
Learning data-driven discretizations for partial
differential equations
Yohai Bar-Sinaia,1,2, Stephan Hoyerb,1,2, Jason Hickeyb, and Michael P. Brennera,b

aSchool of Engineering and Applied Sciences, Harvard University, Cambridge MA 02138; and bGoogle Research, Mountain View, CA 94043

Edited by John B. Bell, Lawrence Berkeley National Laboratory, Berkeley, CA, and approved June 21, 2019 (received for review August 14, 2018)

The numerical solution of partial differential equations (PDEs)
is challenging because of the need to resolve spatiotemporal
features over wide length- and timescales. Often, it is computa-
tionally intractable to resolve the finest features in the solution.
The only recourse is to use approximate coarse-grained repre-
sentations, which aim to accurately represent long-wavelength
dynamics while properly accounting for unresolved small-scale
physics. Deriving such coarse-grained equations is notoriously
difficult and often ad hoc. Here we introduce data-driven
discretization, a method for learning optimized approximations
to PDEs based on actual solutions to the known underlying
equations. Our approach uses neural networks to estimate spa-
tial derivatives, which are optimized end to end to best satisfy
the equations on a low-resolution grid. The resulting numeri-
cal methods are remarkably accurate, allowing us to integrate in
time a collection of nonlinear equations in 1 spatial dimension
at resolutions 4× to 8× coarser than is possible with standard
finite-difference methods.

coarse graining | machine learning | computational physics

Solutions of nonlinear partial differential equations can have
enormous complexity, with nontrivial structure over a large

range of length- and timescales. Developing effective theories
that integrate out short lengthscales and fast timescales is a
long-standing goal. As examples, geometric optics is an effec-
tive theory of Maxwell equations at scales much longer than
the wavelength of light (1); density functional theory models the
full many-body quantum wavefunction with a lower-dimensional
object—the electron density field (2); and the effective viscos-
ity of a turbulent fluid parameterizes how small-scale features
affect large-scale behavior (3). These models derive their coarse-
grained dynamics by more or less systematic integration of the
underlying governing equations (by using, respectively, WKB
theory, local density approximation, and a closure relation for the
Reynolds stress). The gains from coarse graining are, of course,
enormous. Conceptually, it allows a deep understanding of emer-
gent phenomena that would otherwise be masked by irrelevant
details. Practically, it allows computation of vastly larger systems.

Averaging out unresolved degrees of freedom invariably
replaces them by effective parameters that mimic typical behav-
ior. In other words, we identify the salient features of the dynam-
ics at short and fast scales and replace these with terms that
have a similar average effect on the long and slow scales. Deriv-
ing reliable effective equations is often challenging (4). Here we
approach this challenge from the perspective of statistical infer-
ence. The coarse-grained representation of the function contains
only partial information about it, since short scales are not mod-
eled. Deriving coarse-grained dynamics requires first inferring
the small-scale structure using the partial information (recon-
struction) and then incorporating its effect on the coarse-grained
field. We propose to perform reconstruction using machine-
learning algorithms, which have become extraordinarily efficient
at identifying and reconstructing recurrent patterns in data. Hav-
ing reconstructed the fine features, modeling their effect can
be done using our physical knowledge about the system. We
call our method data-driven discretization. It is qualitatively

different from coarse-graining techniques that are currently in
use: Instead of analyzing equations of motion to derive effec-
tive behavior, we directly learn from high-resolution solutions to
these equations.

Related Work
Several related approaches for computationally extracting effec-
tive dynamics have been previously introduced. Classic works
used neural networks for discretizing dynamical systems (5,
6). Similarly, equation-free modeling approximates coarse-scale
derivatives by remapping coarse initial conditions to fine scales
which are integrated exactly (7). The method has a similar spirit
to our approach, but it does not learn from fine-scale dynamics
and use the memorized statistics in subsequent times to reduce
the computational load. Recent works have applied machine
learning to partial differential equations (PDEs), either focus-
ing on speed (8–10) or recovering unknown dynamics (11, 12).
Models focused on speed often replace the slowest component
of a physical model with machine learning, e.g., the solution
of Poisson’s equation in incompressible fluid simulations (9),
subgrid cloud models in climate simulations (10), or building
reduced-order models that approximate dynamics in a lower-
dimensional space (8, 13, 14). These approaches are promising,
but learn higher-level components than our proposed method.
An important development is the ability to satisfy some physi-
cal constraints exactly by plugging learned models into a fixed
equation of motion. For example, valid fluid dynamics can be

Significance

In many physical systems, the governing equations are known
with high confidence, but direct numerical solution is pro-
hibitively expensive. Often this situation is alleviated by writ-
ing effective equations to approximate dynamics below the
grid scale. This process is often impossible to perform ana-
lytically and is often ad hoc. Here we propose data-driven
discretization, a method that uses machine learning to system-
atically derive discretizations for continuous physical systems.
On a series of model problems, data-driven discretization
gives accurate solutions with a dramatic drop in required
resolution.

