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We present the first evidence for vascular regulation driving fMRI signals in specific functional brain networks.
Using concurrent neuronal and vascular stimuli, we collected 30 BOLD fMRI datasets in 10 healthy individuals: a
working memory task, flashing checkerboard stimulus, and CO2 inhalation challenge were delivered in concur-
rent but orthogonal paradigms. The resulting imaging data were averaged together and decomposed using in-
dependent component analysis, and three “neuronal networks” were identified as demonstrating maximum
temporal correlation with the neuronal stimulus paradigms: Default Mode Network, Task Positive Network, and
Visual Network. For each of these, we observed a second network component with high spatial overlap. Using
dual regression in the original 30 datasets, we extracted the time-series associated with these network pairs and
calculated the percent of variance explained by the neuronal or vascular stimuli using a normalized R2 parameter.
In each pairing, one network was dominated by the appropriate neuronal stimulus, and the other was dominated
by the vascular stimulus as represented by the end-tidal CO2 time-series recorded in each scan. We acquired a
second dataset in 8 of the original participants, where no CO2 challenge was delivered and CO2 levels fluctuated
naturally with breathing variations. Although splitting of functional networks was not robust in these data,
performing dual regression with the network maps from the original analysis in this new dataset successfully
replicated our observations. Thus, in addition to responding to localized metabolic changes, the brain’s vascu-
lature may be regulated in a coordinated manner that mimics (and potentially supports) specific functional brain
networks. Multi-modal imaging and advances in fMRI acquisition and analysis could facilitate further study of the
dual nature of functional brain networks. It will be critical to understand network-specific vascular function, and
the behavior of a coupled vascular-neural network, in future studies of brain pathology.
1. Introduction

Imaging neuroscience has advanced a new theory of brain function
based on the interconnectedness of neuronal activity in multiple brain
regions (Friston, 2011). These regions form structural and functional
networks that are consistent across individuals (Damoiseaux et al., 2006)
and intrinsic to brain activity during active processing or in the resting
state (Friston, 2011; Smith et al., 2009). To provide efficient and targeted
support for such neuronal networks, we hypothesize that the cere-
brovasculature has also evolved characteristics of functional networks.

It is well established that local blood flow is tightly coupled to local
neuronal activity to protect brain metabolism (Damoiseaux et al., 2006;
Karbowski, 2014). This coupling is what underpins the Blood Oxygena-
tion Level Dependent (BOLD) contrast mechanism in functional magnetic
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resonance imaging (fMRI) of brain activity, and this technique has been
used to characterize functional networks in thousands of neuroimaging
studies of the human brain (Power et al., 2014). Several functional brain
networks are robustly identified in human subjects, in both
task-activation and resting-state datasets (Cole et al., 2014; Damoiseaux
et al., 2006; Smith et al., 2009), and are frequently characterized in pa-
tient cohorts to better understand the mechanisms of pathology.

However, the vasculature can also regulate local blood flow in
response to physical and chemical signals, independently of local
neuronal activity (Kuschinsky and Wahl, 1978). Inhalation of air with
elevated levels of carbon dioxide (CO2, a potent vasodilator) is frequently
used to drive a vascular response and a resulting BOLD signal increase.
The resulting maps of cerebrovascular reactivity are frequently used to
assess impairment in vascular function, such as in multiple sclerosis
, USA.
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Fig. 1. Schematic of neuro-vascular stimulus paradigm. The neuronal stimuli
(working memory task and flashing checkerboard pattern) were presented in a
block design, which was convolved with a hemodynamic response function to
model the resulting BOLD signal. Four 1-min blocks of hypercapnia were
induced via gas inhalation, and modeled in a subject-specific manner by
extracting the end-tidal CO2 data and convolving with a hemodynamic
response function.
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(Marshall et al., 2014), Alzheimer’s disease (Glodzik et al., 2013), and
stroke (Krainik et al., 2005; Pillai and Mikulis, 2015). This type of hy-
percapnia challenge impacts arterial blood gas tensions systemically,
influencing all of the cerebrovasculature simultaneously. However, even
in healthy individuals the characteristics of local vascular responses to
CO2 vary across the brain (Bright et al., 2009) and may demonstrate
regions of coordinated vascular regulation.

