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Abstract: Many cities have encountered challenges associated with rapid urban development, popu-
lation growth and aging, in which urban renewal has become a promising option. Different renewal
strategies, such as redevelopment, refurbishment and conservation, not only contributes to quality
improvement and energy consumption reduction of dilapidated urban area, but also to greenhouse
gas (GHG) emissions mitigation. Such integrated benefits are often termed as co-benefits. However,
choosing the most co-benefits strategy to adopt requires a holistic understanding of social-economic
and environmental aspects, which has been less reported in the existing literature. Under such
circumstance, this article aims to shed light on the co-benefits of different renewal strategies by
adopting the Emergy-Life cycle assessment method. Then, the method is applied to one case study
of the refurbishment of an educational building located in Chongqing, China. Resource allocation,
CO2 emissions and emergy-based indicators are calculated to assess the co-benefits during a 60-year
research period, to compare the impacts of the complete demolition followed by a new one (rebuild-
ing strategy) and the refurbishing of the existing building (refurbishment strategy). The case study
shows that the annual emergy in the O&M phase of rebuilding strategy and refurbishment strategy
were lower than existing building. Rebuilding and refurbishment strategies released approximately
59.1% and 80.6%, respectively, of the total CO2 emissions that would be produced by the existing
building. The results reveal that substantial environmental benefits can be obtained in both the
refurbishment and rebuilding strategies. On the other hand, it can be concluded that the emergy yield
ratio (EYR) for the rebuilding strategy is higher than refurbishment strategy, which demonstrate the
better performance of refurbishment considering that less resources are required to generate greater
benefits. In addition, the value of environmental loading ratio (ELR) and emergy sustainability
index (ESI) also suggests that the refurbishment strategy performs better from the perspective of
the environment. Thereby, the refurbishment strategy is more suitable than the rebuilding strategy.
Findings from this study can be useful to urban planners and decision-makers in choosing the most
suitable strategy to improve the quality of existing buildings.

Keywords: urban renewal; co-benefits; emergy analysis; life cycle assessment (lca); refurbishment
strategy; rebuilding strategy

1. Introduction

Most cities worldwide are exposed to social-economic and environmental challenges
caused by rapid industrialization, population growth and urbanization [1]. These chal-
lenges include urban dilapidation, economic decline, unreasonable utilization of land and
environmental pollution [2–4]. Urban renewal, as a process to achieve the sustainable
development in terms of economy, society and environment [5–7], is an ideal approach to
resolve urban issues.
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Urban renewal, also known as urban regeneration, offers a chance to improve the
physical, social, economic and ecological conditions of decaying urban areas by three strate-
gies: rebuilding, refurbishment and conservation [7]. One of the main strategies of urban
renewal is rebuilding, which involves demolishing dilapidated buildings and replacing
them with brand-new buildings, as was done in New York, USA, from 1949–1972 [8]. The
rebuilding strategy enables eradication of substandard buildings and improves the land
use [9,10]. Moreover, it can easily incorporate open spaces and community facilities, which
gives neighborhoods in the redevelopment sites a positive externality [10,11] and reduces
energy consumption [12]. However, rebuilding destroys the social fabric of cities [13] and
generates a large amount of construction waste [14].

Refurbishment refers to the rehabilitation of outdated buildings through a series of
efforts, to improve quality standards and function [9]. Generally, the main volume of the
building was preserved in refurbishment strategy. The refurbishment strategy offers a
quicker and less socially disturbing option to improve the building stock quality [10,11]. In
addition, the refurbishment strategy enables building energy performance improvement
through the integration of energy efficiency and renewable energy measures [15]. However,
according to [16], the cost of refurbishment is similar to that of rebuilding.

The third strategy is conservation, also known as preservation or restoration, which is
usually performed in heritage buildings [17]. Conservation includes a series of processes to
maintain a building and preserve and protect its historical and cultural values [13]. How-
ever, most of the old building envelopes have a poor thermal insulation performance [18,19],
which requires frequent repair and rehabilitation measures [17].

Although the co-benefits captured in the above three urban renewal strategies is
significant, the decision which strategy to adopt is complex and requires the integration
of social, economic, and environmental parameters [17]. The process of choosing the
appropriate urban renewal strategy has been debated for over a century [20]. However, it
remains unclear whether rebuilding, refurbishing or conserving existing buildings is the
most suitable option [21]. In this context, the aims of this study are (i) to investigate the
co-benefits of different renewal strategies by employing EM-LCA method (combination of
emergy and LCA method); (ii) to provide a comparison between refurbishment strategy
and rebuilding strategy. Figure 1 illustrates the stages of the research. After the introduction
section, the review of the relevant work on the topic is discussed in Section 2. Additionally,
the EM-LCA method adopted in this study is presented in Section 3. Then, a detailed case
description and three strategies is provided in Section 4. Sections 5 and 6 first focus on
the results and discussion of the emergy of the building system and the greenhouse gas
(GHG) emissions in every strategy, and the co-benefits of different renewal strategies are
then revealed and compared. Finally, certain conclusions are drawn.

Figure 1. Research framework.
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2. Review of Relevant Works

Several recent studies on the comparison between refurbishment strategy and re-
building strategy were conducted around the world (Table 1). However, the results of
this research were polarized. Some researchers argued that refurbishment strategy was
better than rebuilding strategy in terms of cost, time, energy performance, CO2 emissions
and other environmental indicators. A recent study on energy-saving measures was con-
ducted by Gaspar and Santos, the results revealed that the rebuilding strategy consumed
more embodied energy than the refurbishment strategy [16]. Weiler et al. calculated the
embodied energy, the embodied greenhouse gases (GHGs), the energy required and the
GHGs emitted during the life cycle of an individual building [22]. Accordingly, Weiler
suggested that refurbishing is better than rebuilding. Hasik et al. conducted a comparative
between refurbishment and new construction by a whole-building life cycle assessment,
which showed that 53–75% reductions when the refurbishment was compared to rebuild-
ing strategy in terms of acidification potential, eutrophication potential, global warming
potential, ozone depletion potential, smog formation potential and non-renewable energy
demand [23]. For materials and waste, the environmental impact of refurbishment strategy
is better rebuilding strategy [24].