Author contributions: Y.B.-S., S.H., J.H., and M.P.B. designed research; Y.B.-S. and S.H. per-
formed research; Y.B.-S. and S.H. analyzed data; and Y.B.-S., S.H., J.H., and M.P.B. wrote
the paper.y

The authors declare no conflict of interest.y

This article is a PNAS Direct Submission.y

This open access article is distributed under Creative Commons Attribution-NonCommercial-
NoDerivatives License 4.0 (CC BY-NC-ND).y

Data deposition: Source code is available on GitHub (https://github.com/google/data-
driven-discretization-1d).y
1 Y.B.-S. and S.H. contributed equally to this work.y
2 To whom correspondence may be addressed. Email: ybarsinai@gmail.com or shoyer@
google.com.y

This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10.
1073/pnas.1814058116/-/DCSupplemental.y

Published online July 16, 2019.

15344–15349 | PNAS | July 30, 2019 | vol. 116 | no. 31 www.pnas.org/cgi/doi/10.1073/pnas.1814058116

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/google/data-driven-discretization-1d
https://github.com/google/data-driven-discretization-1d
mailto:ybarsinai@gmail.com
mailto:shoyer@google.com
mailto:shoyer@google.com
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814058116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814058116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1814058116
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1814058116&domain=pdf

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

guaranteed by learning either velocity fields directly (12) or a vec-
tor potential for velocity in the case of incompressible dynamics
(8). Closely related to this work, neural networks can be used
to calculate closure conditions for coarse-grained turbulent flow
models (15, 16). However, these models rely on existing coarse-
grained schemes specific to turbulent flows and do not discretize
the equations directly. Finally, ref. 17 suggested discretizations
whose solutions can be analytically guaranteed to converge to
the center manifold of the governing equation, but not in a
data-driven manner.

Data-Driven Subgrid-Scale Modeling
Consider a generic PDE, describing the evolution of a continu-
ous field v(x , t),

∂v

∂t
=F

(
t , x , v ,

∂v

∂xi
,

∂v

∂xi∂xj
, · · ·

)
. [1]

Most PDEs in the exact sciences can be cast in this form,
including equations that describe hydrodynamics, electrodynam-
ics, chemical kinetics, and elasticity. A common algorithm to
numerically solve such equations is the method of lines (18):
Given a spatial discretization x1, . . . , xN , the field v(x , t) is
represented by its values at node points vi(t) = v(xi , t) (finite
differences) or by its averages over a grid cell, vi(t) = ∆x−1∫ xi+∆x/2

xi−∆x/2
v(x ′, t)dx ′ (finite volumes), where ∆x = xi − xi−1 is

the spatial resolution (19). The time evolution of vi can be
computed directly from Eq. 1 by approximating the spatial
derivatives at these points. There are various methods for this
approximation—polynomial expansion, spectral differentiation,
etc.—all yielding formulas resembling

∂nv

∂xn
≈
∑
i

α
(n)
i vi , [2]

where the α(n)
i are precomputed coefficients. For example, the 1-

dimensional (1D) finite-difference approximation for ∂v
∂x

to first-
order accuracy is ∂xv(xi) =

vi+1−vi
∆x

+O(∆x) .
Standard schemes use one set of precomputed coefficients for

all points in space, while more sophisticated methods alternate
between different sets of coefficients according to local rules (20,
21). This discretization transforms Eq. 1 into a set of coupled
ordinary differential equations of the form

∂vi
∂t

=F (t , x , v1, . . . , vN) [3]

that can be numerically integrated using standard techniques.
The accuracy of the solution to Eq. 3 depends on ∆x , converging
to a solution of Eq. 2 as ∆x→ 0. Qualitatively, accuracy requires
that ∆x is smaller than the spatial scale of the smallest feature
of the field v(x , t).

However, the scale of the smallest features is often orders of
magnitude smaller than the system size. High-performance com-
puting has been driven by the ever increasing need to accurately
resolve smaller-scale features in PDEs. Even with petascale com-
putational resources, the largest direct numerical simulation of
a turbulent fluid flow ever performed has Reynolds number of
order 1,000, using about 5× 1011 grid points (22–24). Simula-
tions at higher Reynolds number require replacing the physical
equations with effective equations that model the unresolved
physics. These equations are then discretized and solved numer-
ically, e.g., using the method of lines. This overall procedure
essentially modifies Eq. 2, by changing the αi to account for the
unresolved degrees of freedom, replacing the discrete equations
in Eq. 3 with a different set of discrete equations.

