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ABSTRACT The concept of haplotype blocks has been shown to be useful in genetics. Fields of application range from the detection of
regions under positive selection to statistical methods that make use of dimension reduction. We propose a novel approach
(“HaploBlocker™) for defining and inferring haplotype blocks that focuses on linkage instead of the commonly used population-wide
measures of linkage disequilibrium. We define a haplotype block as a sequence of genetic markers that has a predefined minimum
frequency in the population, and only haplotypes with a similar sequence of markers are considered to carry that block, effectively
screening a dataset for group-wise identity-by-descent. From these haplotype blocks, we construct a haplotype library that represents a
large proportion of genetic variability with a limited number of blocks. Our method is implemented in the associated R-package
HaploBlocker, and provides flexibility not only to optimize the structure of the obtained haplotype library for subsequent analyses, but
also to handle datasets of different marker density and genetic diversity. By using haplotype blocks instead of single nucleotide
polymorphisms (SNPs), local epistatic interactions can be naturally modeled, and the reduced number of parameters enables a wide
variety of new methods for further genomic analyses such as genomic prediction and the detection of selection signatures. We
illustrate our methodology with a dataset comprising 501 doubled haploid lines in a European maize landrace genotyped at
501,124 SNPs. With the suggested approach, we identified 2991 haplotype blocks with an average length of 2685 SNPs that together
represent 94% of the dataset.
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VER the years, the concept of haplotype blocks has been
shown to be highly useful in the analysis of genomes.
Applications can be found in a variety of fields, including fine-
mapping in association studies (Druet and Georges 2010;
Islam et al. 2016), genomic prediction (Meuwissen et al.
2014; Jiang et al. 2018), and mapping of positive selection
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in specific regions of the genome (Sabeti et al. 2002, 2007).
Haplotype blocks can also be used as a dimension reduction
technique (Pattaro et al. 2008; Fan et al. 2014) that produces
features that are potentiality more informative than individ-
ual single nucleotide polymorphisms (SNPs) (Zhang et al.
2002; Wall and Pritchard 2003).

Existing methods commonly define a haplotype block as a
set of adjacent loci, using either a fixed number of markers or a
fixed number of different sequences of alleles per block
(Meuwissen et al. 2014). Alternatively, population-wide link-
age disequilibrium (LD) measures (Daly et al. 2001; Gabriel
et al. 2002; Taliun et al. 2014; Kim et al. 2017) can be used in
the identification process to provide more flexibility of block
size based on local genetic diversity. The methods and soft-
ware [e.g., HaploView, (Barrett et al. 2005)] available for
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Figure 1 Schematic overview of the steps of the
HaploBlocker method: (1) Cluster-building: classify-
ing local allelic sequences in short windows into
groups. (2) Cluster-merging: simplifying window
cluster by merging and neglecting nodes. (3)
Block-identification: identifying blocks based on
transition probabilities between nodes. (4) Block-fil-
tering: creating a haplotype library by reducing the
set of blocks to the most relevant ones for the later
application. (5) Block-extension: extending blocks
by single windows and SNPs. The same allelic se-
quences in different steps are coded with the same
colors in the graph.
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inferring haplotype blocks have become increasingly sophis-
ticated and efficient. Although those approaches to infer hap-
lotype blocks have been proven useful, existing methods
share some key limitations (Slatkin 2008). In particular, the
use of population-wide measures of LD limits the ability of
existing methods to capture cases of high linkage character-
ized by the presence of long shared segments caused by
absence of crossing over (typically within families or close
ancestry). To illustrate this, consider the following toy
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example of four different haplotypes: 11111111,
10101010, 01010101, and 00000000. If all four haplotypes
have the same frequency in the population, the pairwise LD
(r?) of adjacent SNPs is zero and LD-based algorithms would
not retrieve any structure. However, in this example, knowl-
edge of the first two alleles fully determines the sequence in
the segment.

In this work, we use the term “allele” for a genetic variant.
This can be a SNP or other variable sites like short indels. We



Table 1 Exemplary dataset of allelic sequences and their
assignment according to the cluster-building-step

Frequency Allelic sequence Group
101 00011 1
54 11111 3
40 11110 3
3 10011 1
2 01001 2

use the term “haplotype” for the sequence of alleles of a
gamete. This always refers to the full gamete, and, explicitly,
not a local and short sequence of alleles. Lastly, a combination
of multiple adjacent alleles is here referred to as an “allelic
sequence.”

As the starting point of our approach (“HaploBlocker”), we
assume a set of known haplotypes that can be either statisti-
cally determined as accurately phased genotypes, or ob-
served via single gamete genotyping from fully inbred lines
or doubled haploids. When the interest is in inferring the
longest possible shared segment between haplotypes, a com-
mon approach is to identify segments of identity-by-descent
(IBD). A tool for the identification of IBD segments is BEAGLE
(Browning and Browning 2013), among others. Since IBD is
typically calculated between pairs of individuals, a screening
step is used to identify haplotypes that are shared by multiple
individuals, e.g., by the tool IBD-Groupon (He 2013). A
method to detect IBD segments directly for groups of individ-
uals has been proposed by Moltke et al. (2011), but is not
applicable to datasets with hundreds of haplotypes due to
limitations of computing times. A further difficulty is that
common methods are not robust against minor variation,
leading to actual IBD segments being broken up by calling
errors [0.2% with the later used Affymetrix Axiom Maize
Genotyping Array (Unterseer et al. 2014)] and other sources
of defects.

The imputation algorithm of BEAGLE uses a haplotype
library given by a haplotype cluster (Browning and Browning
2007). The haplotype library in BEAGLE, which is used to
initialize a Hidden Markov Model for the imputing step, is
only given in a probabilistic way. This means that there are no
directly underlying haplotype blocks that could be used for
later statistical application.

Our goal is to provide a conceptualization of haplotype
blocks that can capture both population-wide LD and sub-
group-specific linkage, and does not suffer from some of the
limitations of IBD-based methods. Unlike common definitions
that consider haplotype blocks as sets of adjacent markers, we
define a haplotype block as an allelic sequence of arbitrary
length.

Haplotypes with a similar sequence are locally assigned to
the same block. Haplotype blocks are subgroup specific, so
that a recombination hot spot appearing in a subgroup of
haplotypes does not affect the boundaries of other blocks. This
leads to very long blocks, which can cover the same region of

the genome, but may vary in the allelic sequence they repre-
sent. Even an overlap between the allelic sequences repre-
sented by different haplotype blocks is possible.
Subsequently, we start with a large set of identified hap-
lotype blocks and reduce this set to the most relevant blocks
and thus generate a condensed representation of the dataset
at hand. We define this representation as a haplotype library,
and, depending on the topic of interest, selection criteria for
the relevance of each block can be varied appropriately to
identify predominantly longer blocks or focus on segments
shared between different subpopulations. The usage of hap-
lotype blocks instead of SNPs allows the use of a variety of new
methods for further genomic analyses since the number of
parameters is usually massively reduced and haplotype blocks
provide a natural model for local epistatic interactions.