In contrast, some previous comparison studies of refurbishment and rebuilding have
other different opinions. A life cycle performance for 4 refurbishment scenarios and 2
reconstruction scenarios were investigated, the results showed that the rebuilding scenarios
appear to be the better choice compared to refurbishment when the total life cycle emissions
intensity is considered [25]. The same results were also gained by Rønning et al., which
investigated a Norwegian bank through a hybrid LCA approach [26]. In addition, for the
cost, Ferreira, Pinheiro and Brito suggested the refurbishment strategy was less competitive
than rebuilding strategy [27].

Based on the aforementioned review, the results of previous studies suggested that
urban renewal have some co-benefits over existing buildings, such as the improvement of
building quality and function, the reduction of energy consumption and the improvement
of environment. However, several research gaps are identified from the current studies. The
results of previous researches about whether rebuilding or refurbishing existing buildings
is the better option remains unclear [21]. As Table 1 shows, these studies mainly focused
on the residential building in European countries, few studies have been carried out to
investigated the office building. Energy and cost were adopted in most studies as the
mainly criteria to make comparison, which neglect other aspects. Moreover, numerous
studies adopted the life cycle assessment (LCA) method to assess the energy consumption
of different renewal strategy. LCA method only studies the environmental impacts of
products or processes but neglects the impacts of other aspects, such as economic effects [28].
The decision which strategy to adopt is complex and requires a comprehensive tool to
integrate social, economic, environmental, and political-institutional parameters [17].

Emergy (Em) is an environmental policy tool for evaluating the quality of resources
based on the dynamics of complex systems [33]. Odum defined emergy as the total amount
of one kind of available energy (exergy) that is directly or indirectly used in transformations
to generate a given product or support a given service [34]. Em assesses the system
performance by quantifying the emergy value of different kinds of resources, such as
renewable and nonrenewable resources, labor/services, gas emissions, and liquid and
solid wastes [35]. Accordingly, with Em, it is possible to develop a link between economic
and ecological systems [36–38] and allows the direct comparison of different products and
services [39,40]. In addition, the Em method can not only investigate the social-economic
and environmental impacts of a system [41] but can also analyze the resources consumed
to support labor and services, which is often not considered in the process of LCA [42].
The combination of Emergy and LCA (EM-LCA) is a more comprehensive sustainability
assessment tool for complex systems [28,43].
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Table 1. Recent studies on comparison of rebuilding and refurbishment.

Literature
Source Country Building

Type Method Measurement
Criteria Main Conclusions

La Fleur,
Rohdin [29] Sweden Residential

Life cycle
assessment

(LCA)

Life cycle cost
(LCC)

The cost of the new building is higher compared
to energy renovation.

Gaspar and
Santos [16] Portugal Residential cradle-to-

gate
Energy
Weigh

Refurbishment was a more sustainable strategy
than rebuilding.

Weiler,
Harter [22] Germany Residential LCA Energy It is better to refurbish an existing building than

to demolish it and reconstruct.
Morelli,

Harrestrup
[30]

Denmark Residential Two-fold
evaluation

Cost of
conserved

energy

Renovating the building will be an economically
sensible solution as compared to demolishing

and erecting a new one.
Marique

and Rossi
[21]

Brussels Office LCA Energy
The retrofitting of the building is significantly

less harmful than its complete
demolition/reconstruction.

Ferreira,
Duarte

Pinheiro
[27]

Portugal Palace cradle-to-
gate

Energy
Cost

Refurbishment was environmentally more
positive than the new equivalent construction.
For cost, refurbishment was less competitive

than demolition followed by a new equivalent
construction.

Rønning,
Vold
[26]

Norway Norwegian
Bank LCA Energy

From a climate point of view the most
favourable strategy was to replace the existing

construction and build a new one.
Elmezaini

[31] Gaza Al-Amin
Mosque

Time
Cost

A cautious repairing program was successfully
adopted which saved time and cost.

Itard and
Klunder

[32]
Netherlands Residential LCA

Material
Energy

Water use
Demolition

waste

The transformation of the existing housing stock
is found to be a much more environmentally

efficient way to achieve the same result than are
demolition and rebuilding.

Feng,
Liyanage

[25]
Canada Residential

LCA+
Building in-
formation
modelling

(BIM)

Energy

Renovations lead to much lower embodied
emissions compared to reconstruction.

When the total life cycle emissions intensity is
considered, the reconstruction options also
appear to be the better choice compared to

renovations at the full 50-year project assessment
period.

Measures to mitigate the climate change and environmental pollution can bring some
unintentionally positive benefits, as called co-benefits [44]. A growing number of studies
having discussed the co-benefits of climate change policy at different countries, particularly
China, India and Bangladesh [45–48]. The co-benefits of air quality management plan
and GHG emissions reduction strategies in the Seoul metropolitan area and New Zealand
were evaluated by some models [49,50]. Dong et al. studied the CO2 emissions and air
pollutants emissions in China, and the reduction cost and co-benefits effect [51]. The build-
ing environment interventions will yield the co-benefits of mitigating climate change and
promoting public health [52]. Certified green building substantially generate the co-benefits
to public health, which were estimated in the six countries (the United States, China, India,
Brazil, Germany and Turkey) [53]. Co-benefits to public health, such as improving the inter-
face between humans and wildlife, reducing the risk of waterborne disease, flood-related
morbidity and mortality, and psychological harm, were evaluated [54]. Furthermore, the
GHG emissions co-benefits associated with water, waste and transportation usage in LEED
building were also investigated in California [55]. As for the existing building, co-benefits
of the residents, housing association and society in general, GHG emissions and energy
consumption can be achieved after implementing retrofit technological measures [56–58].
The co-benefits of residential buildings in terms of the energy savings, costs and other
additional benefits of renovation scenarios were investigated to support decision mak-
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ing [59,60]. However, few studies have been conducted relating the co-benefits of different
renewal strategies with the whole life cycle approach.