The main idea of this work is that unresolved physics can
instead be learned directly from data. Instead of deriving an
approximate coarse-grained continuum model and discretizing
it, we suggest directly learning low-resolution discrete mod-
els that encapsulate unresolved physics. Rigorous mathematical
work shows that the dimension of a solution manifold for a
nonlinear PDE is finite (25, 26) and that approximate parame-
terizations can be constructed (27–29). If we knew the solution
manifold, we could generate equation-specific approximations
for the spatial derivatives in Eq. 2, approximations that have
the potential to hold even when the system is underresolved.
In contrast to standard numerical methods, the coefficients α(n)

i

are equation dependent. Different regions in space (e.g., inside
and outside a shock) will use different coefficients. To discover
these formulas, we use machine learning: We first generate a
training set of high-resolution data and then learn the discrete
approximations to the derivatives in Eq. 2 from this dataset.
This produces a tradeoff in computational cost, which can be
alleviated by carrying out high-resolution simulations on small
systems to develop local approximations to the solution mani-
fold and using them to solve equations in much larger systems at
significantly reduced spatial resolution.

Burgers’ Equation. For concreteness, we demonstrate this ap-
proach with a specific example in 1 spatial dimension. Burg-
ers’ equation is a simple nonlinear equation which models fluid
dynamics in 1D and features shock formation. In its conservative
form, it is written as

∂v

∂t
+

∂

∂x
J

(
v ,
∂v

∂x

)
= f (x , t), J ≡ v2

2
− η ∂v

∂x
, [4]

where η > 0 is the viscosity and f (x , t) is an external forcing
term. J is the flux. Generically, solutions of Eq. 4 sponta-
neously develop sharp shocks, with specific relationships between
the shock height, width, and velocity (19) that define the local
structure of the solution manifold.

A B

C

Fig. 1. Polynomial vs. neural net-based interpolation. (A) Interpolation
between known points (blue diamonds) on a segment of a typical solution
of Burgers’ equation. Polynomial interpolation exhibits spurious “over-
shoots” in the vicinity of shock fronts. These errors compound when
integrated in time, such that a naive finite-difference method at this res-
olution quickly diverges. In contrast, the neural network interpolation is
so close to the exact solution that it cannot be visually distinguished. (B)
Histogram of exact vs. interpolated function values over our full validation
dataset. The neural network vastly reduces the number of poor predictions.
(C) Absolute error vs. local curvature. The thick line shows the median and
the shaded region shows the central 90% of the distribution over the vali-
dation set. The neural network makes much smaller errors in regions of high
curvature, which correspond to shocks.

Bar-Sinai et al. PNAS | July 30, 2019 | vol. 116 | no. 31 | 15345

With this in mind, consider a typical segment of a solu-
tion to Burgers’ equation (Fig. 1A). We want to compute the
time derivative of the field given a low-resolution set of points
(blue diamonds in Fig. 1). Standard finite-difference formulas
predict this time derivative by approximating v as a piecewise-
polynomial function passing through the given points (orange
curves in Fig. 1). But solutions to Burger’s equations are not
polynomials: They are shocks with characteristic properties. By
using this information, we can derive a more accurate, albeit
equation-specific, formula for the spatial derivatives. For the
method to work it should be possible to reconstruct the fine-
scale solution from low-resolution data. To this end, we ran many
simulations of Eq. 4 and used the resulting data to train a neu-
ral network. Fig. 1 compares the predictions of our neural net
(details below and in SI Appendix) to fourth-order polynomial
interpolation. This learned model is clearly far superior to the
polynomial approximation, demonstrating that the spatial res-
olution required for parameterizing the solution manifold can
be greatly reduced with equation-specific approximations rather
than finite differences.

Models for Time Integration
The natural question to ask next is whether such parameteri-
zations can be used for time integration. For this to work well,
integration in time must be numerically stable, and our models
need a strong generalization capacity: Even a single error could
throw off the solution for later times.

To achieve this, we use multilayer neural networks to parame-
terize the solution manifold, because of their flexibility, including
the ability to impose physical constraints and interpretability
through choice of model architecture. The high-level aspects of
the network’s design, which we believe are of general interest,
are described below. Additional technical details are described in
SI Appendix and source code is available online at https://github.
com/google/data-driven-discretization-1d.

Pseudolinear Representation. Our network represents spatial
derivatives with a generalized finite-difference formula simi-
lar to Eq. 2: The output of the network is a list of coeffi-
cients α1, . . . ,αN such that the nth derivative is expressed as a
pseudolinear filter, Eq. 2, where the coefficients α(n)

i (v1, v2, . . .)
depend on space and time through their dependence on the field
values in the neighboring cells. Finding the optimal coefficients
is the crux of our method.

