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Abstract: Copper nanoparticles (Cu-NPs) have shown great antifungal activity against phytopath
ogenic fungi, making them a promising and affordable alternative to conventional fungicides. In
this study, we evaluated the antifungal activity of Cu-NPs against Fusarium kuroshium, the causal
agent of Fusarium dieback, and this might be the first study to do so. The Cu-NPs (at different
concentrations) inhibited more than 80% of F. kuroshium growth and were even more efficient than
a commercial fungicide used as a positive control (cupric hydroxide). Electron microscopy studies
revealed dramatic damage caused by Cu-NPs, mainly in the hyphae surface and in the characteristic
form of macroconidia. This damage was visible only 3 days post inoculation with used treatments. At
a molecular level, the RNA-seq study suggested that this growth inhibition and colony morphology
changes are a result of a reduced ergosterol biosynthesis caused by free cytosolic copper ions. Fur-
thermore, transcriptional responses also revealed that the low- and high-affinity copper transporter
modulation and the endosomal sorting complex required for transport (ESCRT) are only a few of the
distinct detoxification mechanisms that, in its conjunction, F. kuroshium uses to counteract the toxicity
caused by the reduced copper ion.

Keywords: nanofungicide; antifungal activity; ambrosial complex

1. Introduction

The applications of nanotechnology have significantly increased over the last few
years. Currently, different nanomaterials are being used in agriculture, creating a new
field known as nanoagriculture. Various nanomaterials with antimicrobial activity have
been tested for the control of infectious diseases, such as Ag nanoparticles (NPs) [1],
Au-NPs [2], TiO2-NPs [3], and ZnO-NPs [4]. Copper-based nanoparticles have drawn
particular interest due to their low cost, excellent antimicrobial properties, and minimal
environmental impact when used correctly (low concentrations with highly efficient modifi-
cations/formulations) [5]. For centuries, copper salts have been used for disease control [6].
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One of their main advantages is that pathogens do not develop resistance to them, as occurs
with most antibiotics [7]. However, due to their high dissolution in water, the cumulative
dosages may be toxic to fish and other organisms [8].

Due to their unique physicochemical features, copper-based NPs have shown high
antifungal properties against a broad spectrum of fungi species, including Phoma destruc-
tive, Curvularia lunata, Alternaria alternate, Fusarium oxysporum, Saccharomyces cerevisiae,
among others [9,10]. Previous studies [10–14] have demonstrated that copper NPs an-
tifungal activity depends on their shape, size, and concentration, which could vary de-
pending on the fungal species. Previously, we evaluated the antifungal activity of five
Cu/CuxO-NPs with different phase compositions and sizes, using a Fusarium oxysporum
strain as a study case. The results showed that with a low concentration (0.25 mg/mL) of
Cu/CuxO-NPs, with a high proportion of Cu2O phase and relatively small size particles,
more than 90% of fungal growth was inhibited. Meanwhile, copper salts reached only 5%
growth inhibition [11]. Differences were also observed in antifungal activity of Cu-NPs even
against species belonging to the same genus (e.g., Fusarium sp. AF-6, AF-8, F. oxysporum, and
F. solani).

Fusarium kuroshium [15] is a member of the Ambrosia Fusarium Clade (AFC) [16,17]
and is recognized as one of the symbionts of the Asian Kuroshio shot hole borer (Euwallacea
kuroshio Gomez and Huler. Since its introduction into the United States of America, this
pest has spread from Southern California’s west coast to Northeastern Mexico [18]. The
fungus–beetle complex is responsible for causing significant damage to several tree species
distributed in urban, natural, agricultural, and riparian areas [17,19–23]. As a control
strategy, fungicides from the azole family are commonly used even when they are inefficient.
These chemicals can negatively impact ecological interactions and the environment [24].
Hence, it is necessary to find alternatives.

For the first time and based on the framework mentioned above, in this study, we
describe the antifungal activity of Cu-NPs exerted against Fusarium kuroshium [15]. We
analyzed the fungal morphological (growth and development) and molecular response in
the presence of Cu-NPs, combining RNA-seq methodology and field emission scanning
electron microscopy (FE-SEM).

2. Materials and Methods
2.1. Source of Fungal Symbionts of Ambrosia Beetles, Media, and Culture Conditions

Under strict biosecurity conditions, all in-vitro assays were carried out in the mycology
laboratory at ‘Centro Nacional de Referencia Fitosanitaria (CNRF)’. CNRF is a Mexican
institution belonging to ‘Dirección General de Sanidad Vegetal (DGSV)’ and ‘Servicio Na-
cional de Sanidad, Inocuidad y Calidad Agroalimentaria (SENASICA)’, both dependencies
of ‘Secretaría de Agricultura y Desarrollo Rural (SADER)’. The strain HFEW-16-IV-019
of Fusarium kuroshium species was used in the present study [19,25,26]. This strain was
isolated from the Kuroshio shot hole borer (KSHB), collected in Tijuana, B.C., Mexico, and
stored in 25% glycerol at −80 ◦C [18]. Conidia from F. kuroshium were propagated on
potato dextrose agar (PDA) (Sigma-Aldrich, St. Louis, MO, USA). Plates were incubated
for 5–7 days at 28 ◦C in darkness, and fungal spores were collected by gently shaking the
plate with 3–5 mL of sterile water at room temperature. After the conidia were washed
twice with sterile water, they were collected and stored in an aqueous solution (at 5 × 106

colony forming unit (CFU)/mL) and used on the antifungal activity assay.

