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Monolayer blue phosphorene (BlueP) systems were investigated under biaxial strain
range from −10% to +10%. All these systems exhibit excellent stability, accompanying
changes in the electronic and optical properties. BlueP becomes metallic at −10%
strain and transforms into a direct semiconductor at 10% strain while maintaining
indirect semiconductor behaviors at −8% to +8% strain. The bandgap of BlueP
decreases linearly with strain, and tensile strain exhibits a more moderate bandgap
modulation than compressive strain. The real part of the dielectric function of BlueP is
enhanced under compressive strain, while the optical absorption in the visible and the
infrared light regions increases significantly under tensile strain. The maximum
absorption coefficient of 0.52 ×105/cm occurs at 530 nm with the 10% strain. Our
analysis indicates that the semiconductor–metal transition and the indirect–direct
bandgap transition are the competition results of the energy states near the Fermi level
under a massive strain. The potent compressive strain leads the py orbitals of the
conduction band to move downward and pass through the Fermi level at the K point.
The robust tensile strain guides the energy states at the Γ point to approach the Fermi
level and become the band edges. Our results suggest that the energy storage
capacity of BlueP can be significantly improved by compressive strain, while the visible
light photocatalytic performance is enhanced by tensile strains of less than 8%. Our
works provide a reference for the practical applications of BlueP in photocatalyst,
photovoltaic cells, and electronic devices.
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INTRODUCTION

The miniaturization requirement of optoelectronic devices accelerated the exploration of
multifunctional two-dimensional (2D) materials (Mélinon et al., 2007; Youngblood et al., 2015;
Zhang and Cui, 2022a). 2D materials and structures, such as single-atom crystal (Du et al., 2016; Yu
et al., 2016; Cui et al., 2021a), group-IV compounds (Peng et al., 2013; Sun et al., 2021; Zhang and
Cui, 2022b), transition metal compounds (Cui et al., 2021b; Cui et al., 2021c), and van der Waals
heterostructures (Memaran et al., 2015;Wang et al., 2018a), have been investigated by first-principles
calculations. The results show that the flexible structure, adjustable bandgap, and excellent
compatibility with traditional silicon-based devices make these 2D materials qualified not only
as catalysts (Sun and Schwingenschlögl, 2020a; Luo et al., 2021; Liu et al., 2022), spintronics (Yuan
et al., 2018; Li et al., 2021), nanomechanics (Sun and Schwingenschlögl, 2020b), energy conversion
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(Pospischil et al., 2014), and gas-sensing devices (Kooti et al.,
2019; Sun et al., 2019), but also as optoelectronic devices (Sun
et al., 2017a; Ghojavand et al., 2020; Liu et al., 2020; Cui et al.,
2022).

As the allotrope of layered black phosphorus (BlackP)
materials, blue phosphorene (BlueP) with a puckered
honeycomb structure shares the high stability and carrier
mobility with BlackP (Zhu and Tománek, 2014; Sun et al.,
2019). The ~2 eV bandgap makes BlueP more suitable than
BlackP as a high-performance field effect transistor channel
material (Liu et al., 2014). To achieve more applications, a
series of bandgap modulation methods have been carried out
by employing electric field (Ghosh et al., 2015), stacking effects
(Mogulkoc et al., 2016; Pontes et al., 2018), doping (Sun et al.,
2015; Zhang et al., 2017), functionalization (Zhu et al., 2016; Yang
et al., 2017), and forming heterostructures with other materials
(Sun et al., 2017b; Kaewmaraya et al., 2018; Mogulkoc et al.,
2018). The absorption spectrum of BlueP-based devices has
spanned from the ultraviolet to the infrared light (Sun et al.,
2020). Recently, the convenience of synthesis and exfoliation (Gu
et al., 2017; Zeng et al., 2017) further accelerates the practical
applications in lithium-ion batteries (Bao et al., 2018; Li et al.,
2018), photocatalysts (Wang et al., 2018b; Wang et al., 2018c; Ju
et al., 2018; Gao et al., 2019), and gas sensors (Montes and
Schwingenschlögl, 2017; Safari et al., 2018).

During the fabrication of monolayer nanostructures, the
inevitable stress and strain influence the actual bandgap of 2D
materials. However, it has been demonstrated as an effective and
low-cost method to fulfill the continuous control of bandgap by
employing elastic strain (Feng et al., 2012; Çakır et al., 2014; Peng
et al., 2020; Kilic and Lee, 2021; Lou et al., 2021). To the best of
our knowledge, the strain effects on the bandgap, electronic, and
optical properties have seldom been discussed in BlueP. In this
work, the properties of BlueP systems were studied under strain
ranging from −10% to +10%. It is shown that the bandgap of
BlueP decreases linearly with the strain. Compared with the
compressive strain, the tensile strain exhibits a more moderate
bandgap adjustment and strong absorption in the visible light
region. BlueP shows the fascinating photocatalytic and
photovoltaic properties under 8% tensile strains, while the
energy storage capacity of BlueP is enormously improved
under compressive strains. The semiconductor–metal
transition and the indirect–direct bandgap transition occur at
the −10% and the 10% strain, respectively. These transitions are
attributed to the competition of the energy states nearby the
Fermi level under a massive strain. Our works provide a
theoretical reference for the actual applications of BlueP in
photocatalyst, photovoltaics, and electronics.