Materials and Methods

The aim of HaploBlocker is to represent genetic variation in a
set of haplotypes with a limited number of haplotype blocks as
comprehensively as possible. The standard input of Haplo-
Blocker is a phased SNP dataset. In the associated R-package
HaploBlocker (R Core Team 2017; Pook and Schlather 2019)
this input can be provided via the variant call format (VCF;
Danecek et al. 2011), PLINK Flat files (PED/MAP; Purcell
et al. 2007) or in a plain matrix object with each column
containing a haplotype. For graphical reasons, haplotypes
in all examples and figures in the manuscript are displayed
in a row. The output of HaploBlocker is a haplotype library
that can, in turn, be used to generate a block dataset. A block
dataset contains dummy variables representing the pres-
ence/absence of a given block (0 or 1), or, in case of hetero-
zygotes, a quantification of the number of times (0, 1, or 2) a
block is present in an individual. The main idea of our method
is to first consider short windows of a given length and in-
crease the length of the analyzed segments in an iterative
procedure involving the following steps:

Cluster-building.

Cluster-merging.

Block-identification.

Block-filtering.

Block-extension.

Target-coverage (optional).
Extended-block-identification (optional).

Before we elaborate on each step in the following subsec-
tions, we give an outline of the three major steps. For a
schematic overview of HaploBlocker, we refer to Figure 1.
In the first step, we derive a graphical representation of the
dataset (“window cluster”) in which a node represents an
allelic sequence, and an edge indicates which, and how many,
haplotypes transition from node to node (cluster-building).
As locally similar allelic sequences are grouped together, this
step also handles robustness against minor deviations (e.g.,
calling errors). In the second major step, we identify candi-
dates for the haplotype library based on the window cluster.
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We call this step block-identification and use it to generate a
large set of haplotype blocks. In the third and last major step
(block-filtering), the set of candidates is reduced to the most
relevant haplotype blocks, and, thereby, the haplotype library
is generated. In addition to specifying the physical position of
each block, we have to derive which haplotypes are included.
The fact that blocks are subgroup specific makes the identi-
fication of the most relevant blocks complicated, so we split
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simple-merge

split-groups

Figure 2 The four parts of the cluster-merging
step. Haplotype frequencies in the window A are
according to the toy example given in Table 1.

simple-merge

neglect-nodes

this task into two separate, but closely connected steps
(block-identification and block-filtering).

Minor steps in our procedure are cluster-merging and
block-extension. The former reduces the computing time in
the subsequent steps, whereas the latter increases the pre-
cision of the result. However, neither step has a major impact
on the resulting haplotype library. Since various parameters
are involved in the procedure, their value might be chosen by



means of an optimization approach and/or a dataset can be
processed with multiple parametrizations in the cluster-build-
ing, cluster-merging, and block-identification steps. For more
details, we refer to the subsections on target-coverage (Sup-
plemental Material, File S1) and extended-block-identification.

The next subsections deal with the graphical depiction
of the haplotype library and the information loss incurring
through the suggested condensation of genomic data. Sub-
sequently, we discuss possible applications, namely the ability
of our method to recover founder haplotypes of a population
and a block-based version of extended haplotype homozygos-
ity (EHH; Sabeti et al. 2002) and integrated extended haplo-
type homozygosity (IHH; Voight et al. 2006). In the last
subsection, we introduce the datasets used in this study.
Our method, as well as all discussed applications, are avail-
able for users by the correspondent R-package HaploBlocker
(R Core Team 2017; Pook and Schlather 2019). The default
settings of the arguments in the R-package correspond to the
thread of the following subsections.

Cluster building

In the first step of HaploBlocker, we divide the genome into
nonoverlapping small windows of size 20 markers as a default
value. Accordingly, each haplotype is split into short allelic
sequences. To account for minor deviations, we merge groups
with similar allelic sequences as follows. For a fixed window,
different allelic sequences are considered successively based
on their frequency, starting with the most common one. In
cases where less common allelic sequences differ only in a
single marker, they are merged to a group. The allelic sequence
of a group (“joint allelic sequence”) in each single marker is
the most common allele of all contained haplotypes. Usually
this will be the most frequent allelic sequence, but, when
allowing for more than one deviation per window, this is
not necessarily the case anymore. As a toy example, consider
a group containing 4X 11111, 3X 10110, 2X 00111 with a
resulting joint allelic sequence of 10111. This robustness
against errors may lead to actually different haplotypes to
be grouped together. In later steps, we will introduce meth-
ods to split these haplotypes into different blocks if necessary.
The choice of 20 markers as the window size, and a deviation
of, at most, one marker as a default, is not crucial and should
not have a major effect as long as the window size is much
smaller than the later identified haplotype blocks. We will
present ways to use flexible window sizes in the extended-
block-identification step.

Figure 3 Excerpt of a window cluster. This included
all edges (transitions) from the nodes of one of the
common paths in the example dataset.

As an example, consider a SNP dataset with 200 haplotypes
and five markers, given in Table 1. The two most common
sequences form separate groups (00011 and 11111). For
graphical reasons in later steps, we assign 11111 to group 3
even though it is the second group created. The next allelic
sequence (11110) is assigned to the group of 11111, as it
differs only in a single allele, and the joint allelic sequence
remains 11111. In case an allelic sequence could join differ-
ent groups, it is added to the group containing more haplo-
types. Based on the groupings, we are able to create a graph,
called a window cluster (Figure 2, top graph). Here, each
node represents a group (and, thus, a joint allelic sequence),
and the edges indicate how many of the haplotypes of each
node transition into which adjacent node.

Cluster merging

Awindow cluster can be simplified without losing any relevant
information for later steps of the algorithm. We apply three
different techniques:

simple-merge (SM): Combine two nodes if all haplotypes of
the first node transition into the same adjacent node, and
no other haplotypes are in the destination node.

split-groups (SG): Split a node into two if haplotypes from
different nodes transition into the same node and split
into the same groups afterward.

neglect-nodes (NN): Remove a node from the cluster if it
contains a very small number of haplotypes—say, five.
These removed haplotypes are still considered when cal-
culating transition probabilities between nodes in later
steps.