In a previous fMRI study to improve our methodology for mapping
this regional variation in vascular regulation, we used a breath-hold
paradigm to induce changes in end-tidal CO2 (Bright and Murphy,
2013). In further exploratory analyses, we averaged the resulting
BOLD-weighted data across subjects and used Independent Component
Analysis (ICA) to decompose the data into spatially independent
“network”maps and associated time-series. In these results, we identified
that the Default Mode Network (DMN) was represented by two compo-
nents: one DMN time-series showed clear BOLD signal increases lagging
the end-tidal CO2 effects, thereby reflecting the vasodilatory effect of the
stimulus. Interestingly, the second DMN component time-series exhibited
BOLD signal decreases during and preceding the actual breath-hold itself,
potentially reflecting deactivation of this network and reduced neural
activity during the active, attentional portion of the paradigm. (See
Supplemental Figure 1 for a summary of these preliminary results.)

Based on this observation, we hypothesize that functional brain net-
works may be comprised of two, distinct but coupled systems: one pri-
marily driven by neuronal activity and one driven more by vascular
regulation. Extending this premise, vascular regulation may occur in a
coordinated manner across multiple, long-distance brain regions,
mimicking or contributing to known functional brain networks.

To test this hypothesis, we developed a protocol to probe both
physiological systems across multiple brain networks, employing con-
current and orthogonal neuronal and vascular stimuli. We decompose the
resulting BOLD signal changes using ICA and identify the relative influ-
ence of neuronal and vascular factors on functional brain networks. Our
results provide further evidence for the dual-nature of functional brain
networks, and highlight the importance of characterizing vascular
function as well as neuronal function within specific brain networks.

2. Methods

Whole-brain functionalMRI neuroimaging data were collected during
stimuli designed to simultaneously probe neuronal and vascular systems
throughout the brain. These data were then decomposed to identify
network structures reflecting either neuronal or vascular mechanisms.
Data are publicly available through the Open Science Framework (DOI
10.17605/OSF.IO/NYQZV).

2.1. Neuronal and vascular stimuli

A 3-back working memory task (centrally presented, digits 0–9,
presented for periods of 0.5 s at 1.5 s intervals) was delivered in a 30-s
block design, with an extended (60 s) off-period in the middle of the
paradigm. Participants were asked to press a button when the digit
presented was the same as that presented three stimuli previously. A
visual stimulus consisting of a radial flashing checkerboard pattern was
also presented in a block design in the second half of the scan (8 Hz, 70%
contrast, with neutral center to allow simultaneous presentation of the
working memory task). These stimuli were presented using a rear pro-
jector and screen viewed through a mirror on the head coil.

During these neuronal tasks, four 1-min blocks of passive hypercapnia
were used as a concurrent vascular stimulus. A gas mixture with
increased levels of carbon dioxide (CO2) was delivered to the subject via
a face mask, manually adjusted to target an end-tidal CO2 increase of þ5
mmHg. Inhalation of CO2 alters arterial blood gas tensions, which results
in vasodilation and enhanced blood flow throughout the body. It is
known that the response of local vessels to this systemic stimulus varies
across the brain, in amplitude and dynamics, and these variations can be
2

observed using BOLD fMRI (Bright et al., 2009). We hypothesize that
these variations in the response to hypercapnia will reveal spatial pat-
terns of coordinated vascular regulation, or vascular networks.

All three stimulus paradigms were designed to be mutually orthog-
onal: the correlation between each of the idealized stimulus designs was
zero. A schematic of each stimulus is presented in Fig. 1. The neuronal
stimulus timings were convolved with the canonical hemodynamic
response function (SPM). The end-tidal CO2 data were extracted using
bespoke code (MATLAB, MathWorks, Natick, MA, USA), convolved with
the same hemodynamic response function, and used as a scan-specific
measure of the vascular stimulus evoked by the hypercapnia challenge
(Bright and Murphy, 2013). Note that there may be slight collinearity
between the neural and vascular stimuli following convolution, and
depending on the precise end-tidal CO2 changes induced in each
participant.

In a follow-up study (Replication) that did not involve the hypercapnia
stimulus, the participant’s end-tidal CO2 levels were allowed to fluctuate
naturally, and a nasal cannula was used to monitor respiratory gas con-
tent in lieu of the face mask.