2.2. In Vitro Antifungal Activity Assay

As recently reported, the Cu-NPs used for the in vitro assays were synthesized [27].
These Cu-NPs are faceted particles of 200 nm in size, coated with citrate groups, water dis-
persible, and stable in the open atmosphere. The commercial fungicide product (Cupravit®

Hidro, Bayer de México, CDMX, México) containing the active ingredient cupric hydroxide
was used as the positive control and reference of antifungal activity. Sterile distilled water
was used as a solvent to prepare both the Cu-NPs suspension and the cupric hydroxide
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solution. The Cu-NPs suspension was sonicated for 30 min to ensure good dispersion of
NPs in the PDA culture medium.

The antifungal activity of Cu-NPs against F. kuroshium was evaluated using the poi-
soned food method [28]. Briefly, PDA was mixed with different amounts of Cu-NPs to
obtain the following final concentrations: 0.1, 0.25, 0.5, 0.75, and 1.0 mg/mL. Cupric hy-
droxide was used at the same concentrations as Cu-NPs, and non-amended media were
used as control. Spore suspensions (1 × 106 CFU/mL) were inoculated at the center of each
PDA plate and incubated in darkness at 28 ◦C for six days. All treatments were carried out
in triplicate. Colony diameters were measured three and six days after inoculation (dai).
The percentage of growth inhibition was calculated by measuring the average area of the
fungal colonies in the treatments and compared to the negative control.

2.3. Analysis of Fungal Morphology through FE-SEM

Six-day-old fungal from treatment and control cultures were used to determine
mycelial radial growth and morphology. Mycelial discs of 10 mm diameter were cut,
fixed, and processed as previously described [27,29]. The images were collected using an
FE-SEM FEI Quanta 250-FEG (Brno, Czech Republic).

2.4. RNA Extraction

Three and six dai mycelium were collected from the Cu-NPs treatments (0.5, 0.75, and
1.0 mg/mL) and control. Samples were immediately frozen in liquid nitrogen and stored at
−80 ◦C for posterior extraction. Total RNA was isolated from 200 mg of pulverized mycelia
using Norgen RNA Purification Kit (Nor-gen Biotek Corporation, Thorold, Canada). RNA
was quantified using a NanoDrop 2000 c spectrophotometer (Thermo Scientific, Thermo
Fisher Scientific, Waltham, MA, USA) and assessed for purity by UV absorbance measure-
ments at 260 and 280 nm. Total RNA integrity was confirmed by capillary electrophoresis
using an Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA).

2.5. RNA-seq Analysis: cDNA Library Preparation and Sequencing

cDNA libraries were prepared by the Massive Sequencing Unit of the Ecology Institute
(INECOL, Xalapa, Ver., Mexico) using the TruSeq RNA Sample Preparation Kit (Illumina,
San Diego, CA, USA) following the manufacturer’s instructions. A total of 24 samples
consisting of three biological replicates of Cu-NPs treatments 0.5, 0.75, and 1 mg/mL and
negative control collected at 3 and 6 dai were sequenced. All samples were sequenced
together on a single flow cell (High Output Kit v2.5; 300 Cycles) using the NextSeq500
platform (Illumina, San Diego, CA, USA). Paired-end reads (2 × 150 bp) were generated,
and index codes were used to identify each sample independently. The RNA-seq data
were deposited in the Short Read Archive (SRA) database of the National Center for
Biotechnology Information (NCBI). Accession numbers were placed at the end of the
manuscript in the data availability statement section.

2.6. Data Processing

The resulting raw paired-end reads from the sequencing process were cleaned using
Trimmomatic v0.38 [30] to use only high-quality sequences. Reads alignment to the ref-
erence genome (Fusarium kuroshium; [25,26]) and transcript abundance estimation were
performed using Bowtie2 v2.3.5.1 [31] and RNA-Seq by Expectation-Maximization (RSEM)
v1.3.1 [32] software packages, respectively. The transcript abundance matrix created con-
tains each of F. kuroshium genes (rows) and the expected count (EC) values calculated for
each sampling point (3 and 6 dai) at the different concentrations of Cu-NPs employed (0,
0.5, 0.75, and 1 mg/mL; all represented in the corresponding columns). The EC values
represent the expression levels and are calculated by the maximum likelihood estimation
approach and posterior mean estimates with 95% credibility intervals. RSEM uses these EC
values to calculate transcripts per million (TPM) and fragments per kilobase per million
mapped reads (FPKM) values. It has been reported that TPM values are highly consistent
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among samples [33]. These values were used to perform principal component analysis to
detect the significant sources of variance underlying the selected sampling points and the
Cu-NPs treatments. The DESeq2 v1.2.4.0 R/Bioconductor package performed a differential
expression analysis, using a negative binomial model to perform pairwise Wald tests, and
the Benjamini–Hochberg method to perform multiple testing [34]. A log2 fold change (FC)
value ± 1.0 and an adjusted p value of ≤ 0.05 were the criteria for identifying differentially
expressed genes (DEGs) across treatments.