Since the only loss of information in this step stems from
neglecting nodes, we first alternately apply SM and SG until no
further changes occur. Next, we apply the sequence of NN, SM,
SG, SM until fixation of the window cluster. We neglect rare
nodes, since a block with few haplotypes (in the most extreme
case a block with one haplotype over the whole genome) does
not reflect much of the population structure, and would have
little relevance for further genomic analyses. It should be
noted that the minimum number of haplotypes per node in
NN does not depend on the number of haplotypes in the
sample. This is done mainly to ensure a similar structure of
the later obtained haplotype library when adding haplotypes
from a different subpopulation. Nevertheless, the option to
modify this parameter is given, in case one is mostly interested
in more common, or even rarer, allelic sequences.
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Table 2 Influence of MCMB on the haplotype library for
chromosome 1 in the KE DH-lines

Number of Average block length Haplotypes Coverage
MCMB  Blocks (# of SNPs) per Block (%)
1 1720 1117 159.9 97.2
1,000 878 1892 132.1 96.5
2,500 621 2345 120.3 95.6
5,000 477 2575 114.9 94.4
10,000 362 3022 103.9 92.7
20,000 274 3339 99.2 90.1
50,000 150 3894 98.5 81.2

As an example for the cluster-merging step, consider a
dataset with four windows and five different sequences of
groups (104X 1111, 54X 3212, 39X 3223, 2X 2111, 1X
3233, Figure 2). Haplotypes in the first window are chosen
according to Table 1. In the first step, nodes A3 and B2 are
merged by SM. Next, node Cl1 is split into two nodes via SG.
This triggers additional SMs (B1-Cla-D1 and C1b-D2). After-
wards, SM or SG are no longer possible, and NN is performed,
removing A2 and C3. No further SM or SG are possible after
this. Consider that, even though D3 is the only node follow-
ing C2, no SM is possible because removed haplotypes are
still considered in later transition probabilities, and, there-
fore, D3 contains one more haplotype than C2.

Block identification

In the third step of HaploBlocker, we identify the haplotype
blocks themselves. As a haplotype block in HaploBlocker is
defined as a common allelic sequence in an arbitrarily large
window, we use common sequences of nodes in the previously
obtained window cluster as a first set of haplotype blocks. The
identification process itself is performed by using each node as
a starting block. The boundaries of each starting block are
given by the boundaries of the node, and the allelic sequence is
derived by its joint allelic sequence. A block is extended
iteratively if =97.5% of the haplotypes in a block transition
into the same node; deviating haplotypes are removed. Hap-
lotypes filtered out in this step can rejoin the block if their
allelic sequence matches that of the joint allelic sequence of
the final haplotype block in =99% of the markers. The joint
allelic sequence is derived by computing the most common
allele in each marker for the contained haplotypes. The
choices of 97.5 and 99% worked well in our tests, but any
value close, but not equal, to 100% should work here. This
again allows the user some flexibility in how long (in terms of
physical length) the haplotype blocks should be, and how
different jointly considered haplotypes are allowed to be. In
a similar way, each edge of the window cluster is used as a
starting block. Here, boundaries are given by the boundaries
of the two connected nodes. The haplotype blocks identified
here will not all be part of the final haplotype library but
instead are just a set of candidates from which the most
relevant ones will be selected in the block-filtering-step. Note
that the share of allowed deviations in this step (1%) is lower
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than in the cluster building (1 of 20 markers; 5%), since the
size of the identified segment is longer than a single window,
and the total number of deviations should get closer to the
expected number (Unterseer et al. 2014).

To illustrate the method, consider the excerpt of a window
cluster given in Figure 3. Nodes 2, 3, 4 represent the sequence
of groups 3223 of Figure 2. When considering the second
node as a starting block, we cannot extend the block because
there are multiple possible nodes for the contained haplo-
types [beforehand: nodes with 88 (93.6%) and 6 (6.4%);
afterward: 54 (57.4%), 1 (1.1%), 39 (41.5%)]. When using
the fourth node of the excerpt, the block can be extended
until the second and fifth node of the cluster, since 39 of
the 40 haplotypes transition (97.5%) into the same adjacent
node. One ends up with the same block when using the third
node or the edges, including 39, 39, and 40 haplotypes. In
case all included haplotypes transition into the same node in
the first window, the block could be extended even further.
Note that, in this step, different allelic sequences of the same
node (cf. cluster-building-step) can be in different haplotype
blocks if they transition into different nodes in later steps
[e.g., 11111 (54) and 11110 (39 + 1)] in the first window
(Figure 2 and Table 2). For an extension to further increase
the size of the set of haplotype blocks, we refer to the ex-
tended-block-identification step.

Block filtering

After the derivation of a set of candidates in the block iden-
tification, we reduce the set of all haplotype blocks to a
haplotype library of the most relevant blocks to represent a
high proportion of the dataset with a small number of blocks.
First, we compute a rating r}, for each block b that depends on
its length (I) and the number of haplotypes (n;) in it:

rp =10 -y

Here, w; and w, represent weighting factors with default
values w; = 1 and w, = 1. Note that only the ratio between
both parameters matters.

Based on these ratings, we determine which haplotype
block is the most relevant in each single cell/entry of the SNP
dataset matrix. Iteratively, the blocks with the lowest number
of cells as the most relevant block are removed from the set of
candidates, until all remaining blocks are the most relevant
block in a given number of cells. For this, we will later use the
abbreviation MCMB (minimum number of cells as the most
relevant block). For our datasets, 5000 was a suitable value for
MCMB, but, without prior information, we recommend to seta
target on what share of the SNP dataset is represented by at
least one block (“coverage”). For details on the fitting pro-
cedure, we refer to File S1. In the case of the example given in
Figure 3, we end up with block b; (green in Figure 4), in-
cluding 94 haplotypes ranging from window 2 to 3 (node 2)
with a rating rp, = 940 and block b, (red in Figure 4) ranging
from window 2 to 6 (nodes 2,3,4,5) with a rating rp, = 975.
To simplify the example, we assume that no other blocks have
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Figure 4 Toy example for the calculation in the block-filtering-step with
w=w,=1.

been identified. b, has a higher rating; therefore, cells con-
taining both blocks are counted as cells with b, as the most
relevant block. This leads to b; having 550 cells of the SNP
dataset as the most relevant block, and b, having 975.

It should be noted here that blocks in the final haplotype
library can overlap. If MCMB is =550, overlap occurs in our
example, and typically can be observed when a short segment
is shared in the majority of the population and a smaller
subgroup shares a longer segment that includes the short
segment. This will lead to dependencies in the presence/ab-
sence of blocks, which can be addressed in a similar way as
LD between markers.

Even if w; or w, is set to zero, there is still an implicit
weighting on both the length and the number of haplotypes
since each haplotype block has to cover a certain number of
cells of the SNP dataset (MCMB). The overall effect of w; and
wy, is higher when more candidates were created in the block-
identification step.

Block extension

The haplotype blocks that have been identified in the previous
step are limited to the boundaries of the nodes of the window
cluster. Haplotypes in the blocks will transition into different
adjacent nodes since the block was previously not extended
(¢f. block-identification). Nevertheless, different nodes can
still have the same allelic sequence in some adjacent
windows.

First, haplotype blocks are extended by full windows if all
haplotypes are in the same group (cf. cluster-building) in the
adjacent window. If the haplotypes of a specific block transi-
tion into different groups in the adjacent window, the block is
still extended if there is no variation in the following 20 win-
dows. By doing this, we account for possible errors that could
have been caused by, for instance, translocations or phasing
issues. The choice of 20 windows is again rather arbitrary,
and should be chosen according to the minimum length of
the blocks one is interested in. The chosen default results in a

Table 3 Influence of the window size on the haplotype library for
chromosome 1 in the KE DH lines

Window Number of Average block length Haplotypes Coverage

size Blocks (# of SNPs) per Block (%)
5 488 2489 121.8 93.5
10 482 2544 113.7 93.6
20 477 2575 114.9 94.4
50 474 2615 101.4 95.0

relatively large chunk of =400 SNPs (20 windows X
20 markers) with all haplotypes of the block required to be
classified in the same group for these windows (cf. cluster-
building). These conservative settings are chosen because the
adjacent segment can also be detected as a separate haplo-
type block. In any case, all SNPs with variation in a block are
identified and reported in the outcome as a possible impor-
tant information for later analyses.