2.2. Data acquisition

Ten healthy subjects (aged 30 � 5 years, 3 female) were scanned
using a 3T GE HDx scanner (Milwaukee, WI, USA) equipped with an 8-
channel receive head coil. Three identical functional task scans, each
lasting 11 min, were acquired using a BOLD-weighted gradient-echo
echo-planar imaging sequence (TR/TE ¼ 2000/35 ms; flip angle ¼ 90�;
FOV ¼ 22.4 cm2; matrix ¼ 64 � 64; 35 slices, slice thickness ¼ 4 mm;
resolution ¼ 3.5 � 3.5 � 4.0 mm3, 5 dummy scans followed by 330 vol
acquisitions), for a total of 30 datasets of 11 min duration each. A whole-
brain high-resolution T1-weighted structural image was acquired (reso-
lution¼ 1.0� 1.0� 1.0 mm3), for the purpose of image registration, and
a fieldmap was acquired (matching functional scan acquisition, echo
spacing ¼ 0.32 ms) for correction of image distortion artifacts.

Expired gas content was continuously monitored via a sampling port
on the face mask, and O2 and CO2 data were recorded using a capnograph
and oxygen analyzer (AEI Technologies, PA, USA). End-tidal CO2 data
were extracted and convolved with a hemodynamic response function
(Fig. 2); the hypercapnia achieved in this protocol (averaged across the
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study) was 5.8 � 1.1 mmHg above baseline levels.
The study cohort size was not determined via calculation, but was

determined to be sufficiently large given the literature studying neuronal
(Damoiseaux et al., 2006) and vascular (Curtis et al., 2014) networks.
This study was approved by the Cardiff University School of Psychology
Ethics Committee, and all volunteers gave written informed consent.

2.3. fMRI data processing

Following motion correction (AFNI (Cox, 1996), http://afni.nimh.nih
.gov/afni), brain extraction (BET, FSL (Smith, 2002)), distortion correc-
tion and slice timing correction (FEAT, FMRIB’s Software Library, Ox-
ford, UK (Woolrich et al., 2001)) all functional datasets were registered
to the corresponding high-resolution T1-weighted image, which was in
turn normalized to the MNI-152 brain template (MNI152, nonlinearly
derived, McConnell Brain Imaging Centre, Montreal Neurological Insti-
tute, McGill University, Montreal, Quebec, Canada) using FMRIB’s
Non-linear Image Registration Tool (FNIRT, FSL (Jenkinson et al.,
2002)).

Datasets were then detrended using second order polynomials and
converted into units of percentage change (%BOLD). The 30 pre-
processed %BOLD datasets were averaged together to reduce the influ-
ence of any signals not time-locked to the stimulus paradigm (i.e., resting
fluctuations and other noise confounds).

2.4. Network analysis

The average dataset was decomposed into spatially independent
networks using independent component analysis, as implemented in the
MELODIC tool in FSL (dimensionality fixed to output 30 components;
each comprised of a network map and associated time-series). Because
BOLD-weighted signals are both directly influenced by changes in the
vasculature, and indirectly influenced by neuronal activity via
Fig. 2. End-tidal CO2 data for all scans. Data for 30 scans (3 repeated scans per partic
the scan-specific vascular stimulus. For illustration purposes, data were normalized

3

neurovascular coupling, the temporal characteristics of signal changes
were used to determine whether they reflect primarily neuronal or
vascular mechanisms. Three ‘neural networks’ were identified using
temporal correlation values of the component time-series and stimulus
timings as follows. The component with the maximal negative correla-
tion with the 3-back stimulus was identified as the neuronal Default
Mode Network (DMN), which is robustly de-activated during working
memory tasks (Hampson et al., 2006; Raichle et al., 2001; Shulman et al.,
1997). The component demonstrating maximum positive correlation
with the 3-back stimulus was identified as the neuronal Task Positive
Network (TPN) (Fox et al., 2005; Spreng, 2012). Finally, the component
exhibiting maximum positive correlation with the visual stimulus was
identified as the neuronal Visual Network (VN).

Component maps were thresholded using a mixture model and an
alternative hypothesis testing approach (Beckmann and Smith, 2004)
(threshold level 0.5) and spatial similarity between all 30 components
was quantified using Dice’s overlap coefficient (Dice, 1945). For each
neuronal network, we identified the additional component map with the
greatest spatial overlap. Thus, three pairs of spatially coupled compo-
nents were identified.