The pseudolinear representation is a direct generalization of
the finite-difference scheme of Eq. 2. Moreover, exactly as in the
case of Eq. 2, a Taylor expansion allows us to guarantee formal
polynomial accuracy. That is, we can impose that approxima-
tion errors decay as O(∆xm) for some m ≤N −n , by layering
a fixed affine transformation (SI Appendix). We found the best
results when imposing linear accuracy, m = 1 with a 6-point sten-
cil (N = 6), which we used for all results shown here. Finally,
we note that this pseudolinear form is also a generalization of
the popular essentially nonoscillatory (ENO) and weighted ENO
(WENO) methods (20, 21), which choose a local linear filter
(or a combination of filters) from a precomputed list accord-
ing to an estimate of the solution’s local curvature. WENO is an
efficient, human-understandable, way of adaptively choosing fil-
ters, inspired by nonlinear approximation theory. We improve on
WENO by replacing heuristics with directly optimized quantities.

Physical Constraints. Since Burgers’ equation is an instance of
the continuity equation, as with traditional methods, a major
increase in stability is obtained when using a finite-volume
scheme, ensuring the coarse-grained solution satisfies the con-
servation law implied by the continuity equation. That is, coarse-
grained equations are derived for the cell averages of the field
v , rather than its nodal values (19). During training we pro-

vide the cell average to the network as the “true” value of the
discretized field.

Integrating Eq. 4, it is seen that the change rate of the cell
averages is completely determined by the fluxes at cell bound-
aries. This is an exact relation, in which the only challenge is
estimating the flux given the cell averages. Thus, prediction is
carried out in 3 steps: First, the network reconstructs the spatial
derivatives on the boundary between grid cells (staggered grid).
Then, the approximated derivatives are used to calculate the flux
J using the exact formula Eq. 4. Finally, the temporal derivative
of the cell averages is obtained by calculating the total change
at each cell by subtracting J at the cell’s left and right bound-
aries. The calculation of the time derivative from the flux can also
be done using traditional techniques that promote stability, such
as monotone numerical fluxes (19). For some experiments, we
use Godunov flux, inspired by finite-volume ENO schemes (20,
21), but it did not improve predictions for our neural networks
models.

Dividing the inference procedure into these steps is favor-
able in a few aspects: First, it allows us to constrain the model
at the various stages using traditional techniques; the conserva-
tive constraint, numerical flux, and formal polynomial accuracy
constraints are what we use here, but other constraints are also
conceivable. Second, this scheme limits the machine-learning
part to reconstructing the unknown solution at cell boundaries,
which is the main conceptual challenge, while the rest of the
scheme follows either the exact dynamics or traditional approx-
imations for them. Third, it makes the trained model more
interpretable since the intermediate outputs (e.g., J or αi) have
clear physical meaning. Finally, these physical constraints con-
tribute to more accurate and stable models, as detailed in the
ablation study in SI Appendix.

Choice of Loss. The loss of a neural net is the objective function
minimized during training. Rather than optimizing the predic-
tion accuracy of the spatial derivatives, we optimize the accuracy
of the resulting time derivative*. This allows us to incorpo-
rate physical constraints in the training procedure and directly
optimize the final predictions rather than intermediate stages.
Our loss is the mean-squared error between the predicted time
derivative and labeled data produced by coarse graining the fully
resolved simulations.

Note that a low value of our training loss is a necessary but not
sufficient condition for accurate and stable numerical integration
over time. Many models with low training loss exhibited poor
stability when numerically integrated (e.g., without the conserva-
tive constraint), particularly for equations with low dissipation.
From a machine-learning perspective, this is unsurprising: Imita-
tion learning approaches, such as our models, often exhibit such
issues because the distribution of inputs produced by the model’s
own predictions can differ from the training data (30). Incor-
porating the time-integrated solution into the loss improved
predictions in some cases (as in ref. 9), but did not guarantee sta-
bility, and could cause the training procedure itself to diverge due
to decreased stability in calculating the loss. Stability for learned
numerical methods remains an important area of exploration for
future work.

Learned Coefficients. We consider 2 different parameterizations
for learned coefficients. In our first parameterization, we learn
optimized time- and space-independent coefficients. These fixed

*For one specific case, namely the constant-coefficient model of Burgers’ equation
with Godunov flux limiting, trained models showed poor performance (e.g., not
monotonically increasing with resample factor) unless the loss explicitly included the
time-integrated solution, as done in ref. 9. Results shown in Figs. 3 and 4 use this loss
for the constant-coefficient models with Burgers’ equation. See details in SI Appendix.