Considering that gene models predicted in the F. kuroshium genome lack annota-
tion [29], its homologs were identified by BLAST searches. Only the best hit in unidirec-
tional pairwise comparisons was considered (F. kuroshium versus some other available
Fusarium species: F. vanettenii 77-13-4, F. graminearum PH-1, F. pseudograminearum CS3096,
F. verticillioides 7600, F. fujikuroi IMI 58289, and F. oxysporum NRRL 32931). Neurospora crassa
OR74A and Saccharomyces cerevisiae S288C were also included as outgroups. The names of
species mentioned and those used as references are accompanied by the strain identifier
(e.g., 77-13-4). The latest versions of these reference genomes, all available in the GenBank
database (https://www.ncbi.nlm.nih.gov/; accessed on 17 February 2022), were those used
in this study. Gene Ontology (GO) terms [35], eukaryotic orthologous group (KOG), the
Enzyme Commission (EC) numbers [36], and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways [37] were inherited to each F. kuroshium gene. InterProScan [38,39] was
used for this purpose. The g: Profiler web tool (http://biit.cs.ut.ee/gprofiler/; accessed
on 15 February 2022; [40]) was used to identify the enriched functional categories (GO
terms) and deep-represented metabolic pathways (KEGG) by genes that respond to the
Cu-NPs treatments, significantly changing their transcription level (differentially expressed
genes). Finally, GO and KEGG enrichment analysis of the identified DEGs was performed
by g: Profiler web tool (http://biit.cs.ut.ee/gprofiler/; accessed on 15 February 2022) using
the hypergeometric distribution adjusted by set count sizes (SCS) for multiple hypothesis
correction [40]. Based on the method mentioned above (g: SCS), p-adjusted values ≤ 0.05
were used as a threshold after performing multiple correction tests.

3. Results
3.1. Antifungal Activity of Cu-NPs on Mycelial Growth

Both treatments, Cu-NPs and cupric hydroxide, were found to inhibit mycelial growth
in a dose-dependent manner. As seen in Figure 1, Cu-NPs had more antifungal activity
than cupric hydroxide. Figure 1 shows the radial mycelial growth of F. kuroshium exposed
to different Cu-NPs and cupric hydroxide concentrations in both sampling points (3 and
6 dai).

At three dai, changes in colony pigmentation and mycelial growth inhibition started
to be visible in both treatments (Cu-NPs and cupric hydroxide, respectively). However,
colony morphology and percentage of mycelial radial growth inhibition were more evident
at 6 dai (Figure 1). At this late sampling time, the F. kuroshium colony showed a cotton-like
texture and pale orange pigmentation in the negative control (plates with PDA culture
medium). In the presence of 0.1 and 0.25 mg/mL Cu-NPs, the color of the colony became
white and dark cherry color, and the pigment disappeared when the concentration of
Cu-NPs increased from 0.5 to 1 mg/mL. Changes in the colony morphology were also
observed (irregular growth), being significant at 0.5 mg/mL.

Regarding the cupric hydroxide treatments (positive control), colony pigmentation
changes were also observed from the lowest concentrations (0.1 and 0.25 mg/mL). Still, it
turned dark purple g at 0.5 mg/mL (Figure 1).

https://www.ncbi.nlm.nih.gov/
http://biit.cs.ut.ee/gprofiler/
http://biit.cs.ut.ee/gprofiler/
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trations (0 mg/mL (control), 0.1, 0.25, 0.5, 0.75, and 1 mg/mL) of (a) Cu-NPs and (b) cupric hydroxide 
at 3 and 6 days after inoculation (dai). 

Additionally, the mycelial radial growth inhibition percentage was quantified (Fig-
ure 2). For both treatments (Cu-NPs and cupric hydroxide), growth inhibition became ev-
ident at six dai for 0.5, 0.75, and 1 mg/mL concentrations. The mycelial radial growth per-
centages resulted as higher for Cu-NPs than for cupric hydroxide. As seen in Figure 2, at 
0.5 and 0.75 mg/mL of Cu-NPs, ~80% of the fungal growth was inhibited, while at the 
highest concentration (1 mg/mL), more than 90% inhibition was reached. These growth 
inhibition percentages were even higher than those observed for the cupric hydroxide 
treatments, with only 46% inhibition at 0.5 mg/mL and no increase at higher concentra-
tions. As mentioned above, these results revealed that the Cu-NPs treatments at concen-
trations as low as 0.5 mg/mL might inhibit the growth of F. kuroshium, and this treatment 
seems to perform better than the commercial products available, such as cupric hydrox-
ide, here used as a positive control. 

 
Figure 2. The mycelial radial growth inhibition percentage from F. kuroshium was quantified at (a) 
3 and (b) 6 dai in both treatments, Cu-NPs, and cupric hydroxide, respectively. A one-way ANOVA 
with a Tukey’s test was used to determine significance across all the treatments. Different letters on 
top of the bars indicate significant differences (p ≤ 0.01). Error bars represent the standard error (n = 
3). 

Figure 1. F. kuroshium mycelial growth inhibition assays. The colony morphology of F. kuroshium wild-
type strains grown on plates with PDA culture medium supplemented with different concentrations
(0 mg/mL (control), 0.1, 0.25, 0.5, 0.75, and 1 mg/mL) of (a) Cu-NPs and (b) cupric hydroxide at 3
and 6 days after inoculation (dai).

Additionally, the mycelial radial growth inhibition percentage was quantified
(Figure 2). For both treatments (Cu-NPs and cupric hydroxide), growth inhibition be-
came evident at six dai for 0.5, 0.75, and 1 mg/mL concentrations. The mycelial radial
growth percentages resulted as higher for Cu-NPs than for cupric hydroxide. As seen in
Figure 2, at 0.5 and 0.75 mg/mL of Cu-NPs, ~80% of the fungal growth was inhibited,
while at the highest concentration (1 mg/mL), more than 90% inhibition was reached.
These growth inhibition percentages were even higher than those observed for the cupric
hydroxide treatments, with only 46% inhibition at 0.5 mg/mL and no increase at higher
concentrations. As mentioned above, these results revealed that the Cu-NPs treatments
at concentrations as low as 0.5 mg/mL might inhibit the growth of F. kuroshium, and this
treatment seems to perform better than the commercial products available, such as cupric
hydroxide, here used as a positive control.