Finally, dual regression (Filippini et al., 2009) was used to extract the
time-series associated with these 6 components within each of the orig-
inal 30 datasets. The normalized R2 value was defined as the time-series
variance (R2) explained by one stimulus normalized by the variance
explained by the full stimulus model, which is the percentage of
explained variance attributed to one stimulus. Paired two-tailed Student
t-tests were used to compare the normalized R2 values of each component
pairing (DMN, TPN and VN) for each of the stimuli. Normality of the
pair-wise differences was assessed using the Lilliefors test, and significant
non-zero differences in the temporal signatures of the component pairs
were identified (*p < 0.05, Bonferroni corrected for multiple
comparisons).
ipant) were convolved with a hemodynamic response function, and represented
to the baseline end-tidal CO2 level (mean value in the first 100 s of the scan).

http://afni.nimh.nih.gov/afni
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2.5. Replication and generalizability

Eight of the original 10 subjects were scanned, three times each, using
a reduced stimulus paradigm consisting of only the working memory and
visual stimuli. Thus, in these scans, end-tidal CO2 was allowed to fluc-
tuate naturally rather than be driven by the gas inhalation stimulus. As
such, these scans followmore “typical” task-activation fMRI experiments,
and they will allow us to assess the replicability and generalizability of
our observations.

Data were pre-processed as described above. Because the end-tidal
CO2 levels were allowed to fluctuate naturally, these fluctuations will
vary across scans and individuals would not be robustly present in the
group-average dataset. Thus, independent component analysis could not
be applied to isolate vascular-neuronal network pairs in the averaged
data as was done in the original analysis. Instead, using dual-regression
the time-series associated with the network maps identified in the orig-
inal dataset were extracted for the replication data.

3. Results

Following Independent Component Analysis, three resulting compo-
nents were identified as “neuronal networks”, demonstrating maximum
temporal correlation with the neuronal stimulus paradigms: the Default
Mode Network, Task Positive Network, and Visual Network were iden-
tified (Fig. 3).

Using dual-regression, we extracted the time-series associated with
each of these components in the original datasets (all time-series pro-
vided in Supplemental Figure 2). Each time-series was analyzed to
determine the relative contributions of the neuronal and vascular stimuli
to the BOLD contrast dynamics, as summarized by the normalized R2

values described above. We observed that all three functional brain
networks probed in our study were composed of spatially similar pairs of
components where one was significantly more associated with the
appropriate neuronal stimulus and the other significantly more associ-
ated with the vascular stimulus (Fig. 4). For reference, a summary of the
other components in the ICA decomposition is provided (Supplemental
Fig. 3. Identification of spatially similar component pairs for three functional brain n
neuronal stimuli were identified as ‘neuronal’ networks. 2) For each neuronal netwo
The temporal characteristics of these spatially similar components were used to asse

4

Figure 3).
In Fig. 4, the networks on the left of each pairing were identified as

maximally temporally correlated with the neuronal stimuli; thus, by
design, the working memory stimulus and visual stimulus explain a large
proportion of the signal variance (high normalized R2 values). Interest-
ingly, the networks on the right of each pairing, which were identified as
being spatially similar, show a significantly reduced relationship with
these neuronal stimuli. The bottom row shows that all networks show a
relationship with the hypercapnia stimulus (represented by the end-tidal
CO2 data from individual scans), however the networks on the right of
each pairing show significantly greater normalized R2 values in all cases.
Combined, these results suggest that the pairs of spatially similar net-
works consist of one network representing the neuronal stimuli and one
network more reflective of the vascular stimuli. (Note, as a control, we
see the expected minimal relationship between the DMN and TPN and
the visual stimulus, or the VN and the working memory stimulus.)

When examining the Replication dataset, similar phenomena were
also observed (Fig. 5): the normalized R2 values demonstrate the same
differentiation between the more ‘neuronal’ and more ‘vascular’ com-
ponents. This demonstrates that our observations are also present in
more “typical” fMRI data in the absence of overt hypercapnia challenges,
although it is clear that the effects are more variable across individual
scans. However, we observe one new effect in the Replication data that
was not present in the original results. Specifically, the working memory
stimulus explains significantly more variance in the “more vascular” VN,
whereas no relationship was found in the original data (Fig. 5, top right
plot).

