
polymers

Communication

Study of the Relationship between Haze Performance and
Fractal Dimension in Micro-Sized Segregated Liquid Crystals
Embedded in a Polymer Matrix Consisting of a Thiol-ene
Prepolymer and a Multi-Functional Acrylate

Ju-Yong Kim and Suk-Won Choi *

����������
�������

Citation: Kim, J.-Y.; Choi, S.-W.

Study of the Relationship between

Haze Performance and Fractal

Dimension in Micro-Sized Segregated

Liquid Crystals Embedded in a

Polymer Matrix Consisting of a

Thiol-ene Prepolymer and a

Multi-Functional Acrylate. Polymers

2021, 13, 4421. https://doi.org/

10.3390/polym13244421

Academic Editors: Tibor Toth-Katona

and Istvan Janossy

Received: 18 November 2021

Accepted: 13 December 2021

Published: 16 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Advanced Materials Engineering for Information & Electronics, and Integrated Education,
Institute for Frontier Science & Technology (BK21 Four), Kyung Hee University, Yongin 17104,
Gyeonggi-do, Korea; kjuyong0818@naver.com
* Correspondence: schoi@khu.ac.kr; Tel.: +82-21-201-2256

Abstract: Micro-sized segregated liquid crystals (MSLCs) surrounded by a polymer medium can be
used for haze film applications. When incident light passes through the MSLC film, the microsized
particles act as light scattering centers. In this study, the results of the addition of a multi-functional
acrylate to a commercial thiol-ene prepolymer system, as well as the morphology of (LC) droplets,
fractal dimension (D), and the optical haze performance of the micro-sized segregated LCs formed
by UV-initiated photopolymerization, are reported. With increasing fraction of the multi-functional
acrylate within the host polymer matrix, the small scattering centers (LC droplets) also increase,
giving rise to a large optical haze in the prepared film. The optical haze can be characterized by the
D of the associated LC droplet morphology in the films. The optical haze and D exhibit a strong
correlation; thus, a qualitative prediction of the optical haze is possible via geometric fractal analysis.
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The self-aggregating and self-assembling properties of liquid crystal (LC) materials
open the possibility for the emergence of novel materials [1,2]. Polymer-dispersed LCs
(PDLCs), consisting of LC droplets dispersed in a polymer matrix can be electrically
switched from an opaque (light-scattering) state to a transparent (non-scattering) state for
smart windows or display applications [3]. Recently, we reported micro-sized segregated
LCs (MSLCs) surrounded by a polymer medium [2]. When incident light passes through
the MSLC film, the micro-sized LC droplets, which are phase-segregated from the host
polymer matrix act as light scattering centers. This characteristic originates from the
refractive index mismatch between the LCs and the polymer. The MSLCs are similar to
PDLCs in the sense that phase-segregated LC droplets are dispersed in a polymer matrix.
However, MSLCs are only designed for optical haze films using the scattering features of
the PDLCs without applying electric fields [2]. Hence, our fabricated films are referred to
as MSLCs instead of PDLCs to highlight the functional differences between the two films.

Thiol-ene polymers are prepared by a combination of step-growth and free-radical
polymerizations between aliphatic thiols and allyl (or vinyl) monomers containing carbon-
carbon double (C=C) bonds [4]. Thiol-ene polymers find use in various applications, such
as surface coatings and adhesives. This is because the thiol-ene polymerization scheme is
useful for obtaining synthesized polymers with a high conversion rate and uniform cross-
link densities under ambient-pressure, room-temperature, and solvent-free conditions [5].
Herein, we report the results of a study conducted on the addition of a multi-functional
acrylate to a commercial thiol-ene prepolymer system, and the morphology of LC droplets,
fractal dimension (D), and the optical haze performance of MSLCs formed by UV-initiated
photopolymerization. Thus, we fabricated MSLC films by adding a multi-functional
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acrylate to thiol-ene prepolymers as a host polymer matrix for the LC phase segregation.
We evaluated the optical haze performance of the MSLCs as a function of the doping
fraction of the multi-functional acrylate prepolymer. As the fraction of the multi-functional
acrylate within the host polymer matrix increases, the LC droplet size decreases while
the LC droplet number increases, resulting in an enhanced optical haze performance of
the MSLC film. In addition, we demonstrated that the optical haze performance can be
characterized by the D of the LC droplet morphology in the MSLC films. Interestingly, the
optical haze performance and D in the MSLC films exhibit a strong correlation. This strong
correlation was also confirmed in the MSLC films with different film thicknesses.