COMPUTATIONAL DETAILS

All our calculations are performed by the Vienna ab initio
simulation package (Kresse and Furthmüller, 1996a).
Generalized gradient approximation of the
Perdew–Burke–Ernzerhof function analyzes the parameterized
exchange–correlation interaction (Kresse and Furthmüller,

1996b; Kresse and Joubert, 1999). High computational
accuracy is guaranteed by a 550-eV cut-off energy of plane-
waves basis. An 11 × 11×1 Monkhorst–Pack k-point mesh is
constructed. A vacuum layer of 20 Å height was employed to
eliminate the influence of interlayers (Perdew et al., 1996). To
ensure the system is tested at the steadiest state, the
Hellmann–Feynman force on each atom and the total energy
change are required to converge to 0.01 eV/Å and 10−5 eV/atom,
respectively. Local field effects and frequency-dependent
dielectric response theory are considered to obtain the optical
properties in the random-phase approximation (RPA)
(Hybertsen and Louie, 1986; Heyd et al., 2003; Grimme et al.,
2010). The data processing is performed by VASPKIT (Wang
et al., 2021).

RESULTS AND DISCUSSION

The puckered honeycomb structure of the relaxed monolayer
BlueP is depicted in Figure 1A, where half of the atoms are
squeezed out of the plane formed by the others. The vertical
distance between the upper and lower atoms is 1.24 Å. Each BlueP
is connected with three adjacent BlueP by covalence bands and
forms a P–P bond angle of 92.7°. The lattice constants a1 and a2
are 3.20 Å, similar to the reported values (Ju et al., 2018; Sun et al.,
2020). The indirect bandgap monolayer of BlueP is 1.87 eV. The
conduction band minimum (CBM) is primarily contributed by
the pz and py orbitals, while the valence band maximum (VBM)
by the pz and px orbitals, as illustrated in Figure 1B.

The strain on BlueP is calculated by the value of (a–a1)/a1,
where a1 and a are the lattice constants of the structures before
and after strain, respectively. Tensile strain is positive, while
compressive strain is negative. The physical and chemical
properties of BlueP are investigated under the biaxial strains
ranging from −10% to 10%. Our results show that BlueP presents
excellent stability under strain.

The energy structure of the strained BlueP exhibits a
significant strain dependence, as shown in Figure 2. As the
compressive strain increases, the py orbitals of the conduction
band move downward and pass through the Fermi level at the K
point under the −10% strain, causing the semiconductor–metal
transition. Compared with the apparent movement of the py
orbitals in the conduction band, compressive strain has fewer
effects on the py and px orbitals in the valence band.

On the tensile conditions, the energy states of pz orbitals at the
Γ point approach the Fermi level with strain and become the CBM
and VBM gradually. At the 10% strain, BlueP experiences the
indirect–direct semiconductor transition. The bandgap of BlueP
decreases linearly with the strain for either tensile or compressive
strain, as shown in Figure 3. Compared with the compressive
strain, the tensile strain makes a more moderate bandgap
modulation, which is crucial for the accurate bandgap control.

The absorption spectrum from the ultraviolet to visible
light is essential in optical and renewable energy systems.
Dielectric function is introduced to investigate the electrical
and optical properties of BlueP (Toll, 1956; Ehrenreich and
Cohen, 1959)
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ε � ε1(ω) + iε2(ω), (1)
where ω represents the angular frequency of the electromagnetic
wave, and complex dielectric function ε reflects the electric
polarizability capacity of the material. ε1(ω) and ε2(ω) are the
real part and the imaginary part of the ε, respectively. ε1(ω)
describes the ability to store energy, while the ε2(ω) represents
the loss.

The absorption coefficient is calculated by the following
expression:

α(ω) � �
2

√
ω[

�����������
ε21(ω) + ε22(ω)

√ − ε1(ω)
2

]1/2

. (2)

Our results show that the dielectric constant ε1 is highly
dependent on strain, as depicted in Figure 4. ε1 (0) is 2.04 for

FIGURE 1 | (A) Top and side views of crystal structure and (B) projected band structure of BlueP. The blue, green, and peach dot lines represent the energy levels
contributed by the px, py, and pz orbitals, respectively. The energy of the Fermi level is set to zero.

FIGURE 2 | The projected band structures of BlueP under elastic strain (A) −10%, (B) −8%, (C) −6%, (D) −4%, (E) −2%, (F) 2%, (G) 4%, (H) 6%, (I) 8%, and (J)
10% (the blue, green, and peach dot lines denote the contributions of px, py, and pz orbitals, respectively).
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the relaxed BlueP; it varies from 1.98 to 2.32 for the strained
BlueP. Compressive strain exhibits more influence on ε1 (0) than
the tensile strain. On the one hand, ε1 (0) decreases with the
increase of tensile strain, saturating to 1.98 under the 6% strain.
On the other hand, ε1 (0) exhibits an increasing tendency with
compressive strain, achieving the maximum of 2.32 at −10%
strain.