J. Fungi 2022, 8, x FOR PEER REVIEW 5 of 18 
 

 

 
Figure 1. F. kuroshium mycelial growth inhibition assays. The colony morphology of F. kuroshium 
wild-type strains grown on plates with PDA culture medium supplemented with different concen-
trations (0 mg/mL (control), 0.1, 0.25, 0.5, 0.75, and 1 mg/mL) of (a) Cu-NPs and (b) cupric hydroxide 
at 3 and 6 days after inoculation (dai). 

Additionally, the mycelial radial growth inhibition percentage was quantified (Fig-
ure 2). For both treatments (Cu-NPs and cupric hydroxide), growth inhibition became ev-
ident at six dai for 0.5, 0.75, and 1 mg/mL concentrations. The mycelial radial growth per-
centages resulted as higher for Cu-NPs than for cupric hydroxide. As seen in Figure 2, at 
0.5 and 0.75 mg/mL of Cu-NPs, ~80% of the fungal growth was inhibited, while at the 
highest concentration (1 mg/mL), more than 90% inhibition was reached. These growth 
inhibition percentages were even higher than those observed for the cupric hydroxide 
treatments, with only 46% inhibition at 0.5 mg/mL and no increase at higher concentra-
tions. As mentioned above, these results revealed that the Cu-NPs treatments at concen-
trations as low as 0.5 mg/mL might inhibit the growth of F. kuroshium, and this treatment 
seems to perform better than the commercial products available, such as cupric hydrox-
ide, here used as a positive control. 

 
Figure 2. The mycelial radial growth inhibition percentage from F. kuroshium was quantified at (a) 
3 and (b) 6 dai in both treatments, Cu-NPs, and cupric hydroxide, respectively. A one-way ANOVA 
with a Tukey’s test was used to determine significance across all the treatments. Different letters on 
top of the bars indicate significant differences (p ≤ 0.01). Error bars represent the standard error (n = 
3). 

Figure 2. The mycelial radial growth inhibition percentage from F. kuroshium was quantified at (a) 3
and (b) 6 dai in both treatments, Cu-NPs, and cupric hydroxide, respectively. A one-way ANOVA
with a Tukey’s test was used to determine significance across all the treatments. Different letters
on top of the bars indicate significant differences (p ≤ 0.01). Error bars represent the standard error
(n = 3).
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3.2. Analysis of Fungal Morphology through FE-SEM

FE-SEM micrographs were used to study the structural changes of the fungal hyphae
after the treatment by Cu-NPs. In the supplemented control, healthy hyphae exhibited a
tubular morphology with a smooth surface and the characteristic formation of fusiform-
clavate macroconidia (Figure 3a). In contrast, F. kuroshium growing on Cu-NPs treatments
showed multiple alterations in the hyphae and macroconidia morphology (Figure 3b–f).
At 0.1 mg/mL (Figure 3b), both the hyphae and the macroconidia showed morphological
distortion. A reduction in hypha thickness, irregular shrinkages, and peanut shape were
observed (yellow arrow). For the 0.25 mg/mL Cu-NPs treatment, there was no production
of macroconidia; in addition, hyphae lost their smoothness and exhibited peeling (see red
arrows in Figure 3c). At 1 mg/mL of Cu-NPs, F. kuroshium hyphae were swollen, deformed,
fractured, and broken (pink arrows), leading to the outflow of intracellular components
(Figure 3d–f).
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based on Fusarium vanettenii (equivalent: F. solani f. sp. pisi) homologs proteins (Table S2). 
Homologs proteins were also detected for Fusarium graminearum (92.04%), Fusarium 
pseudograminearum (92.80%), Fusarium verticillioides (94.27%), Fusarium fujikuroi (94.56%), 
Fusarium oxysporum (94.90%), Saccharomyces cerevisiae (50.07%), Neurospora crassa (80.81%) 
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Figure 3. SEM micrographs of F. kuroshium hyphae after growing 6 days in PDA culture medium
supplemented with different concentrations of Cu-NPs: (a) 0 (control), (b) 0.1, (c) 0.25, (d) 0.5,
(e) 0.75, and (f) 1 mg/mL. The Cu-NPs treatments at concentrations as low as 0.1 mg/mL provoked
changes in the hyphae morphology, ranging from an apparent loss of turgor to a loss of cell wall
integrity. At 0.25 mg/mL, peeling hyphae (red arrow) indicated the loss of cell wall integrity. At
concentrations of 0.5 mg/mL or greater, the hyphae cell wall showed higher porosity and leakage
of the cytoplasmic contents (pink arrows). The yellow arrow indicates the morphological changes
observed in the macroconidia, only found in the control and the 0.1 mg/mL treatment.