3. Method
3.1. EM-LCA Approach

In this study, the EM-LCA approach was applied to quantify the co-benefits of the
different renewal strategies. This approach aims to offer a same quantitative framework
among different resources, energy and human services [36], which is a more comprehensive
technique than existing LCA tools [28]. Figure 2 presents an overview of the boundaries
of building system and depicts the constituents, resource flows, exchange pathways, and
downstream outflows. The system boundary in this research includes both spatial and
life cycle process boundaries [61,62]. The spatial boundary is the three-dimensional space
of a building, which includes the foundation at the bottom, the highest point and the
façade of the building. The lifecycle process boundary includes all the upstream and
downstream processes to establish and maintain the functions of a building [63], which
contain all processes from the cradle to the grave. The lifecycle process boundary in this
study extends from the demolition phase to the end-of-life phase based on the renewal
of existing buildings, namely, the demolition phase, construction phase (including the
material production phase, transportation phase and on-site phase), O&M phase and
end-of-life phase [63]. This paper does not consider the construction/demolition waste due
to the lack of data. The building system is regarded as a thermodynamic engine in which
natural, social and economic resources are invested to generate products and maintain
the base performance, thereby releasing pollutants to the atmosphere, water bodies and
land. Accordingly, the driving energy, materials and interactions, as well as outflows and
feedback of the system, are simulated as energy pathways [28].

Figure 2. Emergy diagram of the material and energy flows.

3.2. Resource Allocation

Seven different types of resources have been identified in the building system input,
as shown in the emergy flow diagram in Figure 2. These resources include solar irradiation,
materials, electricity, water, diesel fuel, gasoline and human labor.
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(1) Solar irradiation—the input of solar irradiation (Equation (1)) to urban renewal is
regarded as a kind of free renewable resource invested in the building system, which can
impact the indoor thermal environment of buildings [40,64].

Es,c = S × I × (1 − a)× tc × Ts (1)

where Es,c is the solar emergy of the solar irradiation in the construction phase; S is the
construction site surface (footprint); I is the annual amount of solar radiation, equal to
3.5 × 109 J/m2 [65]; a is the surface albedo, equal to 0.7 in this study; tc is the construction
time; and Ts is the transformity of solar energy.

(2) Materials—the building materials are the resources invested in the system to
construct a building, which mainly occurs in the construction phase [34,64]. The emergy of
the system inflows can be calculated as follows (Equation (2)):

Em =
n

∑
i=1

Mi × Tmi (2)

where Em is the solar emergy of the building materials; Mi is the quantity of material i; and
Tmi is the transformity of material i.

(3) Electricity—the emergy flow of the electricity (Equation (3)) consumed during the
life cycle is calculated as:

Ee = W × Te (3)

where Ee is the solar emergy of the electricity required in the building construction, O&M
and end-of-life phases; W is the quantity of electricity obtained from the results of energy
consumption simulation with EnergyPlus 8.7(developed by Department of Energy and
Lawrence Berkeley National Laboratory, Berkeley, California, US); and Te is the transformity
of electricity.

(4) Water—the emergy flow of the water (Equations (4) and (5)) used during the
building lifetime can be calculated as:

Ew,c = V × ρw × G × Tw (4)

where Ew,c is the solar emergy of the water consumed in the building demolition, construc-
tion and end-of-life phases; V is the required water volume; ρw is the water density; G is
the Gibbs free energy of water, which equals 4.92 J/g [66]; and Tw is the transformity of
water.

Ew,o = Va × Nn × to × ρw × G × Tw (5)

where Ew,o is the solar emergy of the water consumed in the building O&M phase; Va is the
required water volume of one person per day, which equals 20 L/d/p in this study [40];
Nn is the number of employees, which equals 200 in this study; and to is the total number
of working days per year, which is assumed to be 300 days in this study.

(5) Diesel fuel—the consumption of diesel fuel mostly occurs during the demoli-
tion, construction and end-of-life phases, the emergy of diesel fuel (Equation (6)) can be
calculated as:

Ed = Md × cd × Td (6)

where Ed is the solar emergy of the diesel fuel consumed; Md is the quantity of diesel fuel
consumed in the building life cycle; cd is the calorific value of diesel fuel; and Td is the
transformity of diesel fuel.

(6) Gasoline—the solar emergy of gasoline (Equation (7)) is calculated as:

Eg = Mg × cg × Tg (7)

where Eg is the solar emergy of gasoline; Mg is the quantity of gasoline consumed in the
building life cycle; cg is the calorific value of gasoline; and Tg is the transformity of gasoline.
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(7) Human labor—the emergy of human labor (Equation (8)) is mainly required during
the building demolition, construction and end-of-life phases. The method for calculating
the emergy of labor can be represented as follows [64]:

El = Nh × Nn × tt × Tl (8)

where El is the emergy equivalent of human labor; Nh is the number of working hours per
day of one employee, which is 8 h in this study; Nn is the number of employees, which
equals 10 in this study; tt are the working days required in the life cycle process; and Tl is
the transformity of labor.

3.3. GHG Emissions

Compared with the material transportation and on-site phases, the CO2 emissions
in the raw material manufacturing phase account for 80–90% of the total emissions [67].
Therefore, the CO2 emissions in the construction phase only include those in the raw
material manufacturing phase. The CO2 emissions in the O&M phase mainly refer to the
emissions generated by electricity under the case conditions (Equation (9)), which can be
calculated as:

GCO2 =
n

∑
i=1

Mi × ECO2−eq,i (9)

where GCO2 is the amount of CO2 emissions; Mi is the quantity of material i; and ECO2−eq
is the emission factor of the different building materials i. Table 2 lists the emission factors
of the different building materials.

Table 2. Emission factors of the different materials.