15346 | www.pnas.org/cgi/doi/10.1073/pnas.1814058116 Bar-Sinai et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814058116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814058116/-/DCSupplemental
https://github.com/google/data-driven-discretization-1d
https://github.com/google/data-driven-discretization-1d
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814058116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814058116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814058116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1814058116

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

coefficients minimize the loss when averaged over the whole
training set for a particular equation, without allowing the
scheme to adapt the coefficients according to local features of the
solution. Below, we refer to these as “optimized constant coeffi-
cients.” In our second parameterization, we allow the coefficients
to be an arbitrary function of the neighboring field values {vi},
implemented as a fully convolutional neural network (31). We
use the exact same architecture (3 layers, each with 32 filters,
kernel size of 5, and ReLU nonlinearity) for coarse graining all
equations discussed in this work.

Example coefficients predicted by our trained models are
shown in Fig. 2 and SI Appendix, Fig. S3. Both the optimized
constant and data-dependent coefficients differ from baseline
polynomial schemes, particularly in the vicinity of the shock. The
neural network solutions are particularly interesting: They do not
appear to be using 1-sided stencils near the shock, in contrast to
traditional numerical methods such as WENO (21) which avoid
placing large weights across discontinuities.

The output coefficients can also be interpreted physically. For
example, coefficients for both ∂v/∂x (Fig. 2 B, Inset) and v (SI
Appendix, Fig. S3C) are either right or left biased, opposite the
sign of v . This is in line with our physical intuition: Burgers’
equation describes fluid flow, and the sign of v corresponds to
the direction of flow. Coefficients that are biased in the oppo-
site direction of v essentially look “upwind,” a standard strategy
in traditional numerical methods for solving hyperbolic PDEs
(19), which helps constrain the scheme from violating tempo-
ral causality. Alternatively, upwinding could be built into the
model structure by construction, as we do in models which use
Godunov flux.

Results
Burgers’ Equation. To assess the accuracy of the time integration
from our coarse-grained model, we computed “exact” solutions

A B

Fig. 2. Learned finite-volume coefficients for Burgers’ equation. Shown are
fixed and spatiotemporally varying finite-volume coefficients α(1)

1 , . . . ,α(1)
6

(Eq. 2) for ∂v/∂x. (A) Various centered and 1-sided polynomial finite-
volume coefficients, along with optimized constant coefficients trained on
this dataset (16× resample factor in Fig. 3). The vertical scale, which is
the same for all coefficient plots, is not shown for clarity. (B) An exam-
ple temporal snapshot of a solution to Burgers’ equation (Eq. 4), along
with data-dependent coefficients produced by our neural network model at
each of the indicated positions on cell boundaries. The continuous solution
is plotted as a dashed line, and the discrete cell-averaged representation
is plotted as a piecewise constant solid line. The optimized constant coef-
ficients are most similar to the neural network’s coefficients at the shock
position. Away from the shock, the solution resembles centered polynomial
coefficients. (B, Inset) Relative probability density for neural network coeffi-
cient “center of mass” vs. field value v across our full test dataset. Center of
mass is calculated by averaging the positions of each element in the stencil,
weighted by the absolute value of the coefficient.

to Eq. 4 for different realizations of f (x , t) at high enough reso-
lution to ensure mesh convergence. These realizations of f were
drawn from the same distribution as those used for training, but
were not in the training set. Then, for the same realization of the
forcing we solved the equation at a lower, possibly underresolved
resolution using 4 different methods for calculating the flux: 1)
A standard finite-volume scheme with either first-order or third-
order accuracy; 2) a fifth-order upwind-biased WENO scheme
with Godunov flux (21); 3) spatial derivatives estimated by con-
stant optimized coefficients, with and without Godunov flux; and
4) spatial derivatives estimated by the space- and time-dependent
coefficients, computed with a neural net.

Results are shown in Fig. 3. Fig. 3A compares the integra-
tion results for a particular realization of the forcing for different
values of the resample factor, that is, the ratio between the num-
ber of grid points in the low-resolution calculation and that of
the fully converged solution† . Our learned models, with both
constant and solution-dependent coefficients, can propagate
the solution in time and dramatically outperform the baseline
method at low resolution. Importantly, the ringing effect around
the shocks, which leads to numerical instabilities, is practically
eliminated.

Since our model is trained on fully resolved simulations, a cru-
cial requirement for our method to be of practical use is that
training can be done on small systems, but still produce models
that perform well on larger ones. We expect this to be the case,
since our models, being based on convolutional neural networks,
use only local features and by construction are translation invari-
ant. Fig. 3B illustrates the performance of our model trained on
the domain [0, 2π] for predictions on a 10-times larger spatial
domain of size [0, 20π]. The learned model generalizes well. For
example, it shows good performance when function values are
all positive in a region of size greater than 2π, which due to the
conservation law cannot occur in the training dataset.