Why is the working memory stimulus driving signal fluctuations in
the “more vascular” visual network component in the Replication data?
The 3-back task was presented visually, so it is plausible that it would
activate the visual processing systems. However, this is not observed in
the original dataset, suggesting another mechanism is responsible. It is
also known that task-correlated breathing changes are a common, con-
founding contributor to fMRI data (Birn et al., 2009), and thus end-tidal
CO2 may become time-locked to the neural stimulus. Indeed, Fig. 6A
presents the end-tidal CO2 time-series of all scans in the Replication
etworks. 1) The three components with maximum temporal correlation with the
rk, an additional component with the maximal spatial overlap was identified. 3)
ss the underlying neuronal or vascular mechanisms.



Fig. 4. Neuronal and vascular contributions to spatially similar network com-
ponents. Using dual-regression, the component time-series for the three network
pairs (Default Mode Network, Task Positive Network, Visual Network) were
obtained in the original 30 datasets. The normalized R2 values (percentage of
explained variance) were calculated for each stimulus. For each functional brain
network pair, one was found to be significantly more associated with the
appropriate neuronal stimulus and the other significantly more associated with
the vascular CO2 stimulus (*p < 0.05, paired t-tests, corrected for multiple
comparisons).

Fig. 5. The spatial maps extracted in the original dataset were applied to a
second dataset to test the replicability and generalizability of our primary ob-
servations. In these new data, no hypercapnia stimulus was administered and
end-tidal CO2 was allowed to fluctuate naturally. Eight of the original 10 par-
ticipants were re-scanned, 3 times each, using only the working memory and
visual stimuli. The networks identified in the original data were regressed onto
the new data, and the associated time-series were extracted and analyzed as
before. Significant differences in the normalized R2 values, in good agreement
with the original observations in the first study, are indicated by asterisks (*p <

0.05, paired two-tailed Student t-tests, Bonferroni corrected for multiple com-
parisons). Note an unexpected, significant relationship between the “more
vascular” Visual Network data and the working memory stimulus, not observed
in the original dataset (Fig. 4).
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dataset, showing a strong negative correlation between the
group-average end-tidal CO2 trace and the working memory stimulus
design (Pearson correlation coefficient r ¼ �0.68). Averaging over the
ten blocks of the 3-back task, this coupled relationship is even more
apparent (r ¼ �0.91). Furthermore, Fig. 6B shows the BOLD signal
changes evoked by the working memory stimulus in the two VNs, clearly
showing a BOLD signal decrease in the “more vascular” network; this
agrees with the concurrent decrease in end-tidal CO2, while directly
countering the argument that the workingmemory stimulus cues activate
the visual cortex (which would be a positive BOLD signal change). Thus,
the seemingly paradoxical relationship between the “more vascular” VN
time-series and the working memory task paradigm is likely caused by
vascular physiology becoming time-locked to that neuronal stimulus.

4. Discussion

Our findings provide the first evidence for network-specific behavior
of cerebrovascular regulation, and suggest the brain’s blood supply may
be regulated in networks that spatially mirror known neuronal networks.
Using ICA to decompose group-averaged fMRI data, we identified three
functional networks associated with working memory and visual stimuli.
In the remaining components, three additional networks were identified
to have similar spatial features and high spatial overlap as measured by
the Dice coefficient. The time-series of these spatially-similar networks
5

were dominated by the vascular stimulus. Although the inhaled carbon
dioxide challenge used as a vascular stimulus in this study is known to
induce systemic vasodilation and BOLD signal increases (Liu, B De Vis, &
Lu, 2018), our results suggest that the vasodilatory effects show regional
variation and that may drive BOLD signal changes in specific functional
brain networks or sub-networks.

The spatial similarity of the “more vascular” networks and neuronal
networks may derive from patterns in neurovascular anatomy (W€alchli
et al., 2015): because neuronal and vascular growth processes track each