No. Main Building Materials Unit Reference CO2 Emissions (kg/unit)

1 Steel kg Peng [68] 2.208
2 Cement kg Peng [68] 0.894
3 Concrete kg Peng [68] 0.242
4 Brick kg Peng [68] 0.200
5 Lime kg Peng [68] 1.200
6 Gravel kg Peng [68] 0.002
7 Glass kg Peng [68] 1.400
8 Wood kg Peng [68] 0.200
9 Aluminum kg Peng [68] 1.407
10 Sand kg Mao, Shen [69] 0.0069
11 Diesel L Zhan, Liu [70] 2.730
12 Gasoline L Zhan, Liu [70] 2.260

13 Electricity kWh

National
development
and reform

commission in
China (NDRC

[71]

0.9929

3.4. The Emergy-Based INDICATORS

The resources input to the building system can be divided into three aspects depending
on the source type, i.e., renewable, nonrenewable and purchased resources [72]. The
emergy-based indicators to assess the building system performance in this paper are the
emergy yield ratio (EYR), environmental loading ratio (ELR) and emergy sustainability
index (ESI), as summarized in Table 3.
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Table 3. Emergy indices and description.

Emergy Indices Description

R Renewable resources
N Nonrenewable resources
F Emergy feedback
Y Emergy yield: N+R+F

EYR a Emergy yield ratio: Y/F
ELR Environmental loading ratio: (N+F+EL)/R
ESI Emergy sustainability index: EYR/ELR

a Emergy indices were adapted from [33,34].

4. Case Study

A six-story educational building located in Chongqing, China, was adopted as a
case study. The building was constructed in 1994 and had been in use for approximately
25 years. The building was chosen as the case study because it was deemed suitable to be
renovated due to its obsolete and poor performance. The building has a gross floor area of
6500 m2, including a terrace on the third floor. The building story height is 3.6 m, and the
structure consists of bricks and reinforced concrete elements such as foundation footings,
columns, beams, slabs and staircases. Its walls are constructed of red clay bricks, laid with
cement mortar, which have been rendered and painted. The windows are single-glazing
windows, and the roof is neither insulated nor waterproof. Inside the building, the floors
are finished with ceramic tiles and terrazzo concrete. The interior walls and ceilings are
plastered and painted.

4.1. Reference Strategy

Conservation strategies are often applied to historical buildings with a historical or
cultural value. Therefore, a comparison was conducted of the refurbishment and rebuilding
strategies.

The reference strategy is existing building before refurbishment or rebuilding. The
list of required construction materials and technical specifications was obtained from
project documents as developed by the architect and engineers. Based on the physical and
functional parameters of the building, this paper assumed that the remaining life of the
existing building is 10 years. Figure 3 shows an aerial view of the building.

Figure 3. Aerial view of the building.
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4.2. Refurbishment Strategy

Refurbishment strategy included improving the building structure, functions and
energy performance such as the addition of insulation to the walls, floors, and roof, the
installation of new windows, and the fitting of energy-efficient electric appliances and
lighting systems. The original building structure and foundation were preserved, but
minor structural repairs were considered to strengthen and extend the building life span.
The insulation performance of the building envelope may deteriorate over time due to
several factors, such as the type of insulation, workmanship and level of exposure to
weather conditions [73]. In this project, additional insulation to the walls, floors, and roof
was suggested. It was proposed that all existing windows should be replaced due to their
poor performance in thermal transmittance. Electric appliances such as air conditioners
and lighting systems with high energy efficiency levels and savings were recommended.
The life span of the building after refurbishment was assumed to be 20 years [74]. Figure 4
shows the plan of the second floor before and after refurbishment.
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4.3. Rebuilding Strategy

Rebuilding strategy in this case refers to the complete demolition of the existing
building, thereby constructing a new building. According to national building regulations
and standards, the new building must satisfy specific energy savings and seismic require-
ments. The new building would use reinforced concrete (RC) elements for its foundation,
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columns, beams and slabs. The interior layout, electric appliances and lighting systems
were designed similar to those in the refurbishment strategy. The other substructures
of the new building remained similar to those of the existing building for the sake of
simplification. The lifespan of a new office building is often quoted to range from 40–75
years [75]. Therefore, the lifespan in this study was assumed as 60 years [26,28].

4.4. Data Collection

The renewal strategy data were obtained from relevant construction documents and
project information. The collection of building data for the rebuilding strategy is time
consuming and difficult due to the lack of construction documents. Therefore, this study
obtained data from the documents pertaining to the existing building and the refurbishment
strategy. In other words, this paper combines the documents of the existing building and
information of the refurbishment strategy to obtain the construction documents for a new
building in order to better calculate the co-benefits.

Once the list of building material quantities was compiled with the material flows
in each strategy, the emergy of the input and output materials was calculated. The CO2
emissions in the different renewal measures was obtained by field measurements, simula-
tion software from EnergyPlus 8.7 and the literature. Data on the solar transformity and
certain emergy calculation processes were acquired from the literature. To conduct a better
comparison, this study adopted 60 years as the research period, during which each strategy
was implemented.

5. Results

The major emergy flows and co-benefits of the two renewal strategies are individually
addressed and examined to compare their impacts and suggest the most suitable strategy.

5.1. Emergy Flow
5.1.1. Resource Allocation

An overview of the weight and emergy of resources required in the rebuilding strategy
or the refurbishment strategy is presented on Tables 4 and 5. It is clear that comparing
the lower emergy flow during demolition and end-of-life phase, 32.74% and 14.63% of the
emergy flow was caused during the construction phase, 67.25% and 85.35% during the
O&M phase for the new building and the building after refurbishment, respectively. The
emergy of the resources during the construction phase mainly consists of cement, concrete
and gravel. The emergy of water and electricity during the O&M phase is higher than
other resources, which agrees with the function of the building as an educational building.
The results suggest that the consumption of resource during the O&M phase is the high
and the importance of the resource management in O&M phase [64].

