem- 
brane segments would be retained in the Golgi, whereas 
longer ones would be transported further. Hence, it is con- 
ceivable that the size of the cytoplasmic domain might 
have an effect on the positioning of the transmembrane 
segments of the H1 oligomer within the lipid bilayer and, 
as a result, on how the exoplasmic domain is exposed in 
the lumen. 

It has to be pointed out that even the wild-type ASGP 
receptor is significantly concentrated in the Golgi appara- 
tus. By quantitative immunoelectron microscopy, ~20% 
of the ASGP receptor has been detected in the trans-Golgi 
in rat hepatocytes and in HepG2 cells (Geuze et al., 1983, 
1984; Zijderhand-Bleekemolen et al., 1987; Stoorvogel et 
al., 1989). Cycloheximide, which blocks protein synthesis 
without affecting intracellular transport, caused depletion 
of poly-immunoglobulin receptor and 5'-nucleotidase from 
the Golgi, but did not affect the Golgi pools of the ASGP 
and M6P receptors (Geuze et al., 1984; van den Bosch et 
al., 1986). Also by immunofluorescence microscopy, the 
ASGP receptor subunits in HepG2 and transfected 
MDCK cells can be detected in juxtanuclear Golgi-like 
structures, although without the obvious tubular appear- 
ance of the staining observed for Hl(A4-33A) (e.g., Fig. 2 
B). This Golgi pool of wild-type ASGP receptor may re- 
flect an intrinsic affinity of the protein to Golgi compo- 
nents that is moderated by the cytoplasmic tail, and that 
leads to efficient Golgi retention when the cytoplasmic do- 
main is sufficiently truncated. 

The situation of wild-type and truncated forms of H1 
with respect to intracellular localization is reminiscent of that 
of 13-1,4-galactosyltransferase (Shur, 1993). Two mRNAs 
are generated by alternative promoters which encode two 
forms of the enzyme (Lopez et al., 1991). A short form 
with 11 cytoplasmic residues is localized specifically in the 
trans-Golgi. A long form with 13 additional amino-termi- 
nal residues is less efficiently retained and also found on 
the cell surface, where it acts as a cell adhesion molecule. 
Modulation of Golgi retention by the cytoplasmic domain 
may thus be a general mechanism for fine tuning the intra- 
cellular distribution of membrane proteins. Whether in the 
case of galactosyltransferase this is a specific effect of the 
additional sequence (e.g., by interaction with the cytoskel- 
eton) or whether, as in the case of H1, simply the addi- 
tional size of the cytoplasmic domain is responsible for re- 
duced retention remains to be tested. 
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