Second, blocks are extended by single adjacent SNPs
following similar rules as the window extension. As a default,
we do not allow for any differences here, since haplotypes in
the block must have some difference in the adjacent window. If
working with a large number of haplotypes, and aiming to
identify the exact end of a block, one might consider allowing
for minor differences.

Extended block identification (optional)

When extending a haplotype block in the block-identification
step, haplotypes transitioning into a different node are re-
moved. Instead, one could consider both the short segment
with all haplotypes and the long segment with fewer haplo-
types. As the number of candidates is massively increased, it is
recommended to consider the long segment only when at least
a share t of haplotypes transition into that node. In our tests,
t = 0.95 was a suitable value for this. Overall, this procedure
will lead to the identification of even longer haplotype blocks
as candidates for the haplotype library.

To obtain even more candidates in the block-identification
step, one might compute multiple window clusters under
different parameter settings (especially concerning window
sizes). This provides additional robustness of the method.
Especially in the case where the haplotype blocks finally
obtained are short, the relevant haplotype blocks can be
identified only with a low window size in the cluster-building
step.

Both extensions require substantially more computing
time, and, thus, are not included in the default settings of
the associated R-package HaploBlocker (R Core Team 2017;
Pook and Schlather 2019). The R-package contains an adap-
tive mode using window sizes of 5, 10, 20, or 50 markers, and
a target coverage of 90%.

Graphical representation of haplotype blocks

We suggest a graphical representation of a haplotype library
to display transition rates between blocks in analogy to
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Table 4 Influence of the weighting of block length (w;) and
number of haplotypes (w,) on the haplotype library for
chromosome 1 in the KE DH lines

Number  Average block
of length (# of Haplotypes  Coverage
w, w, Blocks SNPs) per Block (%)
1 0 470 2902 89.3 94.4
1 0.2 464 2900 94.1 94.4
1 0.5 463 2900 98.4 94.4
1 1 477 2575 114.9 94.4
05 1 532 2218 139.0 94.6
0.2 1 803 1518 189.5 95.5
0 1 1313 934 208.2 96.1

bifurcation plots (Sabeti et al. 2002; Gautier and Vitalis
2012). This requires ordering of the haplotypes according
to their similarity in and around a given marker. For technical
details on the sorting procedure, we refer to File S2.

Assessment of information content of haplotype blocks

HaploBlocker provides a condensed representation of the
genomic data. We next discuss how to quantify the amount
of information lost in the process of condensing a SNP dataset
to a block dataset. At a recent conference, de los Campos
(2017) proposed three methods for estimating the propor-
tion of variance of an omics set (e.g., high-dimensional gene
expression data, methylation or markers) that can be
explained by regression on another type of omics data. We
used a modified version of the second method proposed by de
los Campos (2017) to estimate the proportion of variance of
the full SNP dataset that can be explained by a regression on
the blocks of a haplotype library. For computations in this
work, the R-packages sommer (Covarrubias-Pazaran 2016;
R Core Team 2017) and minga (Powell 2009) were used,
with overall very similar results. The methodology can be
described briefly as follows:

In traditional SNP-based genomic models (Meuwissen
et al. 2001), a phenotype (y) is regressed on a SNP dataset
(X) using a linear model. Entries in X are usually O, 1, or 2,
with dimensionality being the number of individuals (n)
times the number of markers (p).

y=Xb+e,

assuming that the markers only have additive effects b. Hence,
the vector of genomic values g = Xb is a linear combination of
the SNP genotypes. In order to estimate the proportion of g
explained by the haplotype library, we regress the genomic
values g onto the block dataset represented by a n X g matrix
Z, say, of entries 0,1,2. Here q is the number of blocks, with q
usually being much smaller than p:

g=2Za+5é.

From this perspective, genomic prediction based on haplotype
blocks searches for a vector Za that is optimal in some sense.
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Table 5 Influence of using the extended-block-identification on
the haplotype library in dependency of the parameter t of the
extended-block-identification-step for chromosome 1 in the KE
DH lines

Average
Number block length Haplotypes Coverage
t of Blocks (# of SNPs) per Block (%)
1 477 2,575 114.9 94.4
0.95 603 5,659 89.8 94.6
0.9 788 9,371 70.2 95.2
0.8 916 11,716 60.9 95.5
0.6 970 12,430 58.5 95.7

For instance, in ridge regression, such a vector is obtained
by minimizing a penalized residual sum of squares. It has to
be noted that ¢ is an error term that includes nongenetic
effects, whereas & is an error term resulting from genetic
effects that cannot be explained by additive effects (a) of
single blocks. In random effect models, the proportion of
the variance of g explained by linear regression on the hap-
lotype library can be estimated using either Bayesian or likeli-
hood methods like REML (Patterson and Thompson 1971).
The proportion of variance explained will vary from trait to
trait. We estimate the distribution of the proportion of vari-
ance of “genomic vectors” (i.e., linear combinations of SNP
genotypes) using a Monte Carlo method. The method pro-
ceeds as follows:

1. Sample a vector of weights (b;) completely at random
(e.g., from a standard Gaussian distribution).

2. Compute the underlying genomic value by forming the
linear combination: g; = Xb;.

3. Estimate the proportion of variance of g; that can be
explained by regression on haplotype blocks.

4. Repeat 1-3 for a large number of random vectors b;.

In contrast to commonly used methods, like canonical
correlation (Witten et al. 2009), this method is asymmetric
in that it leads to different results by switching the roles of X
and Z. The underlying genomic value is then generated based
on the block dataset (g; = Zbs), and regressed on the SNP
dataset X. Since we compute the share of the variance of
one dataset explained by the other dataset, the share of var-
iation that is not explained can be interpreted as previously
underused information. An example of underused informa-
tion is the local epistatic interactions that can be modeled via
a block but are usually not fully captured by linear regression
on single markers.

Recent work by Schreck and Schlather (2018) has sug-
gested that the direct estimation of the heritability using
REML variance components is biased, so we use their pro-
posed estimator. For the traditional estimates using REML
estimates as proposed in a conference presentation by de
los Campos (2017), we refer to Table S1. Overall, the results
were similar.
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Figure 5 Graphical representation of the block
structure for the first 20,000 SNPs of chromo-
some 1 in the KE DH lines. Haplotypes are sorted
for similarity in SNP 10,000. In that region block
structures are most visible, and transitions between
blocks can be tracked easily. Further away from the
center the representation gets fuzzy.