First, we prepared four host formulations with different ratios of multi-functional
acrylate blended with a thiol-ene prepolymer. Commercially available NOA 88 (Norland
Inc., Cranbury, NJ, USA) and trimethylolpropane triacrylate (TMPTA, Sigma-Aldrich Seoul,
Korea) were used as the thiol-ene prepolymer and multifunctional acrylate, respectively.
The chemical structure of TMPTA is shown in Figure 1a. The commercially available
low-molecular nematic LC mixture (HTW109100-100, HCCH, Nanjing, China) was used
as guest. This LC mixture exhibited high stability against processing conditions, such
as UV irradiation and curing temperature, during the fabrication of MSLC films. The
mixing ratio of the host (thiol-ene prepolymer and multi-functional acrylate) and guest
(nematic LC) was fixed at 70:30 wt.% without solvent. Detailed mixing ratios for the four
mixtures (MSLC-0, MSLC-6, MSLC-12, and MSLC-20) are summarized in Table 1. Since
commercial NOA 88 contains a proprietary photo-initiator, there was no need for an extra
initiator. The prepared mixtures were inserted by capillary action into cells consisting of
two glass substrates without surface treatment. The cell gaps between the two substrates
were maintained using 30 µm glass beads. The cells filled with the homogeneous mixture
were exposed to a UV light (365 nm, 6 W) for 15 min at 55 ◦C under ambient pressure. Once
the polymerization reaction of the blended prepolymer was initiated in the homogeneous
mixture, spontaneous polymerization-induced phase separation occurred between the
host and guest. As a result, the guest came out of the homogenous phase and began to
form LC droplets. The LC droplets grew until the UV-initiated polymerizable prepolymer
became sufficiently solid to trap the LCs and prevent them from moving easily [6]. The
extraordinary refractive index of the guest used here was ne = 1.706 (at 20 ◦C, 589 nm), and
the refractive index of the host was n = 1.56. This refractive index mismatch between the
LCs and the polymer resulted in light scattering [7]. There is a high probability that the size
of the droplet becomes smaller than the visible wavelength scale at low LC concentration,
similar to the present case. However, the evaluated size of the droplet was of the order
of several microns, which is relatively large. This relatively large size can be attributed
to the polymerization conditions, especially the UV curing temperature. It is empirically
known that the average droplet size increases when prepolymer is polymerized at low
curing temperature. Thus, with a decrease in the curing temperature, the degree of matrix
formation decreases, enhancing phase separation which yields bigger droplet sizes [8]. It
should be noted that the present system was polymerized at 55 ◦C, which is a relatively
low curing temperature.

Table 1. Mixing ratios (wt.%) of the four mixtures prepared in this study.

NOA 88 TMPTA HTW 109100-100

MSLC-0 70 0 30
MSLC-6 64 6 30

MSLC-12 58 12 30
MSLC-20 50 20 30
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Figure 1. (a) Chemical structure of the multi-functional acrylate TMPTA. (b) Histograms of the LC
droplet size distribution in the MSLC-0, MSLC-6, MSLC-12, and MSLC-20 films, respectively. Typical
POM images of the four films are also provided in the insets.

Figure 1b presents histograms of the LC droplet size distribution in the MSLC-0,
MSLC-6, MSLC-12, and MSLC-20 films, respectively. Typical polarized optical microscopy
(POM) images of the four films are also provided in the insets to Figure 1b. The LC droplet
size distributions were obtained from the POM images processed by the software ImageJ,
which was developed at the National Institutes of Health (Bethesda, MD, USA) and is a
freely available image processing and analysis program [9,10]. As shown in Figure 1b, the
mean LC droplet size decreases, and the LC droplet number increases on increasing the
fraction (up to 20 wt.%) of the multi-functional acrylate within the host polymer matrix.
This is because the crosslink density within the host polymer matrix increases on adding
multi-functional acrylates into the thiol-ene prepolymers. Acrylate incorporation in the
thiol-ene matrix increases the rubbery modulus of the system owing to the heterogeneous
distribution of cross-linked regions; the modulus is proportional to the number density of
network strands between the crosslinks [11,12]. The polymer network with high crosslink
density exhibits a low ability to swell with LCs [13]; thus, LCs occupying these polymer
regions are large in number, but small in size.

The D is an effective parameter for analyzing complex structures in several areas
of science [14]. Fractal dimensional analysis of the LC droplets in the MSLC films was
performed using POM images, as shown in Figure 2. The self-similar nature refers to the
fact that if a portion of a system is magnified, the overall structure would resemble the
original piece irrespective of the magnification or size of the original portion [14]; this
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self-similarity was quantified using the D. Grayscale versions of the original color POM
images were converted to binary data, and fractal image analysis was also performed with
the plugin FracLac for ImageJ [10] using the box dimension method for each POM image
of the four MSLC films. This method yields the D from the exponent in the following
proportionality [14]:

N(d) ∝
1

dD (1)

where N(d) is the number of boxes of length d occupied by the dataset (here, the LC
droplets). The D varied between 1 and 2. D = 1 indicates a single LC droplet and
D = 2 corresponds to a complete space-filling structure (i.e., LC droplets filling all of
the investigated sandwich cells) [14].

Figure 2. Grayscale images used for geometric fractal analysis; (a) MSLC-0, (b) MSLC-6, (c) MSLC-12,
and (d) MSLC-20. Original color POM images of the four films are also provided in the insets.