Fig. 6. Evidence for task-correlated changes
in vascular physiology and its effect on the
“more vascular” networks in the Replication
dataset. A) In the absence of a hypercapnia
gas inhalation stimulus, end-tidal CO2 fluc-
tuated with each individual’s natural varia-
tions in breathing. The group average end-
tidal CO2 trace across all scans in the Repli-
cation dataset (red, standard deviation shown
in gray) is plotted, with the 3-back working
memory stimulus paradigm (blue) provided
as a reference. The block average across the
10 blocks of the 3-back task is also shown.
Pearson correlation coefficients between the
CO2 data and the stimulus are given (r ¼
�0.68 across the entire time-series, r ¼
�0.91 in the block-average data). B) The
average end-tidal CO2 data and the block-
average BOLD response evoked by the 3-
back working memory task (blue bars) in
the “more neural” and “more vascular” visual
networks (thin lines represent the data from
each individual scan, thick lines represent
the average of 30 scans). These results
demonstrate that the task-correlated changes
in end-tidal CO2 appear to drive the signal
fluctuations in the “more vascular” visual
network. Because these effects manifest as
negative BOLD signal changes time-locked to
the working memory task, and visual acti-
vation during the working memory task
would evoke positive BOLD signal changes,
this is further evidence for a vascular driver
of this functional network system.
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other during development (Quaegebeur et al., 2011), remote brain re-
gions that establish neuronal links may also establish similar vascular,
astrocytic, or other glial anatomy that influences local hemodynamic
regulation. In the fully developed brain, environmental factors and re-
petitive activities (e.g., exercise) that impact the expression of neuro-
trophic factors may also simultaneously alter local angiogenesis (Black
et al., 1990; Ding et al., 2004; Swain et al., 2003), allowing for ongoing
and co-regulated plasticity of neuronal and vascular networks. By coor-
dinating blood flow across brain regions that typically exhibit synchro-
nous neuronal activity, such vascular networks would also provide the
most efficient hemodynamic support for increased network metabolism.

The mechanisms by which long range vascular synchronizations
could occur are not known. However, arteries and arterioles are not just
conduits of blood but rather a collection of ion channels that are gated by
voltage, calcium, pressure and other mechanical factors that lead to
emergent dynamics such as vasomotion (Haddock and Hill, 2005; Nilsson
and Aalkjær, 2003). If the arterioles supporting each neural network are
slightly different in cellular structure, they may have variable responses
to particular stimuli. Similar fluctuations in arterial CO2 and pressure
could lead to differential fluctuations in BOLD signal. Isolated vessels
6

show spontaneous oscillations in diameter with the typical frequency
range for intrinsic oscillations (Gustafsson et al., 1994; Haddock and Hill,
2005; Osol and Halpern, 1988) and the amplitude and frequency of
oscillation can be modulated by pressure (Achakri et al., 1995). When
neural activity is drastically reduced using muscimol infusion, there is
only a minimal reduction in the amplitude of arterial diameter oscilla-
tions, cerebral blood volume fluctuations and tissue oxygenation (Winder
et al., 2017; Q. Zhang et al., 2019).

The structure of the vascular tree could also play a role. CO2 may take
time to traverse the vascular tree leading to timing differences (Tong and
Frederick, 2014) and local pressure change differences along the tree
could lead to divergent autoregulatory processes. Although vessels might
receive similar inputs, there may be disparate drives across the networks,
for example, the reactivity of the vessel due to the current state of
vasodilator release. To examine the role of vascular transit variability on
our results, we compared the timeseries of the three “more vascular”
networks identified: using cross-correlation we observed different
non-zero temporal offsets between the network timeseries and the
averaged PETCO2 timeseries, and between the network timeseries (Sup-
plemental Figure 7). Vascular transit delays have been identified as a
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possible source of low frequency oscillations in resting state data, and
implicated in the decomposition of fMRI data using ICA techniques (Tong
et al., 2015; Tong et al., 2013). Furthermore, we also observed differ-
ences in the temporal dynamics of the BOLD response to the hypercapnia
blocks, beyond a simple lag offset (Supplemental Figure 8). These vari-
ations may reflect interactions between vascular transit “path lengths”
and the dispersion of vasodilatory signals, or heterogeneity in the local
response to the same vasodilatory signals.

There may also be a more active synchronized long-distance control
of arteriolar diameters. Sympathetic innervation of vessels is known to be
bilateral (Revel et al., 2012). It is also known that fluctuations in arterial
diameter are bilaterally symmetrical (Porret et al., 1995). In the mouse
brain, co-fluctuations in diameters of pairs of arterioles in the same
hemisphere reduce with distance but are highly correlated in the trans-
hemispheric site (Mateo et al., 2017). Correlations in the signals are
reduced in acallosal mice suggesting some input from callosal
connections.