Recovering founder haplotypes

HaploBlocker does not require, or make use of, pedigree or
founder haplotypes, but rather provides a method to recover
haplotypes from the founders (or a genetic bottleneck) based
solely on a genetic dataset of the current generation. To
evaluate the ability to recover founder haplotypes, we simu-
lated the generation of a multiparent advanced generation
intercross population (MAGIC) based on the breeding scheme
given in Zheng et al. (2015). Simulations were performed
with the R-package MoBPS (R Core Team 2017; Pook
2019) with 19 founding haplotypes, intercrossing with a di-
allel design, four generations of random mating, and 10 gen-
erations of self-fertilization (Zheng et al. 2015). Each
generation contains %18 = 171 offspring. Genotypes of foun-
ders were assumed to be fully homozygous, with uniformly
distributed minor allele frequencies, and under the assump-
tion of equidistant markers (50k markers, one chromosome
with a length of 3 Morgan, mutation rate of 10~* in each
marker). The haplotype phase of the final generation of off-
spring was assumed to be known. For the programming code
used to perform the simulation in MoBPS (R Core Team
2017; Pook 2019), we refer to File S4.

Block-based EHH and IHH

Since haplotype blocks and SNPs are structurally different,
blocks cannot be used directly in some methods developed for
SNPs. The following shows how to adapt the EHH statistic
(Sabeti et al. 2002, 2007) to be calculated based on haplo-
type blocks. EHH based on SNPs is defined as the probability
of a segment between two markers to be in IBD, and can be
estimated as:

Here, N is the total number of haplotypes and n; is the num-
ber of occurrences of a given allelic sequence between the
markers. In a second step, IHH (Voight et al. 2006) for a
single marker is defined as the integral when calculating
EHH of that marker to adjacent markers (until EHH reaches
0.05).

This concept can be extended to an EHH that is based on
haplotype blocks (bEHH). Instead of calculating EHH for
each marker, segments between the block boundaries
(a1,az,as,...) of haplotype blocks are considered jointly.
Here, a; is a physical position (e.g., in base pairs) in the ge-
nome. The set of block boundaries contains all start points of
blocks, as well as all markers directly after a block (but not
the end point itself). bEHH between segments [a;,a;+1 — 1]
and [gj,a;;1 — 1] is then defined as the probability of two
randomly sampled haplotypes belonging to the same haplo-
type block, or at least to a block with the same allelic
sequence in the window [a;, a1 — 1] (with i=j). bEHH
between two markers is set equal to bEHH between the
two respective segments. IHH and derived test statistics like
XP-EHH or iHs (Sabeti et al. 2007) can then be defined along
the same lines as with single marker EHH. For a toy example
on the computations necessary to compute EHH and bEHH,
we refer to Figure S1 and File S3.

Overall, bEHH can be seen as an approximation of EHH.
Computing times are massively reduced, since bEHH scores
only need to be computed between pairs of segments in-
stead of SNPs, overall leading to % necessary compu-
tations, with p being the number of segments and SNPs,
respectively. Second, only allelic sequences of different
haplotype blocks, instead of individual haplotypes be-
tween the two segments need to be compared for each
calculation of bEHH.

As minor deviations from the joint allelic sequence of a
haplotype block are possible, the usage of bEHH also provides
robustness against calling errors and minor deviations.
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Figure 6 Proportion of the dataset represented by
the haplotype library (coverage) of the training and
test set in regard to size of the training set for chro-
mosome 1 in the KE DH lines.
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Genotype data used

We applied HaploBlocker to multiple datasets from different
crop, livestock, and human populations. In the following, we
reportresults obtained with a dataset of doubled haploid (DH)
lines of two European maize (Zea mays) landraces [n = 501
Kemater Landmais Gelb (KE) and n =409 Petkuser
Ferdinand Rot (PE)] genotyped with the 600k Affymetrix
Axiom Maize Genotyping Array (Unterseer et al. 2014) containing
616,201 markers (609,442 SNPs and 6759 short indels).
Markers were filtered for assignment to the best quality class
(PolyHighResolution; Pirani et al. 2013) and having a callrate
of =90%. Since we do not expect heterozygous genotypes for
DH lines, markers showing an excess of heterozygosity might
result from unspecific binding at multiple sites of the genome.
Thus, markers were also filtered for having <5% heterozy-
gous calls. This resulted in a dataset of 501,124 usable
markers. The remaining heterozygous calls of the dataset
were set to NA, and imputed using BEAGLE 4.0 (Browning
and Browning 2016) with modified imputing parameters
(buildwindow = 50, nsamples = 50, phase-its = 15).

Second, we used a dataset containing n = 48 Sy plants
from KE being generated from the same seed batch as the
DH lines. Since Sy are heterozygous, this corresponds to
n = 96 haplotypes. Genotyping and quality control was per-
formed in the same way as for the DH lines, without hetero-
zygosity filters. After imputation, an additional phasing step
for the Sy using BEAGLE 4.1 (niterations 15) was per-
formed. In both steps, the DH lines were used as a reference
panel. Only markers overlapping with the DH dataset were
included. This resulted in a second dataset containing n = 96
So and n = 501 DH haplotypes of KE and 487,462 markers.

Additionally, we used datasets from the 1000 Genomes
Project phase 3 reference panel (1000 Genomes Project Con-
sortium 2015) containing 5008 haplotypes, with a total of
88.3 million markers.

Data availability

The genetic data for maize, the associated R-package, the source
code, and a detailed documentation of the package is available at
https://github.com/tpook92/HaploBlocker. Genetic data from
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the 1000 Genomes Project (1000 Genomes Project Consortium
2015) is available at ftp://ftp.1000genomes.ebi.ac.uk/voll/
ftp/release/20130502/.

File S1 provides an additional method section on the fitting
procedure to obtain a certain target coverage. File S2 contains
an additional method section on how to sort haplotypes for the
graphical representation of haplotype blocks. File S3 provides
an additional method section in which a toy example for the
calculation of bEHH is discussed. File S4 includes the R-code
used to generate an exemplary MAGIC population for the
section on recovering founder haplotypes. Table S1 contains
the proportion of variance explained between the full SNP
dataset, a SNP subset, and the block dataset using traditional
heritability estimation as in de los Campos (2017). Table S2,
Table S3, and Table S4 contain results obtained in Table 3,
Table 4, and Table 5 when additionally using a target cover-
age of 95%. Figure S1 contains the dataset used in File S3.
Figure S2 gives a comparison of the block structure in Hap-
loBlocker and a bifurcation plot (Sabeti et al. 2002; Gautier
and Vitalis 2012). Finally, Figure S3 provides a comparison of
the block structure for different parameter settings of MCMB.
Supplemental material available at FigShare: https://doi.org/
10.25386/genetics.7862525.

Results and Discussion

Here, we will focus on the results obtained for chromosome 1
(80,200 SNPs) of the landrace KE. All evaluations were also
performed for all other chromosomes and the second land-
race (PE) with similar results.