To make this assessment quantitative, we averaged over many
realizations of the forcing and calculated the mean absolute error
integrated over time and space. Results on the 10-times larger
inference domain are shown in Fig. 3C: The solution from the
full neural network has equivalent accuracy to increasing the res-
olution for the baseline by a factor of about 8×. Interestingly,
even the simpler constant-coefficient method significantly out-
performs the baseline scheme. The constant-coefficient model
with Godunov flux is particularly compelling. This model is
faster than WENO, because there is no need to calculate coeffi-
cients on the fly, with comparable accuracy and better numerical
stability at coarse resolution, as shown in Figs. 3A and 4.

These calculations demonstrate that neural networks can carry
out coarse graining. Even if the mesh spacing is much larger
than the shock width, the model is still able to accurately propa-
gate dynamics over time, showing that it has learned an internal
representation of the shock structure.

Other Examples. To demonstrate the robustness of this method,
we repeated the procedure for 2 other canonical PDEs: The
Korteweg–de Vries (KdV) equation (32), which was first derived
to model solitary waves on a river bore and is known for being
completely integrable and to feature soliton solutions, and the
Kuramoto–Sivashinsky (KS) equation which models flame fronts
and is a textbook example of a classically chaotic PDE (33).
All details about these equations are given in SI Appendix. We
repeated the training procedure outlined above for these equa-
tions, running high-resolution simulations and collecting data to

†Physically, the natural measure of the spatial resolution is with respect to the internal
lengthscale of the equation which in the case of Burgers’ equation is the typical shock
width. However, since this analysis is meant to be applicable also to situations where
the internal lengthscale is a priori unknown, we compare here to the lengthscale at
which mesh convergence is obtained.

Bar-Sinai et al. PNAS | July 30, 2019 | vol. 116 | no. 31 | 15347

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814058116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814058116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814058116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814058116/-/DCSupplemental

A

C

B

Fig. 3. Time integration results for Burgers’ equation. (A) A particular
realization of a solution at varying resolution solved by the baseline first-
order finite-volume method, WENO, optimized constant coefficients with
Godunov flux (Opt. God.), and the neural network (NN), with the white
region indicating times when the solution diverged. Both learned methods
manifestly outperform the baseline method and even outperform WENO
at coarse resolutions. (B) Inference predictions for the 32× neural network
model, on a 10 times larger spatial domain (only partially shown). The box
surrounded by the dashed line shows the spatial domain used for train-
ing. (C) Mean absolute error between integrated solutions and the ground
truth, averaged over space, times less than 15, and 10 forcing realizations on
the 10-times larger inference domain. These metrics almost exactly match
results on the smaller training domain [0, 2π] (SI Appendix, Fig. S8). As
ground truth, we use WENO simulations on a 1× grid. Markers are omit-
ted if some simulations diverged or if the average error is worse than
fixing v = 0.

train equation-specific estimators of the spatial derivative based
on a coarse grid. These equations are essentially nondissipative,
so we do not include a forcing term. The solution manifold is
explored by changing the initial conditions, which are taken to
be a superposition of long-wavelength sinusoidal functions with
random amplitudes and phases (see SI Appendix for details).

To assess the accuracy of the integrated solution, for each
initial condition we define “valid simulation time” as the first
time that the low-resolution integrated solution deviates from
the cell-averaged high-resolution solution by more than a given
threshold. We found this metric more informative to compare
across very different equations than absolute error.

Fig. 4 shows the median valid simulation time as a function of
the resample factor. For all equations and resolutions, our neu-
ral network models have comparable or better performance than
all other methods. The neural network is particularly advanta-
geous at low resolutions, demonstrating its improved ability to
solve coarse-grained dynamics. The optimized constant coeffi-
cients perform better at coarse resolution than baseline methods,
but not always at high resolutions. Finally, at large enough
resample factors the neural network approximations also fail to
reproduce the dynamics, as expected. These results also hold
on a 10-times larger spatial domain, as shown in SI Appendix,
along with figures illustrating specific realizations and mean
absolute error (SI Appendix, Figs. S8 and S9).

Discussion and Conclusion
It has long been remarked that even simple nonlinear PDEs
can generate solutions of great complexity. But even very com-
plex, possibly chaotic, solutions are not just arbitrary functions:
They are highly constrained by the equations they solve. In
mathematical terms, despite the fact that the solution set of a
PDE is nominally infinite dimensional, the inertial manifold of
solutions is much smaller and can be understood in terms of
interactions between local features of the solutions to nonlinear
PDEs. The dynamical rules for interactions between these fea-
tures have been well studied over the past 50 years. Examples
include, among many others, interactions of shocks in complex
media, interactions of solitons (32), and the turbulent energy
cascade (34).