Further, analysis of the weight of building materials in the construction phase reveals
the quantities of materials such as concrete, cement, brick, lime, and sand used in the
construction phase, which account for more than 80% of the total weight (Figure 5). The
weight of concrete in the refurbishment strategy accounts for approximately 31.20% of
the total weight, while that in the rebuilding strategy accounts for approximately 36.01%,
which implies that the concrete consumption level is the highest [76]. The relatively less
consumed materials include wood, aluminum, and plastics. These results are consistent
with the general understanding in the construction industry that the consumption of sand,
concrete cement and bricks is high in the construction phase Gaspar and Santos [16].



Int. J. Environ. Res. Public Health 2021, 18, 592 11 of 22

Figure 5. The weight of the building materials in the construction phase.

5.1.2. GHG Emission

To provide a complete picture of the environmental performance of the different re-
newal strategies, the CO2 emissions of the resources were calculated. Tables 6 and 7 contain
detailed information on the CO2 emissions for the rebuilding and refurbishment strategies.
It is clear that 11.5% of the CO2 emissions were generated in the building construction
phase of the rebuilding strategy and 12.1% were generated in the refurbishment strategy. In
the O&M phase, the CO2 emissions were 88.5% in the rebuilding strategy and 87.9% in the
refurbishment strategy. Notably, O&M phase is the largest contributor to CO2 emissions by
comparing the life cycle CO2 emissions, followed by the construction phase [62,63,77]. The
CO2 emissions of steel, concrete and cement together accounted for above 70% of the total
emissions in both strategies. Relatively low emissions are associated with building materi-
als such as wood, aluminum, glass, etc. In the O&M phase, electricity is the most important
factor impacting the environment due to the character of the consumed resources. The
results indicate that in the construction phase, the type and quantity of building materials
used has a far-reaching impact on the total carbon dioxide emissions [78].
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Table 4. Emergy table for the rebuilding strategy.

Item
Resources

(unit)
Transformity
(seJ/unit) Reference

Demolition Construction O&M End-of-Life
Total

Emergy
(Unit)Raw Data Emergy

(seJ) Raw Data Emergy
(seJ) Annual Total

(60 years)
Emergy

(seJ) Raw Data Emergy
(seJ) Type

1 Steel (g) 1.40 × 109 Odum [34] 5.30 × 108 7.42 × 1017 5.30 × 108 7.42 × 1017 F
2 Cement (g) 3.30 × 1010 Odum [34] 3.65 × 109 1.21 × 1020 3.65 × 109 1.21 × 1020 F

3 Concrete (g) 5.08 × 108 Wang and
Zhang [72] 5.93 × 109 3.01 × 1018 5.93 × 109 3.01 × 1018 F

4 Brick (g) 2.52 × 109 Wang and
Zhang [72] 9.03 × 108 2.28 × 1018 9.03 × 108 2.28 × 1018 F

5 Lime (kg) 1.28 × 1012 Odum [34] 6.05 × 105 7.74 × 1017 6.05 × 105 7.74 × 1017 F

6 Gravel (kg) 1.27 × 1012 Andrić,
Pina [64] 3.30 × 106 4.20 × 1018 3.30 × 106 4.20 × 1018 N

7 Glass (g) 8.40 × 108 Odum [34] 2.32 × 106 1.95 × 1018 2.32 × 106 1.95 × 1015 F
8 Wood (t) 4.40 × 104 Odum [34] 4.06 × 101 1.79 × 106 4.06 × 101 1.79 × 106 R

9 Aluminum
(kg) 1.60 × 1010 Odum [34] 3.98 × 102 6.37 × 1012 3.98 × 102 6.37 × 1012 F

10 Plastic (g) 3.80 × 1010 Odum [34] 1.98× 102 7.52 × 1012 1.98 × 102 7.52 × 1012 F

11 Sand (t) 1.69 × 1012 Reza, Sadiq
[38] 1.50× 103 2.54 × 1015 1.50 × 103 2.54 × 1015 N

12 Diesel (J) 1.21 × 105 Reza, Sadiq
[38] 1.96 × 107 2.37 × 1012 1.57 × 1011 1.90 × 1016 0 0 0 2.05 × 107 2.48 × 1012 1.57 × 1011 1.90 × 1016 F

13 Gasoline (J) 6.60 × 104 Odum [34] 2.27 × 107 1.50 × 1012 4.98 × 1010 3.29 × 1015 0 0 0 1.29 × 107 8.51 × 1011 4.98 × 1010 3.29 × 1015 F

14
Solar

irradiation
(J)

1.00 Odum [34] 0 0 7.56 × 1012 7.56 × 1012 2.17 × 1013 a 1.09 × 1015 1.09 × 1015 0 0 1.09 × 1015 1.09 × 1015 R

15 Water (J) 6.60 × 105 Odum [34] 9.21 × 108 6.08 × 1014 1.69 × 1010 1.12 × 1016 6.00 × 1011 3.00 × 1013 1.98 × 1019 7.21 × 108 4.76 × 1014 3.00 × 1013 1.98 × 1019 R

16 Electricity
(J) 8.00 × 104 Odum [34] 2.91 × 109 2.33 × 1014 1.79 × 1011 1.43 × 1016 3.12 × 1012 1.56 × 1014 1.25 × 1019 4.92 × 109 3.94 × 1014 1.56 × 1014 1.25 × 1019 R

17 Labor (h) 1.36 × 1013 Andrić,
Pina [64] 8.14 × 102 1.11 × 1016 1.21 × 105 1.65 × 1018 2.88 × 105 1.44 × 107 1.96 × 1020 7.92 × 102 1.08 × 1016 1.45 × 107 1.98 × 1020 F

Total 1.19 × 1016 (0%) 1.33 × 1020(32.74%) 2.74 × 1020 (67.25%) 1.16 × 1016 (0%) 1.53 × 1015 4.07 × 1020

a Annual solar irradiation for O&M phase in this paper were calculated by Andrić, Pina [64].
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Table 5. Emergy table for the refurbishment strategy.