The peak of ε1(ω) decreases with the tensile strain,
accompanying a gentle red-shift. However, the peak increases
with compressive strains and blueshifts. The larger the
compressive strain is, the higher the peak of ε1(ω), and the
greater the blueshift. At the −10% strain, ε1(ω) has a positive
maximum of 7.0 at 5.84 eV and a negative maximum of −4.0 at
8.22 eV. This dramatic increment of ε1(ω) indicates that
compressive strain can enhance the energy storage capacity of
BlueP.

In addition, the absorption spectra of BlueP were compared
with the solar spectrum (NREL), as shown in Figure 5. It is shown
that the absorption spectrum of the relaxed BlueP spans from the
ultraviolet to the green-light region. The absorption of the
ultraviolet light is relatively strong, while it is weak in the
visible light region, which indicates that the relaxed BlueP is
not an excellent visible light photovoltaic material (Sun et al.,
2020). The absorption spectrum of BlueP blueshifts under
compressive strains, while the absorption of the visible light
decreases. It suggests that compressive strain does not improve
the absorption ability of BlueP.

On the tensile strain side, the absorption spectrum of BlueP
redshifts, accompanying a significant increase of absorption of
the visible and the infrared lights. The larger the tensile strain is,
the greater the peak of the absorption coefficient, and the greater
the red-shift are. At the 10% strain, the absorption coefficient
achieves the maximum of 0.52 ×105/cm at 530 nm wavelength.
BlueP presents preeminent optical properties, which is critical in
the photocatalyst and photovoltaic cells.

The photocatalytic performance of BlueP was further
discussed. As we know, excellent water-splitting photocatalysts

FIGURE 3 | Relationship between the bandgap and the strain on
monolayer BlueP.

FIGURE 4 | The real part of the dielectric function of BlueP with different
strains.

FIGURE 5 | The optical absorption spectra of BlueP under different
strains.

FIGURE 6 | The band edge positions of BlueP with different strains
against the redox potential of the water splitting.
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put forward requirements for the bandgap and the band edges of
materials (Bao et al., 2018; Gao et al., 2019; Kilic and Lee, 2021): a
bandgap larger than the energy requirement for water splitting, a
CBM higher than the reduction potential energy (H+/H2), and a
VBM lower than the oxidation potential energy (O2/H2O).
Additionally, a higher absorption of the solar spectrum is also
crucial.

The band edge positions of BlueP concerning the vacuum
level are illustrated in Figure 6. The potentials of the reduction
and the oxidation at the acidic environment pH = 0 are
marked. It can be seen that the bandgap of BlueP satisfies
the water-splitting reaction requirement under strain from
−4% to 8%. The reduction (H+/H2) can be improved under the
strain range of −8% to 8%, while the oxidation (O2/H2O)
promoted under the strains between −2% and 8%. Considering
the weaker optical absorption under compressive strain, BlueP
exhibits an excellent photocatalytic performance under the
tensile strains of less than 8%. What should be pointed out is
that BlueP is a single-atom material. The photocatalytic
property of BlueP will be weakened by the increasing
recombination rate of electrons and holes because the
accumulation of electrons and holes is on the same BlueP
surface (Qu and Duan, 2013; Ju et al., 2018; Ren et al., 2020).
However, this problem can be overcome by forming BlueP-
based heterostructures with other materials, where electrons
and holes accumulate on different material surfaces
(Dheivanayagam et al., 2016; Zhou et al., 2016; Zhang et al.,
2021).

CONCLUSION

In this work, the optical and electronic properties of
monolayer BlueP systems under biaxial strain were
investigated. All systems exhibit excellent stability under
the biaxial strain of −10% to +10%. The bandgap of BlueP
decreases with strain, while the tensile strain makes a more
moderate bandgap modulation. BlueP remains the behavior
of indirect semiconductor under the strains of −8% to +8%,
while a metal changes at the −10% strain and becomes a direct

semiconductor at the 10% strain. Although exhibiting a
weaker absorption in the relaxed state, the visible light
absorption of BlueP significantly increases under tensile
strain, accompanying an apparent red-shift. The larger the
tensile strain is, the greater the peak of the absorption
coefficient, and the larger the red-shift is. The absorption
coefficient has a maximum of 0.52 ×105/cm at 530 nm under
the 10% strain. BlueP exhibits an excellent photocatalytic
property under the tensile strain of less than 8%. The
increasing ε1 indicates that the energy storage capacity of
BlueP can be enhanced by compressive strain. Our analysis
indicates that the semiconductor–metal transition and the
indirect–direct bandgap transition are the competition
results of the energy states nearby the Fermi level under
massive strains. The intense compressive strain causes the
significant decrease of the py orbitals of the CBM at the K
points, while the potent tensile strain guides the energy states
at the Γ point to approach the Fermi level and becomes the
band edges gradually. This study provides references for
BlueP applications in photocatalyst, photovoltaics, and
electronics.
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