Machine learning offers a different approach for modeling
these phenomena, by using training data to parameterize the
inertial manifold itself; said differently, it learns both the fea-
tures and their interactions from experience of the solutions.
Here we propose a simple algorithm for achieving this, moti-
vated by coarse graining in physical systems. It is often the case
that coarse graining a PDE amounts to modifying the weights in
a discretized numerical scheme. Instead, we use known solutions
to learn these weights directly, generating data-driven discretiza-
tions. This effectively parameterizes the solution manifold of the
PDE, allowing the equation to be solved at high accuracy with an
unprecedented low resolution.

Faced with this success, it is tempting to try and leverage the
understanding the neural network has developed to gain new
insights about the equation or its coarse-grained representation.
Indeed, in Fig. 2 we could clearly interpret the directionality of
the weights as an upwind bias, the pseudolinear representation
providing a clear interpretation of the prediction in a physically
sensible way. However, extracting more abstract insight from the
network, such as the scaling relation between the shock height
and width, is a difficult challenge. This is a general problem in
the field of machine learning, which is under intensive current
research (35, 36).

Our results are promising, but 2 challenges remain before
our approach can be deployed at large scales. The first chal-
lenge is speed. We showed that optimized constant coefficients
can already improve accuracy, but our best models rely on the
flexibility of neural networks. Unfortunately, our neural nets
use many more convolution operations than the single convo-
lution required to implement finite differences, e.g., 322 = 1,024

Fig. 4. Model performance across all of our test equations. Each plot shows
the median time for which an integrated solution remains “valid” for each
equation, defined by the absolute error on at least 80% of grid points being
less than the 20th percentile of the absolute error from predicting all 0s.
These thresholds were chosen so that valid corresponds to a relatively gener-
ous definition of an approximately correct solution. Error bars show the 95%
confidence interval for the median across 100 simulations for each equation,
determined by bootstrap resampling. Simulations for each equation were
run out to a maximum of time of 100.

15348 | www.pnas.org/cgi/doi/10.1073/pnas.1814058116 Bar-Sinai et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814058116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814058116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814058116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1814058116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1814058116

A
PP

LI
ED

M
A

TH
EM

A
TI

CS

convolutions with a 5-point stencil between our second and third
layers. We suspect that other machine-learning approaches could
be dramatically faster. For example, recent work on a related
problem—inferring subpixel resolution from natural images—
has shown that banks of pretrained linear filters can nearly match
the accuracy of neural nets with orders of magnitude better
performance (37, 38). The basic idea is to divide input images
into local patches, classify patches into classes based on fixed
properties (e.g., curvature and orientation), and learn a single
optimal linear filter for each class. Such computational archi-
tectures would also facilitate extracting physical insights from
trained filters.

A second challenge is scaling to higher-dimensional problems
and more complex grids. Here we showcased the approach for
regular grids in 1D, but most problems in the real world are
higher dimensional, and irregular and adaptive grids are com-
mon. We do expect larger potential gains in 2D and 3D, as
the computational gain in terms of the number of grid points

would scale like the square or the cube of the resample fac-
tor. Irregular grids may be more challenging, but deep learning
methods that respect appropriate invariants have been devel-
oped both for arbitrary graphs (39) and for collections of points
in 3D space (40). Similar to what we found here, we expect
that hand-tuned heuristics for both gridding and grid coeffi-
cients could be improved upon by systematic machine learning.
More broadly, data-driven discretization suggests the poten-
tial of data-driven numerical methods, combining the optimized
approximations of machine learning with the generalization of
physical laws.

ACKNOWLEDGMENTS. We thank Peyman Milanfar, Pascal Getreur,
Ignacio Garcia Dorado, and Dmitrii Kochkov for collaboration and impor-
tant conversations; Peter Norgaard and Geoff Davis for feedback on drafts
of the manuscript; and Chi-Wang Shu for guidance on the implementation
of WENO. Y.B.-S. acknowledges support from the James S. McDonnel post-
doctoral fellowship for the study of complex systems. M.P.B. acknowledges
support from NSF Grants DMS-1715477, ONR N00014-17-1-3029, as well as
the Simons Foundation.