In addition to providing localized, responsive hemodynamic support
for neuronal metabolism, the vasculature may also have a synergistic role
in network brain activity: another interpretation of our findings is that
vascular physiology modulates neuronal activity to drive the splitting of
functional brain networks. Thus, the “more vascular” networks identified
in this study may still fundamentally represent neuronal systems, but are
somehow modulated by CO2 levels, whereas the associated “neuronal
networks” are not specifically affected. There is emerging evidence that
vascular physiology can influence neural activity (Croal et al., 2015; Hall
et al., 2011; Xu et al., 2011), and our lab has demonstrated that end-tidal
CO2 changes, during gas inhalation and during resting fluctuations in
breathing, can modulate neuronal rhythms as measured using magne-
toencephalography (MEG) (Driver et al., 2016). It has been further hy-
pothesized that the vasculature may be directly involved in the brain’s
information processing (the so-called hemo-neural hypothesis (Moore
and Cao, 2008)), modulating the excitability of neural circuits via
chemical, physical, and thermal mechanisms.

Importantly, these concepts are not mutually exclusive: there may be
network-specific variation in vascular anatomy and regulation, neuro-
vascular coupling, and vascular modulation of neural activity. It is not
possible to differentiate these mechanisms in the current study. However,
regardless of the precise origin of the observed relationships, we have
demonstrated the dual nature of functional brain networks. It will be
critical to ascertain how vascular physiology influences our interpreta-
tion of neuronal activity and connectivity within these systems.

Furthermore, our results support the recent work of Zhang and col-
leagues, who postulated the existence and importance of a “vascular-
neural network” in understanding brain pathology (Zhang et al., 2012).
This is an extension of the idea of the neurovascular unit, which has been
a critical “conceptual framework” for understanding neurodegenerative
disease and cerebrovascular injury (del Zoppo, 2012). The neurovascular
unit includes endothelial cells, astrocytes, pericytes, and neurons, which
must all interact in concert to maintain healthy neural function; the
combined behavior of the unit must be considered when characterizing
disease processes or developing new neuroprotective strategies (Zhang
et al., 2012). However, the neurovascular unit spans less than a milli-
meter, and does not include upstream arteriolar supply vessels or
downstream venous drainage. By linking these components, the
vascular-neural network construct provides a useful integrated model
that better describes systemic and focal neurovascular pathology,
including in Alzheimer’s Disease, Parkinson’s Disease, multiple sclerosis,
and autoimmune diseases of the central nervous system (Zhang et al.,
2012).

At present, we may be missing key factors in disease progression by
ignoring such long-range vascular systems. We know that early stages of
ischemia affect both neurons and their supply microvessels in concert
(del Zoppo, 2012). In Alzheimer’s Disease, vascular damage can precede
and drive neurodegeneration (Suri et al., 2015; Zlokovic, 2011). Our
results indicate that such pathological changes in neuro-vascular
7

interactions could be network specific. This has been supported by recent
research showing that healthy adults with vascular risk factors showed
impairments in cerebrovascular reactivity to CO2 that were specific to the
Default Mode Network, which is considered central to pathological
mechanisms in aging and Alzheimer’s Disease (Haight et al., 2015).
Improving our understanding of vascular network behavior (or the
vascular-neural network construct), and how the vasculature in specific
functional networks is susceptible to early pathological impairment, may
offer new windows for targeted protective therapies.

There is some existing evidence in the literature for pairs of spatially-
similar networks observed in resting state fMRI data. Braga and Buckner
identified two similar, but distinct, networks that both resembled the
canonical Default Mode Network (Braga and Buckner, 2017). Other
networks, including the dorsal attention network and fronto-parietal
network were also fractioned into two distinct, parallel networks
within individual datasets. The authors hypothesize that these are
neuronal sub-networks, but the role of vascular physiology in
network-specific BOLD signals was not considered. It may be that one or
more of these observed sub-networks is primarily a vascular network, or
that vascular regulation is altering BOLD signal fluctuations in specific
sub-networks to drive their differentiation.

To further explore the spatiotemporal differences between the
network pairs, we isolated voxels that were unique to the “neural”
component, unique to the “vascular” component, or common to both
networks (i.e., overlapping). Getting the average timeseries in these
voxel groups, we again examined the correlation with the neural and
vascular stimulus models (Supplemental Figure 4). All voxels groups
demonstrated significant correlation with the vascular stimulus, as might
be expected with a global vasodilatory stimulus. The voxels unique to the
“more neural” network or common to both networks correlated signifi-
cantly with the neural stimuli, however the voxels unique to the “more
vascular” network do not. We interpret these findings to mean that dif-
ferentiation of network pairs is likely due to voxels unique to each
network. Of more interest, a network predominantly reflecting global
vascular effects is selectively includingmany voxels specific to one neural
network. In this study, we highlight this novel observation, that a
vascular stimulus results in the extraction of spatial patterns of co-
varying signals that show certain nodes of voxels typically associated
with neural network patterns.