Item
Resources

(unit)
Transformity
(seJ/unit)

Demolition Construction O&M End-of-Life
Total

Emergy
(Unit)

Total
Emergy

(60 Years)Raw Data Emergy
(seJ) Raw Data Emergy

(seJ) Annual Total
(20 Years)

Emergy
(seJ) Raw Data Emergy

(seJ)

1 Steel (g) 1.40 × 109 2.04 × 108 2.86 × 1017 2.04 × 108 2.86 × 1017 8.57 × 1017

2 Cement (g) 3.30 × 1010 1.43 × 108 4.73 × 1018 1.43 × 108 4.73 × 1018 1.42 × 1019

3 Concrete (g) 5.08 × 108 2.19 × 109 1.11 × 1018 2.19 × 109 1.11 × 1018 3.34 × 1018

4 Brick (g) 2.52 × 109 1.79 × 108 4.52 × 1017 1.79 × 108 4.52 × 1017 1.36 × 1018

5 Lime (kg) 1.28 × 1012 5.42 × 105 6.94 × 1017 5.42 × 105 6.94 × 1017 2.08 × 1018

6 Gravel (kg) 1.27 × 1012 1.49 × 106 1.90 × 1018 1.49 × 106 1.90 × 1018 5.69 × 1018

7 Glass (g) 8.40 × 108 4.93 × 105 4.14 × 1014 4.93 × 105 4.14 × 1014 1.24 × 1015

8 Wood (t) 4.40 × 104 2.52 × 101 1.11 × 106 2.52 × 101 1.11 × 106 3.33 × 106

9 Aluminum
(kg) 1.60 × 1010 3.03 × 102 4.85 × 1012 3.03 × 102 4.85 × 1012 1.45 × 1013

10 Plastic (g) 3.80 × 1010 1.35 × 102 5.12 × 1012 1.35 × 102 5.12 × 1012 1.54 × 1013

11 Sand (t) 1.69 × 1012 9.57 × 102 1.62 × 1015 9.57 × 102 1.62 × 1015 4.85 × 1015

12 Diesel (J) 1.21 × 105 9.61 × 106 1.16 × 1012 1.43 × 109 1.73 × 1014 0 0 0 1.85 × 107 2.24 × 1012 1.45 × 109 1.76 × 1014 5.28 × 1014

13 Gasoline (J) 6.60 × 104 1.06 × 107 7.02 × 1011 3.82 × 108 2.52 × 1013 0 0 0 6.59 × 107 4.35 × 1012 4.59 × 108 3.03× 1013 9.09 × 1013

14
Solar

irradiation
(J)

1.00 0 0 3.78 × 1012 3.78 × 1012 2.17 × 1013 a 4.34 × 1014 4.34 × 1014 0 0 4.38 × 1014 4.38 × 1014 1.31 × 1015

15 Water (J) 6.60 × 105 6.49 × 108 4.28 × 1014 5.84 × 108 3.85 × 1014 6.00 × 1011 1.20 × 1013 7.92 × 1018 6.86 × 108 4.53 × 1014 1.20 × 1013 7.92× 1018 2.38 × 1019

16 Electricity
(J) 8.00 × 104 1.17 × 109 9.36 × 1013 1.78 × 109 1.42 × 1014 4.22 × 1012 8.44 × 1013 6.75 × 1018 4.03 × 109 3.22 × 1014 8.44 × 1013 6.75× 1018 2.02 × 1019

17 Labor (h) 1.36 × 1013 3.82 × 102 5.20 × 1015 4.97 × 105 6.76 × 1018 2.88 × 105 5.76 × 106 7.83× 1019 8.52 × 102 1.16× 1016 6.26 × 106 8.51 × 1019 2.55 × 1020

Total 5.72 × 1015 (0.01%) 1.59× 1019 (14.63%) 9.30 × 1019 (85.35%) 1.24 × 1016 (0.01%) 5.34 × 1014 1.09 × 1020 3.27 × 1020

a Annual solar irradiation for O&M phase in this paper were calculated by Andrić, Pina [64].
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Table 6. CO2 emissions in the rebuilding strategy.

Item Resources
(Unit)

Emission
Factor (kg/unit) Demolition Emission Construction Emission Annual Annual

Emission
O&M

Emission End-of-Life Emission

1 Steel (kg) 2.208 5.30 × 105 1.17 × 106

2 Cement (kg) 0.894 3.65 × 106 3.27 × 106

3 Concrete (kg) 0.242 5.93 × 106 1.44 × 106

4 Brick (kg) 0.2 9.03 × 105 1.81 × 105

5 Lime (kg) 1.2 6.05 × 104 7.25 × 104

6 Gravel (kg) 0.002 3.30 × 106 6.61 × 103

7 Glass (kg) 1.4 2.32 × 103 3.25 × 103

8 Wood (kg) 0.2 4.06 × 104 8.12 × 103

9 Aluminum (kg) 1.407 3.98 × 102 5.60 × 102

10 Sand (kg) 0.0069 1.50 × 106 1.04 × 104

11 Diesel (L) 2.73 6.98 × 10−1 1.91 5.59 × 103 1.53 × 104 0 0 0 7.31 × 10−1 1.99
12 Gasoline (L) 2.26 6.17× 10−1 1.39 1.35 × 103 3.06 × 103 0 0 0 3.51 × 10−1 7.92 × 10−1

13 Electricity (kWh) 0.9229 8.08 × 102 7.46 × 102 4.97 × 104 4.59 × 104 8.66 × 105 7.99 × 105 4.79 × 107 1.37 × 103 1.26 × 103

Total 7.49 × 102 6.22 × 106 4.79 × 107 1.26 × 103

Table 7. CO2 emissions in the refurbishment strategy.