3.3. Differential Gene Expression of F. kuroshium in Response to Cu-NPs Treatments

A total of 481,775,061 high-quality (HQ) paired-end reads were obtained from the 24
RNA-seq sequenced libraries (around 20 million reads per library on average;
Table S1). These HQ reads were mapped against the published F. kuroshium genome [25].
From the total of F. kuroshium predicted protein-coding genes (13,777), 97.39% were an-
notated based on Fusarium vanettenii (equivalent: F. solani f. sp. pisi) homologs proteins
(Table S2). Homologs proteins were also detected for Fusarium graminearum (92.04%), Fusar-
ium pseudograminearum (92.80%), Fusarium verticillioides (94.27%), Fusarium fujikuroi (94.56%),
Fusarium oxysporum (94.90%), Saccharomyces cerevisiae (50.07%), Neurospora crassa (80.81%)
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(Table S2; see Methods for details). The results mentioned above show that, as expected, the
amount of homologs proteins identified during the annotation process (homology-based
inference) increased as the species they were compared against were phylogenetically more
closely related (details in [16]). Tables S3–S5.

The principal component analysis (PCA) using the estimated TPM values
(Table S6; see Methods for more detail) was conducted to determine the differential expres-
sion and to detect the major sources of variance underlying the sampling points (3 and
6 dai) and the Cu-NPs concentrations (0, 0.5, 0.75, and 1 mg/mL). The two-dimensional
PC plot in which the first two principal components (PC1 and PC2) were included was the
one that best illustrated the variance, with explanatory values of 49% (PC1) and 22% (PC2),
respectively (Figure 4a). Since all libraries were independently included in the analysis,
the PCA plot indicates that not only the employed biological replicates have high repro-
ducibility values but also, regarding the Cu-NPs treatments, they can be grouped in at least
two major distinguishable discriminating groups: Group 1, which represents the control
treatments (that is, without Cu-NPs), and Group 2, representing those treatments in which
Cu-NPs were added to the culture media (PC2, at 0.5, 0.75 and 1 mg/mL, respectively). Re-
garding the sampling points (3 and 6 dai), despite the visible differences, they only explain
a low percentage of the variance (PC1; Figure 4a). Based on these results, pairwise com-
parisons were performed to identify differentially expressed genes involved in Cu-NPs re-
sponses. Comparisons performed were 0.5, 0.75, and 1 mg/mL versus 0 mg/mL (control) at
3 and 6 dai, respectively. DEseq2 R package was used to calculate differential expression
between these pairs of compared samples. In total, there were 5476 F. kuroshium genes with
differential expression of two-fold or greater (Log2FC = ±1) and an adjusted significant
p value of ≤ 0.05 at three dai (Table S7).

Conversely, the DEGs were slightly more abundant (6787) once six days after inocula-
tion elapsed (Table S8). Venn diagram comparison of DEGs showed that a high percentage
of DEG was shared at both sampling points analyzed (3 and 6 dai, respectively). There
is a similar percentage of up- and downregulated genes (53.9% and 65.3%; Figure 4c).
The DEGs resulted as higher as the concentrations of Cu-NPs increased (Figure 4 and
Tables S7 and S8). These data suggest that even when colony morphology and mycelial
growth inhibition are more significant at six dai, fungal molecular responses to overcome
toxic stress and maintain cell viability are triggered at earlier stages and probably kept over
time, while the stress is present and the fungal cells lose their viability.

Pairwise Pearson’s correlation coefficients (r) were estimated using the lists of DEGs to
compare transcriptional responses (at global level) between the distinct Cu-NPs concentra-
tions. That is, for each sampling point (3 and 6 dai), coefficients (r) were estimated between
0.5–0.75 mg/mL, 0.5–1 mg/mL, and 0.75–1 mg/mL. Student’s t test was used to assess
whether correlations were significant (t test, p ≤ 0.05). The transcriptional responses seem
to be similar based on these analyses. According to r values (ranging from 0.845 to 0.985),
no significant differences exist between the distinct Cu-NPs concentrations or the sampling
time points (Table S9). Similar to the transcriptional responses, colony morphology and
mycelial radial growth inhibition percentages showed that the Cu-NPs at concentrations as
low as 0.5 mg/mL have a comparable effect to those with higher concentrations (0.75 and
1 mg/mL). Transcriptional responses that may be involved are similar regardless of the
time point analyzed, 3 or 6 dai.
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Figure 4. Expression profiles of Fusarium kuroshium Differentially Expressed Genes (DEGs) in response
to Cu-NPs. (a) Principal component analysis (PCA) plot displaying all 24 RNA-seq sequenced libraries
used in the presented study, the three independent replicates of the distinct concentrations of Cu-NPs
used (0 (control), 0.5, 0.75 and 1 mg/mL) and evaluated at 3 and 6 days after inoculation (dai). PCA
was performed using the transcripts per million (TPM) values. (b) Heatmaps of the average linkage
hierarchical clustering based on the correlation distance measurements. Log2FC values (±1) that
resulted in significance (adjusted p value of ≤ 0.05) were used to represent the lists of DEGs obtained
from both the 3 and 6 dai. DEGs lists were generated from pairwise comparisons in which each of the
Cu-NPs treatments (0.5, 0.75, and 1 mg/mL) were compared against the control sample (0 mg/mL).
The Venn diagram represents the shared amount of up- and downregulated genes in each Cu-NPs
treatment at the two sampling points evaluated, 3 dai (c) and six dai (d).
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3.4. Gene Ontology Enrichment Analysis of Cu-NPs Responsive Genes