There are numerous challenges involved with using BOLD fMRI to
study simultaneous neural and vascular properties of the brain. Because
there is inherently a maximum possible BOLD signal change, occurring
when all venous hemoglobin is fully oxygenation, modulating the base-
line oxygenation levels may reduce observed task activation responses
(i.e., a “ceiling effect”). This effect is generally expected to occur at much
more extreme hypercapnia stimuli than used in this paper (Gauthier
et al., 2011), but may subtly impact the activation patterns observed
during normocapnia versus hypercapnia. In addition, the BOLD contrast
mechanism reflects local levels of deoxygenated hemoglobin, but this is
constantly modulated by both direct vasoactive pathways and indirect
neurovascular coupling mechanisms. Alternative imaging modalities
such as EEG and MEG may provide better direct insight into the neural
processes underpinning functional brain networks, however it is not yet
fully understood how vascular physiology may manifest in these data
(Driver et al., 2016) or how network activity fluctuations in these
different modalities relate back to fMRI signals (Tewarie et al., 2016). In
this study, the dual nature of BOLD fMRI contrast, in conjunction with
dual stimulus types, facilitates our ability to probe the dual nature of
functional brain networks, but perhaps future research should employ
multi-modal imaging to best explore these phenomena in greater detail.

The decomposition of spatially similar network pairs is also very
sensitive to the details of how ICA is employed. We opted to average
together 30 individual scans prior to decomposition, imitating the
methodology of our first observations in breath-hold data (Supplemental
Figure 1). Tensor ICA is an alternative approach to decompose signal
features common across multiple datasets; the results of Tensor ICA
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decomposition of the 30 individual datasets (with automatic dimen-
sionality determination) are summarized in Supplemental Figure 5.
Interestingly, this approach showed mixed success in isolating the
network pairs observed in our primary analysis: in the 12 output com-
ponents, only one VN component was identified and (perhaps surpris-
ingly) no clear DMN was identified. When dimensionality was fixed to
output 30 components, we could identify candidate network pairs for VN
and TPN, but again no clear DMNwas present. The relationships between
these 30 component timeseries and the neurovascular stimuli are sum-
marized in Supplemental Figure 6. Tensor ICA did not appear to maintain
the polarity of the signal changes, making identification of “deactivation”
during the 3-back task more challenging. The results of Tensor ICA are
difficult to robustly interpret, and as such do not readily support or
contradict our original analyses. Still, Tensor ICA may be an appropriate
tool in future studies to explore these neurovascular phenomena.

Furthermore, the spatial ICA algorithm maximizes the spatial inde-
pendence of the resulting components, which is likely not an ideal
approach to identify spatially similar features in fMRI data. However,
temporal ICA is not well suited to fMRI data, particularly when acquired
using “typical” sampling rates of 1–2 s, due to the small number of de-
grees of freedom in each dataset. We also arbitrarily opted to decompose
the data into 30 components; further assessment of other output
dimensionality at this step in the analysis did impact the identification of
network pairs, suggesting that the precise “splitting” of networks is
highly dependent on this analysis choice. Similar observations have been
observed by other research groups, where increasing ICA dimensionality
facilitates the differentiation of sub-network structures (Dipasquale et al.,
2015). Further studies into neuronal and vascular network properties
should carefully assess the role of dimensionality on our observations,
adopting rapid-sampling EPI (using simultaneous multi-slice acceleration
to achieve sub-second sampling (Feinberg and Setsompop, 2013)) and
testing the utility of temporal ICA at differentiating the neuronal and
vascular features in the data.

5. Conclusions

We have shown that functional brain networks can be split into two
spatially similar networks during concurrent neuronal and vascular
stimuli. One of these networks is dominated by the neuronal stimulus
paradigm, as expected, whereas the other network appears dominated by
vasodilatory responses to changes in arterial CO2 levels. This suggests
that vascular regulation may be coordinated across long-distance brain
regions, mimicking the structure of neuronal networks, or that neuro-
vascular relationships vary in a network-specific manner. It will be crit-
ical to consider how the underlying vascular function influences the
observation and interpretation of network brain activity and connectivity
in future neuroimaging studies.
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