Figure 3a presents the evaluated D of the LC droplet surrounded by polymer networks
as a function of the fraction of the multi-functional acrylate within the host polymer matrix.
As shown in Figure 3a, as the fraction of the multi-functional acrylate increased, the D also
increased. In the case of acrylate incorporation in the thiol-ene prepolymer, the thiol-ene
polymerization process as well as another polymerization occurred simultaneously via the
blended multi-functional acrylate [15]. This gave rise to the formation of a polymerized
network via an acrylate-acrylate polymerization along with the thiol-ene polymerized
network [15]. It yielded long, complex, and chained polymerized structures as a thiol-ene-
acrylate network [16]. The fractal structures of polymer networks are expected because of
the presence of thiol and acrylate in these systems [5,17,18]. Hence, the fractal structures of
the polymer networks yield that of the LC droplets because the LC droplets are embedded
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in the polymer networks consisting of thiol-ene-acrylate networks. The optical haze profiles
of the four MSLC films prepared are shown in Figure 3b. Optical haze can be used to
manipulate light behavior and is given by:

Optical haze = DT/TT × 100 (2)

where DT is the diffusely transmitted light, and TT is the total transmitted light [7]. The TT
and DT spectra of the MSLC films were measured using a haze meter (HAM-300, Everfine,
Hangzhou, China) with an integrating sphere (inner diameter: 60 mm). The optical haze
was calculated using Equation (2) Figure 3c shows the plot for average optical haze over
the wavelength range of 450 ≤ λ ≤ 800 nm as a function of the blended amount of multi-
functional acrylate (TMPTA) within the host polymer matrix. As expected, the optical
haze performance was enhanced because small scattering centers (LC droplets) increased
on increasing the fraction of the multi-functional acrylate. Figure 3d shows the plot for
the average optical haze as a function of the D of the LC droplets in the four MSLC films.
Interestingly, the average optical haze strongly correlated with the D of the LC droplets in
the MSLC films.

Figure 3. (a) D of the LC droplet surrounded by polymer networks as a function of the fraction of
the multi-functional acrylate within the host polymer matrix. (b) Optical haze profiles of the four
MSLC films prepared. (c) Average optical haze over the wavelength range of 450 ≤ λ ≤ 800 nm as a
function of the blended amount of multi-functional acrylate TMPTA within the host polymer matrix.
(d) Plot of average optical haze versus the D of the LC droplets in the four MSLC films.

To validate the strong correlation between the D and the optical haze, we prepared four
MSLC-20 films with different film thicknesses: 5, 10, 20, and 30 µm. MSLC-20 consisted of
20 wt.% of multi-functional acrylate TMPTA, 50 wt.% of thiol-ene prepolymer NOA 88, and
30 wt.% of LC, as listed in Table 1. Figure 4a shows the D of the LC droplet surrounded by
polymer networks according to the thickness of the MSLC-20 films. Using a method similar
to that explained in Figure 2, the fractal dimensional analysis of the four MSLC films with
different film thicknesses was carried out. Figure 4b shows the optical haze profiles of the
four MSLC films with different film thicknesses. Figure 4c shows the plot for the average
optical haze over the wavelength range of 450 ≤ λ ≤ 800 nm as a function of MSLC-20
film thickness. As shown in Figure 4a,c, the D and the optical haze performance increased
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on increasing the film thickness. This is also due to the increase in scattering centers (LC
droplets) on increasing the film thickness. The average optical haze as a function of the D
of the LC droplets in the four MSLC films prepared is also plotted in Figure 4d. Even in
this case, the average optical haze was strongly correlated with the D of the LC droplets in
the MSLC films, as shown in Figure 3d. It is elucidated that we can qualitatively predict
the optical haze performance via the geometric fractal analysis in the MSLCs.

Figure 4. (a) D of the LC droplet surrounded by polymer networks as a function of film thickness.
(b) Optical haze profiles of the four MSLC films prepared with different thicknesses. (c) Average optical
haze over the wavelength range of 450 ≤ λ ≤ 800 nm as a function of film thickness. (d) Plot of average
optical haze versus the D of the LC droplets in the prepared MSLC films with different thicknesses.

In conclusion, we fabricated the MSLC films by adding a multi-functional acrylate to
thiol-ene prepolymers as a host polymer matrix for the LC phase segregation. We evaluated
the optical haze performance of the MSLCs as a function of the doping fraction of the
multi-functional acrylate prepolymer. On increasing the fraction of the multi-functional
acrylate within the host polymer matrix, small scattering centers (LC droplets) increased,
resulting in an enhanced optical haze of the MSLC film. We also demonstrated that the
optical haze performance can be characterized by the D of the LC droplet morphology
in the MSLC films. Interestingly, the optical haze performance and D exhibited a strong
correlation in the MSLC films with different fractions of multi-functional acrylate. This
strong correlation was also confirmed in the MSLC films with different film thicknesses.
Our approach indicates that it is possible to qualitatively predict the optical performance
via geometric fractal analysis in complex polymeric composites, such as MSLC films.
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