To further examine the functions of the DEGs, an enrichment analysis of GO functional
categories and KEGG metabolic pathways was performed using g: Profiler web server (see
Methods for details). Nineteen molecular function (MF) terms, 32 biological processes (BP)
terms, and 23 cellular components (CC) terms were significantly enriched by 4028 of the
DEGs (66.4% of total), which were identified at both sampling points (Table S10). The top
three GO terms enriched on each of these three major categories (Figure 5) included for
MF were: oxidoreductase activity (GO:0016491), active (ion) transmembrane transporter
activity (GO:0022804), and catalytic activity (GO:0003824); for BP: oxidation-reduction
process (GO:0055114), organic acid metabolic process (GO:0006082), and transmembrane
transport (GO:0055085); and for CC: cytoplasm (GO:0005737), organelle (GO:0043226),
and intracellular membrane-bounded organelle (GO:0043231). Three KEGG metabolic
pathways which were significantly enriched (p value ≥ 0.05) by DEGs were biosynthe-
sis of secondary metabolites (KEGG:01110), tryptophan metabolism (KEGG:00380), and
propanoate metabolism (KEGG:00640) (Figure 5 and Table S10).
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3.5. Fusarium kuroshium Genes Involved in Transport, Homeostasis, and Cooper Toxicity
and Resistance

There is still a limited understanding of the resistance mechanisms deployed by fungi
to cope with the toxicity caused by Cu-NPs. Some of these molecular mechanisms have been
studied mainly in yeast (Saccharomyces cerevisiae), but filamentous fungi reports are scarce.
Downregulation of metal ion importers, utilization of metallothionein, metallothionein-like
structures, and ion sequestration to the vacuole have been implicated in yeast’s resistance
to metals (zinc, copper, iron, and silver, among others). In filamentous fungi, however,
metal resistance relies heavily upon the export of these ions [41]. Therefore, we extensively
searched genes involved in copper resistance using previous reports and recent reviews as a
starting point [41–46]. F. kuroshium homologs of the genes from either yeast or filamentous
fungi were identified on the lists of DEGs (Table S11). We found several homologs of
enzymes involved in copper transport and homeostasis previously reported in yeasts, for
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example, some F. kuroshium genes homologs to FRE1 (FuKu07004) and FRE7 (Fu-Ku03123,
FuKu04041, FuKu10175), both ferric/cupric-chelate reductases that, except for FuKu03123,
were strongly downregulated (Log2FC values ranged from −3.32 to −10.17) in all Cu-NPs
analyzed treatments (0.5, 0.75, and 1 mg/mL). FRE1 [47] (and other members of this gene
family [46]) are metallo-reductases that reduce both cupric (Cu2+) and ferric (Fe3+) ions
by bounding to two distinct transcription factors, MAC1, and ATF1, respectively [48–50].
No homologs to these transcription factors were identified in the F. kuroshium proteins
coding genes set, suggesting that, perhaps in Fusarium species, distinct transcription
factors are involved in a similar response. In addition to FRE proteins, homologs to low-
(CRT2; FuKu05634) and high- (CRT3; FuKu05575, Fu-Ku07307) affinity copper transporters
were also repressed or downregulated in all tested Cu-NPs treatments. Similar expression
patterns (significant downregulated) were found for other homologs to copper transporters
such as PIC2 (FuKu08121) and CCC2 (FuKu08773), proteins which shuttle Cu+ from the
cytoplasm to the mitochondrial matrix and Golgi bodies, respectively [51–53].

Other enzymes such as ferroxidases 3 (FET3; FuKu00497, FuKu00629, FuKu01416,
FuKu05480) and 5 (FET5; FuKu12927, FuKu08718) were significantly upregulated even
when they were required for uptake and oxidation of ferrous iron. It is known that they
require copper as a cofactor for properly functioning [54]. As expected, an ortholog to the
CrpA gene from Aspergillus fumigatus (FuKu02881) was also significantly induced (Log2FC
values > 8). This gene participates as a copper export and is an intermediate of copper’s
reactive oxygen species responses [55].

Other groups of upregulated genes were those involved in the biosynthesis of cell wall
components such as chitin (BioCyc ID: PWY-6981; enzymes: NTH1; FuKu06343, HXK2;
FuKu07788 and FuKu11848, PCM1; FuKu08072, and QRI1; FuKu07424) and b-glucans
(GO-term: fungal-type cell wall beta-glucan biosynthetic process (GO:0070880); genes: Rot2;
FuKu01065, FuKu04120, FuKu08774 and FuKu09863, Cwh41; FuKu09879, KAR2; FuKu03662,
and Kre5; FuKu01731), besides those which participate in copper detoxification by Golgi-to-
vacuole transport by the AP-3 adapter complex in the alkaline phosphatase pathway and
in the carboxipeptidase Y pathway, which transport cargo to the vacuole through endoso-
mal intermediates ([43] proteins: GDA1; FuKu09812, GYP1; FuKu05874 and FuKu06284,
RUD3; FuKu02081, HOC1; FuKu04569, HOC1; FuKu11979, IMH1; FuKu00391, VPS25;
FuKu03105, SNF7; FuKu06560, PEP1; FuKu07887, NHX1; FuKu09337, APS3; FuKu05521,
CCC1; FuKu05129).