Using the previously described default settings of Haplo-
Blocker, we identified 477 blocks, which represent a coverage
of 94.4% of the dataset and have an average length of
2575 SNPs (median: 1632 SNPs). For the whole genome,
we identified 2991 blocks, representing 94.1% of the dataset
with an average/median length of 2685/1301 SNPs. A graph-
ical representation of the block structure for the first 20,000
markers of the set is given in Figure 5. Haplotypes were sorted
according to their similarity at SNP 10,000. Since there is
only limited linkage between markers that are further apart,


https://github.com/tpook92/HaploBlocker
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/
https://doi.org/10.25386/genetics.7862525
https://doi.org/10.25386/genetics.7862525

Table 6 Proportion of variance explained between the full SNP
dataset (X), a SNP subset (X;) and the block dataset (2)

Table 7 Estimated genomic values using an OLS model assuming
additive effects of single markers

Number of

Blocks/SNPs X ~Z (%) Z ~ X (%) X ~ Xs (%)
1720 99.6 97.8 99.2
878 98.6 96.9 98.0
621 97.5 95.8 96.8
477 96.2 95.3 954
362 94.8 94.5 935
274 92.8 93.8 91.0
150 86.7 92.0 82.7

Estimated
Allelic Genomic genomic
sequence value value
1M1 1 0.75
100 0 —0.25
0 0 0
110 0 0.25
101 0 0.25

For comparability the number of parameters in Xs and Z were chosen equally.

the graphical representation becomes increasingly fuzzy with
increasing distance from the target SNP. For a comparison to
a bifurcation plot (Sabeti et al. 2002; Gautier and Vitalis
2012) of that marker, we refer to Figure S2.

When further investigating cells of the SNP dataset that
are not covered by any of the haplotype blocks, one can
typically observe that, in the associated segments, the allelic
sequence of the haplotype is a combination of multiple
identified haplotype blocks, and, by this ,indicating a recent
recombination. Start and end points of blocks can be seen as
candidates for positions of ancient (or at least nonrecent)
recombination, especially when multiple blocks start and
end in the same region (e.g., between markers 8572 and
8601 in Figure 5).

In the following, we will show and discuss the influence of
certain parameter settings on the resulting haplotype library.
Results will be evaluated according to the number of blocks,
their length, and the coverage of the haplotype library. Note
that, even though differences seem quite substantial, most
haplotype libraries actually contain the same core set of
haplotype blocks, which are the most relevant under basically
any parameter setting. Parameter settings mostly influence
which of the less relevant blocks are included. By this, one can
explicitly include a higher share of longer blocks, and obtain a
certain coverage or similar. For most routine applications, the
use of the default settings with a target coverage should be
sufficient.

Effect of change in the MCMB

The MCMB affects both the number of blocks and the cov-
erage of the dataset (Table 2). Higher MCMB leads to a
stronger filtering of the haplotype blocks, and, thus, to a
haplotype library with lower coverage and decreased num-
ber of larger blocks. Overall, MCMB is the most important
parameter to balance between conservation of information
(coverage) and dimension reduction (number of blocks). It
should be noted that the ideal parametrization of MCMB
depends highly on data structure (e.g., marker density). In-
stead of using a set value for MCMB, we recommend to fit
the parameter automatically by setting a target coverage.
For a graphical comparison of the structure of haplotype
libraries with MCMB equal to 1000, 5000, and 20,000, we
refer to Figure S3.

Controlling length and number of haplotypes per block

The window size chosen in the cluster-building step has a
notable influence on the window cluster. By using a smaller
window size in the cluster-building step, the resulting groups
are bigger, leading to more and shorter (in terms of physical
length) haplotype blocks in the block-identification step (Ta-
ble 3). As haplotype blocks are much larger than the window
size in this case, the effects on the resulting haplotype library
are only minor.

In the block-filtering step, the weighting between segment
length (w;) and number of haplotypes (w,) in each block
influences the structure of the later obtained haplotype li-
brary (Table 4). As one would expect, a higher weighting
for the length of a block leads to longer blocks that include
fewer haplotypes. The effect of a lower relative weighting for
the number of haplotypes in each block was found to have
only a minor effect in our maize data. A possible reason for
this is that, even when using w; = wy, the longest blocks pre-
viously identified were already selected in the haplotype
library.

When using the extended-block-identification method, the
average length of finally obtained haplotype blocks is mas-
sively increased in the obtained haplotype library (Table 5).
Additionally, overlap between blocks is increased. Using this
procedure will lead to the identification of the longest possi-
ble IBD segments, making it especially useful for applications
like bEHH and IHH.

Evaluations in this subsection were also performed when
using a target coverage of 95%. For results here, we refer to
Table S2, Table S3, and Table S4). Overall, results are similar.

Haplotypes from the sample

To assess how well HaploBlocker identifies haplotype block
structures that also pertain to haplotype structures of other
datasets, we split the maize data into a training and testing set,
and compared the share of both datasets represented by a
haplotype library based on the training set alone. In all cases,
the coverage in the test set was below that of the training set,
but with higher numbers of haplotypes in the training set the
differences gets smaller. In the case of 400 haplotypes in
the training set and 101 haplotypes in the test set, the
difference in coverage is as low as 2.7% (Figure 6), indicating
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Table 8 Structure of the haplotype library under different marker
densities using the adaptive mode in HaploBlocker with target
coverage of 95% for chromosome 1 in the KE DH lines

Table 9 Structure of the haplotype library under different marker
densities when adjusting parameters according to data structure
for chromosome 1 in the KE DH lines

Average block

Average block

length length
Number (# of SNPs Haplotypes  Used Number (# of SNPs on Haplotypes Coverage

Density of Blocks  on full array) per Block  MCMB Density of Blocks  full array) per Block (%)

Every SNP 534 2317 116.4 2813 Every SNP 474 2615 101.4 95.0

Every second 523 2281 112.7 1563 Every 2nd SNP 474 2720 108.1 95.1

SNP Every 5th SNP 481 2557 115.4 95.1

Every fifth SNP 450 2557 96.9 945 Every 10th SNP 520 2174 142.7 95.8

Every tenth SNP 401 2811 90.6 758 Every 40th SNP 522 2056 172.9 97.9

Every fortieth 319 3637 79.9 294 (MCMB = 125)

SNP Every 40th SNP 404 2287 166.0 96.6
(MCMB = 250)

that haplotype libraries derived in a sufficiently large dataset
can be extended to individuals outside of the sample if they
have similar genetic origin. Similar results were obtained
when setting a target coverage (90%) for the test set.

Information content

We investigated the information content between the SNPand
block dataset according to the method described above (de los
Campos 2017), where b; was sampled from a standard
Gaussian distribution. A REML approach was used for fitting
the model. We found that, on average, 96.0% of the variance
of the SNP dataset can be explained by the default haplotype
library (Table 6). As one would expect, the share of variance
explained is increasing when increasing the number of blocks
in the haplotype library. On the other hand, the share of the
variance of the haplotype library that can be explained by the
SNP dataset is 95.2%. Even though the number of parameters
in the block dataset (Z) is much smaller than in the full SNP
set (X), the share of the variance explained by the corre-
sponding dataset is similar.