Item Resources
(Unit)

Emission Factor
(kg/unit) Demolition Emission Construction Emission Annual Annual

Emission
O&M

Emission End-of-Life Emission

1 Steel (kg) 2.208 2.04 × 105 4.50 × 105

2 Cement (kg) 0.894 1.43 × 106 1.28 × 106

3 Concrete (kg) 0.242 2.19 × 106 5.31 × 105

4 Brick (kg) 0.2 1.79 × 105 3.59 × 104

5 Lime (kg) 1.2 5.42 × 105 6.51 × 105

6 Gravel (kg) 0.002 1.49 × 106 2.99 × 103

7 Glass (kg) 1.4 4.93 × 102 6.90 × 102

8 Wood (kg) 0.2 2.52 × 104 5.04 × 103

9 Aluminum (kg) 1.407 3.03 × 102 4.26 × 102

10 Sand (kg) 0.0069 9.57 × 105 6.61 × 103

11 Diesel (L) 2.73 3.42× 10−1 9.35× 10−1 5.08 × 101 1.39 × 102 0 0 0 6.59 × 10−1 1.80
12 Gasoline (L) 2.26 2.89× 10−1 6.53× 10−1 1.04 × 101 2.45 × 101 0 0 0 1.79 4.05
13 Electricity (kWh) 0.9229 3.25 × 102 3.00 × 102 4.94 × 102 4.56 × 102 1.17 × 106 1.08 × 106 2.16 × 107 1.12 × 103 1.03 × 103

Total 3.02 × 102 2.97 × 106 2.16 × 107 1.04 × 103
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5.2. Co-Benefits
5.2.1. Resource Allocation

The emergy of the resources invested in the building system is illustrated in Figure 6.
It is clear that the emergy is highest during the construction phase of the rebuilding strategy,
followed by the refurbishment strategy, and finally the existing building, which indicated
that the large number of materials were required in the construction phase. The annual
emergy in O&M phase of rebuilding strategy, reference strategy and refurbishment strategy
were 4.56 × 1018 seJ, 6.39 × 1018 seJ, 4.65 × 1018 seJ, respectively, which concluded that
resource consumption of rebuilding strategy and refurbishment strategy in O&M phase
is lower than existing building and the co-benefits of renewal strategies over existing
building. Emergy of the new building during O&M phase is lower than refurbished
building. However, the total emergy in the rebuilding strategy (4.07 × 1020 seJ) is the
largest one among the three strategies as newer materials are used for the building, in
line with a more complex practice and higher energy saving standard [16]. The minimum
emergy value was attained for the refurbishment strategy, which shown the co-benefits of
refurbishment strategy is higher than the rebuilding strategy.

Figure 6. Emergy values in the life cycle phases of the different strategies.

5.2.2. GHG Emissions

Figure 7 shows the CO2 emissions in each phase of the life cycle and the total emis-
sions. It is clear that rebuilding strategy contribute more CO2 emissions than refurbishment
strategy during construction phase as large amount of building materials were used. Dur-
ing the O&M phase, the annual CO2 emissions of rebuilding, refurbishment and reference
strategy were estimated as 7.99 × 105 kg, 1.08 × 106 kg and 1.53 × 106 kg, respectively.
Meanwhile the total CO2 emissions of rebuilding strategy during O&M phase is the most,
followed by refurbishment strategy due to the different O&M time. It is clear that the
rebuilding and refurbishment strategies released approximately 59.1% and 80.6%, respec-
tively, of the total CO2 emissions that would be produced by the existing building. Thus,
the total CO2 emissions over the entire building life cycle is lower than existing building
for both renewal strategies. The comparison of life cycle CO2 emissions demonstrated
that substantial environmental benefits can be obtained in both the refurbishment and
rebuilding strategies [60,77]. On the other hand, the total CO2 emissions of rebuilding
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strategy is lower than refurbishment strategy during the research period, which is clearly
in favor of the rebuilding strategy [25,26].

Figure 7. The CO2 emissions in the life cycle phases of the different strategies.

5.2.3. The Emergy-Based Indicators

Table 8 summarizes the total emergy invested in the building system and the CO2
emissions released by the system after implementing the different renewal strategies during
the research period (60 years). The results indicate that the best strategy to realize the
highest co-benefits is the reference strategy as consumed the least resources. On the other
hand, the best strategy is the rebuilding strategy in terms of the total GHG emissions.
Therefore, certain emergy-based indicators were calculated to explain the co-benefits.

Table 8. Total emergy and total CO2 emissions in the three strategies.

Emergy Emergy (seJ) CO2 Emission (kg)

Rebuilding strategy 4.07 × 1020 5.41 × 107

Reference strategy 2.87 × 1020 9.16 × 107

Refurbishment strategy 3.27 × 1020 7.38 × 107

Table 9 provides a detailed information of the emergy-based indicators about three
strategies. By comparing the different strategies, it can be concluded that the EYR for the
rebuilding strategy, reference strategy and refurbishment strategy is 1.12, 1.08 and 1.18,
respectively, which indicate that the implementation of building refurbishment measures
performs better considering that less resources are required to generate greater benefits.
The ELR (Environmental loading ratio) and ESI (Emergy sustainability index) reflect the
environmental performance of the building system. It is clear that the ELR for the rebuilding
strategy is 9.51, which is higher than that for the refurbishment strategy, and the ESI for
the rebuilding strategy is lower than that for the refurbishment strategy, which indicates
that the refurbishment strategy performs better from the perspective of the environment.
Therefore, the refurbishment strategy is more suitable than the rebuilding strategy.
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Table 9. Emergy-based indicators.

Emergy Indices Rebuilding Strategy Reference Strategy Refurbishment Strategy

R 3.87 × 1019 5.93× 1018 1.47× 1019

N 4.20× 1018 0.00 1.90× 1018

F 3.64 × 1020 7.24× 1019 9.24× 1019

Y 4.07 × 1020 7.83× 1019 1.09 × 1020

EYR 1.12 1.08 1.18
ELR 9.51 12.21 6.43
ESI 0.12 0.09 0.18

6. Discussion

The proposed method was used to investigate the emergy flow and co-benefits of
different urban renewal strategies. The values for the resource allocation, GHG emissions
and the emergy-based indicators of three renewal strategies were presented. The emergy
of renewal strategies showed that the refurbishment or rebuilding of existing building
resulted in a reduction in the annual emergy and GHG emissions of the building. The
reason was perhaps that the energy performance of envelope and HVAC system was
improved after enhancing thermal performance of the external walls, roof, door and
other envelope elements and replace the low energy efficient windows and HVAC system
with a high one [64,79,80]. The results were also consistent with the study of Andric
and Jradi, indicating that the renewal strategies were indeed better than that of existing
building [64,81].