Consistent with previous studies show that exposure of yeasts to trace amounts of
metals such as copper, lead, iron, or zinc produce toxicity or death by interfering with
several biological processes, including the ergosterol biosynthesis [41,56]. We found that F.
kuroshium downregulated most of the genes involved in this biosynthetic pathway, even
some of those represented in multi copies (paralogs) in Fusarium genomes in response
to the majority of Cu-NPs concentrations (Figure 6 and Table S12). Similarly, Candida
albican’s nine sterol-response elements (ERG1, ERG2, ERG5, ERG6, ERG10, ERG11, ERG24,
ERG26, and ERG27) are regulated by UPC2 transcription factor [57,58]. In F. kuroshium,
most of these enzymes (Figure 6) show downregulated patterns in response to the Cu-
NPs treatments. While it is true, it has been proven that the efficiency of ergosterol
biosynthesis is determined by some limiting enzymes, and more crucially by the optimal
coordination of the regulation of encoding genes involved in this biosynthetic pathway [59].
In ascomycetes and basidiomycetes, there is a positive correlation between the synthesized
metabolites (ergosterol and its precursors) and expression profiles of genes codifying for
enzymes involved in its biosynthesis, mainly in those genes related to the post-squalene
pathway [60,61].
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4. Discussion

This study showed that Cu-NPs exhibit a better antifungal activity against F. kuroshium
than cupric hydroxide. Some effects that were observed at concentrations ranging from
0.1 to 0.5 mg/mL were color changes of the fungal colony (Figure 1). This effect has
been observed in other plant pathogenic fungi, such as F. solani, Neofusicoccum sp., and
F. oxysporum [27]. In fungi, pigment production is related to melanin and carotenoid
synthesis and is considered a defense mechanism against external stress [62]. In addition, it
has been proven that the roles of fungal melanin include, among others, the scavenging of
free radicals [63]. This is consistent with our results since the synthesis of pigments might
be a mechanism by which F. kuroshium seeks to counteract the oxidative stress produced by
Cu-NPs.

DEGs’ enrichment analyses of GO terms and KEGG metabolic pathways show that the
top three enriched terms in the BP category defend against copper toxicity. Those processes
are related to each other and correspond to oxidation–reduction processes, organic acid
biosynthesis, and the active transport of ions through the plasma membrane and the
membranes that bound the organelles.

Organic acid production has been suggested to give a competitive advantage to
filamentous fungi over other organisms by decreasing the pH and impacting metal detoxifi-
cation [64,65]. The decrease in pH upon their secretion may give a competitive advantage to
the acid-tolerant filamentous fungi, depending on the environment in which they grow [66].
For saprophytic and wood-decaying fungi, pH acidification, caused by oxalic acid pro-
duction (another significantly enriched GO term; GO:0043436), leads to acid-catalyzed
hydrolysis of holocellulose [67–69]. Depending on their concentration, type of metal, and
pH, organic acids can also be complex with di- and tri-valent metals (Fe, Cu, Al, among oth-
ers), explaining their essential role in metal detoxification [65]. The degree of complexation
is also dependent on the organic acid involved (number and proximity of carboxyl groups).
This result suggests that F. kuroshium, at least in part, seeks to counteract the toxicity caused
by Cu-NPs by synthesizing some organic acids.

Fungal–copper interactions are necessary for the activation of metalloproteins involved
in biochemical processes. This includes the activation of superoxide dismutase, which
is responsible for cellular detoxification of reactive oxygen species (ROS) and activation
of cytochrome c oxidate, a catalyst within the electron transport chain [41]. Copper [56],
zinc [70], and silver [71,72] NPs interfere with ergosterol biosynthesis, increasing leakage
of the cytoplasmic contents, depolarization, occurrence of ROS, and reducing cell wall
integrity in yeasts. This explains the significant enrichment of the oxidation–reduction
processes (GO:0055114) and enzymes with oxidoreductase activity (GO:0016491. In addi-
tion, metallothioneins (proteins that use metal ions as cofactors that possess a cysteine-rich
domain) bind free cytosolic ions as a mechanism of ion storage or detoxification. In metal-
deficient conditions, ions may be released back into the cellular environment [73]. Specific
protein intracellular transporters are involved in this movement of ions to organelles either
for storage or as cofactors for protein functioning [41,53] It is known that interference with
these systems causes a homeostatic imbalance, resulting in toxicity [41].

Regarding KEGG terms, we consider that the secondary metabolites pathway
(KEGG:01110) could be significantly enriched due to the pigments produced by F. kuroshium
(Figure 1). Meanwhile, the enrichment of the tryptophan biosynthetic pathway
(KEGG:00380) is consistent with Jo et al., who in 2017 [43], used microarrays and deletion
mutants to identify genes in Saccharomyces cerevisiae involved in the toxic response against
iron and copper. In that study, the changes in the expression of genes in the tryptophan
biosynthesis pathway were specific to the copper response, suggesting that at least in yeasts,
the mechanisms to deal with high concentrations of these two metals are specific for each of
them. The role of the tryptophan biosynthetic pathway in the overload of copper in yeasts
and some fungi such as F. kuroshium is still unknown. However, it has been suggested
that its involvement is associated with the metabolites produced during degradation in
the kynurenine pathway, which have antioxidant properties [74], or its radical-scavenging
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activity, as superoxide radicals are used as a cofactor to cleave the pyrrole ring in trypto-
phan [75]. Alternatively, it is also possible that tryptophan may be required as a critical
residue in specific proteins involved in the defense against copper toxicity [43].