When using a subset of markers (X;) with the same number
of SNPs as haplotype blocks in the haplotype library, the share
of variation explained is slightly lower (95.1%) than for the
block dataset. Unlike the haplotype library, the variation in
the SNP subset is basically fully explained by the full SNP
dataset (=99.99%). This should not be surprising, since X
is a genuine subset of X. Even though a similar share in var-
iation of the SNP dataset is preserved, the block dataset
should be preferred as it is able to incorporate effects that
are not explained by linear effects of single markers.

With the following toy example, we illustrate what kind of
effects can be grasped by a block dataset compared to a model
that is only assigning effects to single markers, as is done in
GBLUP (Meuwissen et al. 2001) using the traditional geno-
mic relationship matrix (VanRaden 2008). Consider a dataset
(Table 7) with three markers, five haplotypes and a genomic
value of 1 for the allelic sequence 111. When assuming no
environmental effects, phenotypes equal to genomic values
and fitting an ordinary least squares model (OLS) on single
markers, the resulting model estimates effects of 0.75, 0.5,
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and 0.5 for the three respective alleles with an intercept
of —1. Overall, single marker effects can approximate, but
not fully explain, an underlying epistatic genomic value (Ta-
ble 7), whereas a block dataset allows for a natural model of
effects caused by local interactions.

Overlapping segments in multiple landraces

When using HaploBlocker on the joint dataset of both land-
races (KE and PE), the resulting haplotype library contains
essentially the same haplotype blocks that were identified in
the haplotype libraries derived for the two landraces individ-
ually. The reason for this is that segments shared between
landraces are often short, leading to a small rating rp, and,
thus, removal in the block-filtering step. To specifically iden-
tify those sequences that are present in both landraces, we
added the constraint that each block had to be present in at
least five haplotypes of both landraces. This results in the
identification of 1655 blocks that are present in both land-
races. Those blocks are much shorter (average length:
207 SNPs) and represent only 62.7% of the genetic diversity
of the dataset. This is not too surprising since the haplotypes
of a single landrace are expected to be much more similar
than haplotypes from different landraces. Explicitly, this is
not an indicator for 62.7% of the chromosome of both land-
races to be the same. Shared haplotype blocks can be found
across the whole chromosome, but only some haplotypes of
the landraces have those shared segments.

Comparison with the results of HaploView

Overall, the structure of the haplotype blocks generated with
our approach is vastly different from blocks obtained with
LD-based approaches such as HaploView (Barrett et al. 2005).
When applying HaploView on default settings (Gabriel et al.
2002) to chromosome 1 of the maize data, 2666 blocks are
identified (average length: 27.8 SNPs, median: 20 SNPs),
and 4865 SNPs (6.1%) are not contained in any block. If
one were to use a similar coding for the blocks obtained in
HaploBlocker, and use a separate variable for each allelic se-
quence in a block, one would have to account for 12,550
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different allelic sequences (excluding singletons). For the
whole genome, this would result in 16,904 blocks with
79,718 allelic sequences. When using a dataset with both
landraces (or, in general, more diversity), LD-based blocks
get even smaller (for chromosome 1: 4367 blocks, 24,511
different allelic sequences, average length: 17.3 SNPs, me-
dian: 9 SNPs, 4718 SNPs in no block). In comparison, the
haplotype library identified in HaploBlocker with multiple
landraces is, with minor exceptions, a combination of the
two single landrace haplotype libraries (1112 blocks, average
length: 2294 SNPs, median: 1402 SNPs, coverage: 94.4%).
Overall, the potential to detect long range associations be-
tween markers and to reduce the number of parameters in
the dataset is much higher when using haplotype blocks gen-
erated by HaploBlocker.

Differences between the two methods become even more
drastic when applying HaploView to the human datasets
generated in the 1000 Genomes Project Phase 3 (1000 Ge-
nomes Project Consortium 2015). For chromosome 22, there
were 49,504 blocks, with an average length of 199 SNPs
(median: 81 SNPs) that cover 92.9% of the dataset in
HaploBlocker. In contrast, there were only 12,304 blocks (ex-
cluding singletons) identified in HaploView (average length:
8.1 SNPs, median: 4 SNPs), but only 99,130 of the 424,147
markers were assigned to a block (23.4%). In total, there
were still 544,038 different allelic sequences in the identified
blocks in HaploView. We noted that all alternative variants
were coded as the same allele, as HaploView is able to handle
only two alleles per marker, while HaploBlocker is able to
handle up to 255 different alleles per marker. When allowing
for more than two alleles per marker in HaploBlocker, we
obtain 49,500 blocks with an average length of 200 SNPs
(median: 81 SNPs) that cover 93.0% of the dataset. It should
be noted that HaploView was developed with different ob-
jectives in mind (Barrett et al. 2005).

Influence of marker density

A common feature of conventional approaches to identify
haplotype blocks is that, with increasing marker density, the
physical size of blocks is strongly decreasing (Sun et al. 2004;
Kim and Yoo 2016). To assess this, we executed Haplo-
Blocker on datasets with different marker densities by includ-
ing only every second/fifth/tenth/fortieth marker of the maize
dataset in the model. Since the physical size of a window

estimated haplotype of the founder generation.

40000 50000

with a fixed number of markers is vastly different, we com-
pared the structure of the obtained haplotype library using the
adaptive mode in HaploBlocker (multiple window clusters
with window sizes 5,10,20,50 and adaptive MCMB to obtain
a target coverage of 95%) instead of default settings. As there
are far fewer markers with possible variation, fewer blocks are
needed to obtain the same coverage in the low-density data-
sets (Table 8). Since windows in the cluster-building-step span
over a longer part of the genome, the considered groups con-
tain fewer haplotypes, leading to less frequent nodes in the
window cluster. Since the haplotypes in a node are, on aver-
age, more related to each other, the identified blocks tend to be
longer and include fewer haplotypes.

In a second step, we manually adapted the window size
(50/25/10/5/5) and the MCMB (5000/2500/1000/500/
125) according to the marker density of the dataset. When
manually adapting the parameters, the number of blocks in
the haplotype library is largely independent of the marker
density (Table 9). The length of the blocks is decreasing,
whereas the number of haplotypes per block is increasing
with decreasing marker density. A possible reason for this is
that haplotypes in the same node of the window cluster are
less similar in the region than when using bigger window
sizes. This will lead to shorter haplotype blocks that are car-
ried by more but less related haplotypes. In the case of the
dataset in which we used every 40th marker, we additionally
considered a value of 250 for the MCMB, since the resulting
coverage was a lot higher, indicating that less overall varia-
tion is present in the dataset. This also results in fewer overall
blocks needed to obtain similar coverage.

Haplotype libraries for all considered marker densities
were similar, indicating that, for our landrace population, a
much lower marker density would have been sufficient to
derive haplotype blocks via HaploBlocker. If the physical size
of haplotype blocks is smaller, a higher marker density is
needed.