For refurbishment strategy and rebuilding strategy, it is clearly shown that the re-
building strategy has the higher total emergy value, while the value of per year is lower
than refurbishment strategy. The reason for it may be the use of large amount of build-
ing materials and machines in construction phase and the more complex practice and
higher energy saving standard [16]. From the perspective of GHG emissions, the total
GHG emissions of rebuilding strategy (5.41 × 107 kg) is lower than refurbishment strategy
(7.38 × 107) during the research period, which means rebuilding strategy have a better
performance than refurbishment. The results were also consistent with the research of Feng
et al. and Rønning et al., which in favor of the rebuilding strategy [25,26]. However, the
emegy-based indicators of rebuilding strategy perform worse than refurbishment strategy.
The reason was perhaps that the total emergy of rebuilding strategy is higher than that of
refurbishment, which resulted in the reduction of whole performance.

7. Conclusions

Urban renewal is a promising solution for coping with city aging and urban environ-
ment through different strategies, such as redevelopment, refurbishment and conservation.
However, selecting the appropriate strategy for sustainable urban renewal remains unclear
based on the existing literature. Under such circumstances, the EM-LCA approach com-
bining Em and LCA was adopted in this study to compare the co-benefits of rebuilding
strategy with refurbishment strategy based on a case study. Emergy flows and GHG
emissions in different strategies and their co-benefits over existing building were analyzed
during the life cycle of the building in the case study.

The results in this case demonstrate that a large quantity of materials was consumed
in the construction phase, among which concrete, cement and brick accounted for a large
portion. The annual emergy in O&M phase of rebuilding strategy and refurbishment
strategy is lower than the existing building. However, the total emergy of rebuilding
strategy is higher than the existing building because of the large amount of materials
consumption in construction phase, which suggest that the refurbishment strategy is a
better choice. In terms of GHG emissions, the highest CO2 emissions occurred in the O&M
phase, which accounted for more than 85% of the CO2 emissions during the whole life
cycle. The rebuilding strategy and refurbishment strategy released lower GHG emissions,
which account for 59.1% and 80.6% of the total GHG emissions that produced by the
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existing building. On the other hand, it can be concluded that the EYR for the rebuilding
strategy is higher than refurbishment strategy, which demonstrate the better performance
of refurbishment considering that less resources are required to generate greater benefits.
Additionally, the value of ELR and ESI also suggests that the refurbishment strategy
performs better from the perspective of the environment. Thereby, the refurbishment
strategy is more suitable than the rebuilding strategy.

This paper presents an effective and comprehensive method to assess the impact of
different renewal strategies, which is highly relevant and useful for many future renewal
projects. Furthermore, the findings of this study may be helpful to decision-makers when
choosing the appropriate strategy and have a far-reaching effect on policy implementation.
Additionally, this study may be useful to academics, as it possibly represents another
study area, such as the comparison of the aforementioned three strategies in community
level. However, the study had some important limitations as the emergy flow and GHG
emissions of renewal strategies are calculated using current data. Moreover, it did not
consider the social impacts, which is also significant for implementing urban renewal
projects.
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Nomenclature

Acronyms
BIM Building information modelling i material i
CO2 Carbon dioxide LCA Life cycle assessment
Em Emergy LCC Life cycle cost

EM-LCA
Combination of emergy and
LCA method

N Nonrenewable resources

ELR Environmental loading ratio O&M
Operation and maintenance
phase

ESI Emergy sustainability index R Renewable resources
EYR Emergy yield ratio RC Reinforced concrete
F Emergy feedback Y Emergy yield
GHG Greenhouse gas

Variables and parameters

cd Calorific value of diesel fuel (J) Nh
Number of working hours
per day of one employee (h)

cg Calorific value of gasoline (J) Nn Number of employees

ECO2−eq
Emission factor of the different
building materials i (kg/unit)

S
construction site surface
(footprint) (m2)

Ed
Solar emergy of the diesel fuel
consumed (seJ)

tc Construction time (year)
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Ee

Solar emergy of the electricity
required in the building
construction, O&M and
end-of-life phases (seJ)

Td
Transformity of diesel fuel
(seJ/unit)

Eg Solar emergy of gasoline (seJ) Te
Transformity of electricity
(seJ/unit)

El
Solar emergy equivalent of
human labor (seJ)

Tg
Transformity of gasoline
(seJ/unit)

Em
Solar emergy of the building
materials (seJ)

Tl
Transformity of labor
(seJ/unit)

Es,c

Solar emergy of the solar
irradiation in the construction
phase (seJ)

Tmi
Transformity of material i
(seJ/unit)

Ew,c

Solar emergy of the water
consumed in the building
demolition, construction and
end-of-life phases (seJ)

Ts
Transformity of solar energy
(seJ/unit)

Ew,o

Solar emergy of the water
consumed in the building O&M
phase (seJ)

Tw
Transformity of water
(seJ/unit)

G Gibbs free energy of water (J/g) to
Total number of working
days per year (day)

I
Annual amount of solar
radiation (J/m2)

tt
Working days required in the
life cycle process (day)

GCO2 Amount of CO2 emissions (kg) Va
Required water volume of
one person per day (m3)

Md

Quantity of diesel fuel
consumed in the building life
cycle (L)

V Required water volume (m3)

Mg
Quantity of gasoline consumed
in the building life cycle (L)

W Quantity of electricity (kWh)

Mi Quantity of material i ρ Water density (kg/m3)
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