Based on the expression profile of some DEGs, our data suggest that F. kuroshium coun-
teracts the toxicity caused by Cu-NPs through several mechanisms as shown in Figure 7,
including a significant decrease in the transcription of genes codifying both the reduc-
tase that reduces extracellular copper (Cu2+), and the low- and high-affinity membrane
transporters that shuttle the reduced copper (Cu+) to the cytoplasm. In addition, several
transporters in intracellular membrane-bounded organelles are also downregulated. These
results suggest that F. kuroshium tries to considerably reduce the shuttle of Cu+ to some
organelles as Golgi bodies and the mitochondria. In contrast, in toxic copper concentrations,
the overexpression of the CrpA transporter may occur as a defense mechanism to prolong
its life by exporting Cu+ from the cytoplasm to the extracellular space. The overexpression
of some metalloproteins and other proteins that use copper ions as cofactors (e.g., ferrox-
idases) can also be considered as copper storage or a detoxification mechanism because
these proteins bind free cytosolic ions, releasing them back into the cellular environment in
metal-deficient conditions [41,73].
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NPs treatments in F. kuroshium species. The membrane transporters and other proteins represented in
the cell are named based on its yeast (Saccharomyces cerevisiae) homologs.

Considering the expression profile (upregulated) of several genes whose coding pro-
teins form the endosomal sorting complex are required for transport (ESCRT), we suggest
that both F. kuroshium such as S. cerevisiae (and probably another eucaryotic organism),
employ this detoxification pathway in response to the copper overload [43]. No DEGs were
found for the retromer complex; this suggests that intracellular traffic of copper ions (or
proteins that bind it) may occur preferably in one way (from Golgi to vacuole). In addition,
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high levels of Aps3 suggest that the AP-3 complex (which, similar to ESCRT, also converges
toward the vacuole) is also involved in copper detoxification. It has been reported that
even when yeast molecular responses to iron and copper share some mechanisms, the AP-3
adapter complex in the alkaline phosphatase pathway is mainly involved in iron overload
resistance [41,43].

Particular concentrations of copper cytosolic ions also interfere with the redox balance
and increase the generation of reactive oxygen species [76]. High amounts of reactive
oxygen species (ROS) can induce autophagy, apoptosis, and cell death [77]. Other conse-
quences of free cytosolic Cu+ ions reduce ergosterol biosynthesis and increase tryptophan
synthesis. As mentioned above, it has been discussed that the participation of trypto-
phan in the response to copper-induced toxicity could be through antioxidant properties
of the metabolites produced during degradation in the kynurenine pathway, which has
radical-scavenging activity as a superoxide radical (a radical that contributes to oxidative
stress) [43,74,75]. The reduction in ergosterol biosynthesis decreases cell wall integrity,
increases cellular leakage and depolarization, and increases the occurrence of ROS [70]. We
found that the genes involved in chitin and b-glucans biosynthesis are upregulated. This
suggests that maybe F. kuroshium, faced with a constant block in the synthesis of ergosterol,
seeks to maintain the cell wall integrity by increasing the production of its other primary
components (e.g., chitin and β-glucans).

SEM micrographs (Figure 3) show a loss in cell wall integrity. Our analyses discussed
before can explain this phenomenon by observed changes in the transcript levels of the
genes involved in ergosterol biosynthesis. However, SEM micrographs also revealed that
macroconidia, such as hyphae, were severely damaged and can only be found at concentra-
tions as low as 0.1 mg/mL of Cu-NPs. This suggests that concentrations slightly higher
(≥0.25 mg/mL) not only inhibit F. kuroshium growth but also interfere in the formation
of asexual spores such as macroconidia. We cannot explain this observation in light of
the generated results; however, this effect of Cu-NPs treatments will be addressed in fu-
ture works. Together all these results suggest that the toxicity of Cu-NPs affects several
biological processes that compromise cell viability.

5. Conclusions

The presented work proves that using Cu-NPs could be considered as a highly efficient
alternative with better antifungal properties than other formulations commonly proposed
and commercially available fungicides such as cupric hydroxide. Molecular responses to
Cu-NPs treatments analyzed by RNA-seq suggest that F. kurhosium counteracts the toxicity
caused by free cytosolic copper ions through different mechanisms. These mechanisms
include avoiding copper reduction, internalization, and intracellular movement. For this
purpose, the amount of high- and low-affinity transporters and other specific transporters
decreases considerably. In addition, free copper cytosolic ions also decrease by binding to
copper-dependent proteins, which are strongly induced, including metallothionein. The
overexpression of other transporters exporting Cu+ from the cytoplasm to the extracellular
space is also essential in the detoxification process. These detoxification mechanisms seek
to maintain cell viability, which is ultimately compromised due to the loss of cell wall
integrity resulting from reduced ergosterol synthesis. Cytosolic leakage and depolarization
increase the occurrence of ROS, which induces autophagy, apoptosis, and cell death.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/jof8040347/s1, Table S1: Summary of Illumina sequencing, Table S2: Annotation of the
Fusarium kuroshium genes by homology-based inference, Table S3: Gene Ontology-based functional
characterization of the Fusarium kuroshium genes, Table S4: KOG terms inherited to Fusarium
kuroshium genes, Table S5: KEGG pathways inherited to Fusarium kuroshium genes, Table S6:
Expression profile matrix of Fusarium kuroshium genes, Table S7: Fusarium kuroshium differentially
expressed genes (DEGs) at 3 dai, Table S8: Fusarium kuroshium differentially expressed genes (DEGs)
at 6 dai, Table S9: Pearson’s correlation matrix, Table S10: Over-represented GO terms on the list
of Fusarium kuroshium DEGs (Gene Ontology enrichment analysis), Table S11: Common copper-
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responsive genes shared between yeast and Fusarium kuroshium, Table S12: Fusarium kuroshium
differentially expressed genes (DEGs) involved in ergosterol biosynthesis.
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