Recovering founder haplotypes

HaploBlocker was applied to the final generation of the data-
set simulated in analogy to the breeding scheme for the
MAGIC population given in Zheng et al. (2015). On average,
we obtained 827 haplotype blocks with a length of
1420 markers covering 82.8% of the dataset; 96.0% of the
allelic sequences of haplotype blocks are =99% the same as
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an allelic sequence of a founder haplotype of that segment.
Overall, 86.6% of all cells in the SNP dataset of the founders
are recovered by the resulting haplotype library. When using
a target coverage of 95%, the share of the allelic sequences of
the blocks that are the same as a founder haplotype is quite
similar (96.6%), but 93.6% of all cells of the SNP dataset of
the founders can be recovered. Note that identified haplotype
blocks, by default, have a minimum size of five haplotypes,
leading to the loss of rarely inherited haplotypes.

It should be noted that our approach is not constructed to
detect the exact boundaries of IBD segments between foun-
ders and single offspring, but, instead, it detects commonly
presented allelic sequences. In a population with limited
founders (e.g., caused by a genetic bottleneck), those com-
mon allelic sequences most likely stem from the founders of
the population. For a plot comparing the true and estimated
genetic origin of the final generation, we refer to Figure 7.
Here, estimation means that, if a haplotype block completely
stems from a single founder, that particular founder is used as
the origin. Note that haplotype blocks are much shorter than
the size of segments originating from a particular founder,
leading to multiple haplotype blocks that all correspond to a
part of a segment inherited from a particular founder, and,
therefore, are colored the same in Figure 7. For details on the
whole selection procedure, we refer to File S4. In practice,
nonoverlapping blocks cannot, of course, be assigned to
the same founder. The main benefit of our method is that,
in contrast to commonly used methods, only phased geno-
type data are needed to recover founder haplotypes. When

interest is in the exact boundaries of IBD segments for single
haplotypes and founders (with known pedigree), we recom-
mend the use of methods like RABBIT (Zheng et al. 2015).

Block-based selection signatures

When deriving EHH and bEHH scores, we observed that the
curves were quite similar for DH lines (Figure 8). The most
apparent difference was a much higher EHH score in the re-
gion directly surrounding the marker. Those segments are
typically much smaller than the segments considered jointly
in the bEHH approach. Note that the same allelic sequence in
such a small region can occur not only based on IBD but also
by chance. On the contrary, scores between distant markers
for the Sy plants were much lower when using EHH (Figure
8). This is caused mainly by the incorporated robustness of
bEHH, since the Sy dataset tends to contain a higher share
of minor deviations between haplotypes.

When using EHH (Sabeti et al. 2002) to derive IHH (Voight
et al. 2006), the selection pressure on DH-lines is estimated to
be much higher, whereas scores are quite similar between the
two groups when using bEHH (Figure 9). IHH scores based
on bEHH are in concordance with previous research, as we
would expect little to no loss of diversity or selection in the
process of generating DH-lines (Melchinger et al. 2017). Re-
sults in Melchinger et al. (2017) were derived by the use of F;;
(Holsinger and Weir 2009) and analysis of molecular diver-
sity in single markers. As presented at a recent conference
(Mayer et al. 2018), similar studies with matching results
were also performed for KE and PE.
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Figure 10 Comparison of computing times for datasets of various sizes
for chromosome 1 in the KE DH lines.

Computing time

Overall computing times were not an issue for the con-
sidered datasets when using the associated R-package
HaploBlocker (R Core Team 2017; Pook and Schlather
2019) with the full dataset (501 haplotypes, 80,200
SNPs) needing 55 sec on default, 75 sec with a target
coverage and 13.3 min in adaptive mode. Computations
were performed on a single core of a server cluster with
Broadwell Intel E5-2650 (2 X 12 core 2.2 GHz) proces-
sors. Most crucial parts in terms of computing time are
written in C.

For our datasets, computing time scaled approximately
linearly in both number of haplotypes and the physical size
of the genome analyzed (Figure 10). Especially for the num-
ber of haplotypes, it is difficult to generalize because the
number of nodes in the window cluster is the main cause of
the increase in computing time. The marker density had only
a minor effect. Even a panel containing just every tenth
marker, on average, needed 99.3% of the computing time
of the full dataset.

Conclusions and outlook

HaploBlocker provides a natural technique to model local
epistasis, and thereby solves some of the general problems
of markers being correlated but not causal individually
(Akdemir et al. 2017; He et al. 2017). This can be seen as
one of the factors contributing to the “missing heritability”
phenomenon in genetic datasets (Manolio et al. 2009). The
haplotype blocks obtained are a concise representation of the
variation present in a SNP dataset. The block assignment in
HaploBlocker is deterministic and does not incorporate un-
certainty, although the algorithm provides flexibility to con-
trol the structure of the haplotype library via parameter
tuning.

Even though results were presented mainly for a maize
dataset containing DH lines, methods are not species-dependent
or limited to fully homozygous individuals. Methods were
also applied to livestock and human data. As HaploBlocker
is not able to handle uncertainty in haplotype phase assign-
ment, an initial phasing step is mandatory. For human data,
in particular, this can be a substantial application problem,

requiring triplet data or high-quality phase such as that
available in the 1000 Genomes Project (1000 Genomes Proj-
ect Consortium 2015). Overall, the opportunities for iden-
tifying long, shared segments will be higher in SNP datasets
from populations subjected to a recent history of intensive
selection, as is commonly present in livestock and crop
datasets. Recent work has suggested that the phasing accu-
racy for these kinds of datasets is extremely high (Pook et al.
2019) and should, therefore, be sufficient for the applica-
tion of HaploBlocker. For datasets containing less related
individuals, as commonly present in human data, poor
phasing accuracy can limit the applicability and useful-
ness of HaploBlocker.

It should be noted that, by using blocks, no assignment of
effects to physical positions (like in a typical GWAS study) is
obtained. A subsequent analysis is needed to identify which
segment of the significantly trait-associated haplotype block is
causal for a trait, and/or which parts of that block differ from
other blocks in that region.

A future topic of research is the explicit inclusion of larger
structural variation like duplications, insertions, or deletions
as is done in methods to generate a pangenome (Eggertsson
et al. 2017). Since blocks in HaploBlocker are of large phys-
ical size, most structural variation should still be modeled
implicitly, and application to sequence data is perfectly
possible.

HaploBlocker provides an innovative and flexible approach
to screen a dataset for block structure. The representation and
condensation of a SNP dataset as a block dataset enables new
methods for further genomic analyses. For some applications,
already existing techniques for a SNP dataset can be applied
directly by using a block dataset instead (e.g., genomic pre-
diction). For other applications, like the detection of selection
signatures via EHH/IHH, modifications of the original meth-
odology are needed. Features of HaploBlocker can even en-
hance existing methods and lead to improvements such as an
increased robustness of the methods against minor variation,
or a massively reduced computing time. Additionally, prob-
lems regarding typical p >> n— settings in genetic datasets
(Fan et al. 2014) can be heavily reduced, allowing for the
usage of more complex statistical models that include epista-
sis or even apply deep learning methods with a reduced risk
of over-fitting.
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