1. J. D. Jackson, Classical Electrodynamics (John Wiley & Sons, 1999).
2. D. Sholl, J. A. Steckel, Density Functional Theory: A Practical Introduction (Wiley &

Sons, 2011).
3. C. J. Chen, Fundamentals of Turbulence Modelling (CRC Press, 1997).
4. M. Van Dyke, Perturbation methods in fluid mechanics (NASA STI/Recon Technical

Report A 75, 1975).
5. R. Gonzalez-Garcia, R. Rico-Martinez, I. Kevrekidis, Identification of distributed

parameter systems: A neural net based approach. Comput. Chem. Eng. 22, S965–S968
(1998).

6. R. Rico-Martinez, I. Kevrekidis, K. Krischer, “Nonlinear system identification using
neural networks: Dynamics and instabilities” in Neural Networks for Chemical
Engineers, A. B. Bulsari, Ed. (Elsevier, Amsterdam, The Netherlands, 1995), pp.
409–442.

7. I. G. Kevrekidis, G. Samaey, Equation-free multiscale computation: Algorithms and
applications. Annu. Rev. Phys. Chem. 60, 321–344 (2009).

8. B. Kim et al., Deep fluids: A generative network for parameterized fluid simulations.
Computer Graphics Forum 38, 59–70 (2019).

9. J. Tompson, K. Schlachter, P. Sprechmann, K. Perlin, “Accelerating Eulerian fluid
simulation with convolutional networks” in Proceedings of the 34th International
Conference on Machine Learning, D. Precup, Y. W. Teh, eds. (PMLR, 2017), vol. 70, pp.
3424–3433.

10. S. Rasp, M. S. Pritchard, P. Gentine, Deep learning to represent subgrid processes in
climate models. Proc. Natl. Acad. Sci. U.S.A. 115, 9684–9689 (2018).

11. S. L. Brunton, J. L. Proctor, J. N. Kutz, Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. U.S.A. 113,
3932–3937 (2016).

12. E. de Bezenac, A. Pajot, P. Gallinari, “Deep learning for physical processes: Incorpo-
rating prior scientific knowledge” in International Conference on Learning Repre-
sentations (2018). https://iclr.cc/Conferences/2018/Schedule?showEvent=40. Accessed
11 July 2019.

13. B. Lusch, J. N. Kutz, S. L. Brunton, Deep learning for universal linear embeddings of
nonlinear dynamics. Nat. Commun. 9, 4950 (2018).

14. J. Morton, F. D. Witherden, A. Jameson, M. J. Kochenderfer, “Deep dynamical model-
ing and control of unsteady fluid flows” in Advances in Neural Information Processing
Systems, S. Bengio et al., Eds. (Curran Associates, Inc., 2018), vol. 31, pp. 9258–9268.

15. J. Ling, A. Kurzawski, J. Templeton, Reynolds averaged turbulence modelling using
deep neural networks with embedded invariance. J. Fluid Mech. 807, 155–166
(2016).

16. A. D. Beck, D. G. Flad, C. D. Munz, Deep neural networks for data-driven turbulence
models. arXiv:1806.04482 (15 June 2018).

17. A. Roberts, Holistic discretization ensures fidelity to Burgers’ equation. Appl. Numer.
Math. 37, 371–396 (2001).

18. W. E. Schiesser, The Numerical Method of Lines: Integration of Partial Differential
Equations (Academic Press, San Diego, 1991).

19. R. J. LeVeque, Numerical Methods for Conservation Laws (Birkhauser Verlag, 1992).
20. A. Harten, B. Engquist, S. Osher, S. R. Chakravarthy, Uniformly high order accurate

essentially non-oscillatory schemes, III. J. Comput. Phys. 71, 231–303 (1987).
21. C. W. Shu, “Essentially non-oscillatory and weighted essentially non-oscillatory

schemes for hyperbolic conservation laws” in Advanced Numerical Approximation
of Nonlinear Hyperbolic Equations, A. Quarteroni, Ed. (Springer, 1998), pp. 325–432.

22. M. Lee, R. D. Moser, Direct numerical simulation of turbulent channel flow up to
Reτ ≈ 5200. J. Fluid Mech. 774, 395–415 (2015).

23. M. Clay, D. Buaria, T. Gotoh, P. Yeung, A dual communicator and dual grid-resolution
algorithm for petascale simulations of turbulent mixing at high Schmidt number.
Comput. Phys. Commun. 219, 313–328 (2017).

24. K. P. Iyer, K. R. Sreenivasan, P. K. Yeung, Reynolds number scaling of velocity
increments in isotropic turbulence. Phys. Rev. E 95, 021101 (2017).

25. P. Constantin, C. Foias, B. Nicolaenko, R. Temam, Integral Manifolds and Inertial Mani-
folds for Dissipative Partial Differential Equations (Springer Science & Business Media,
2012), vol. 70.

26. C. Foias, G. R. Sell, R. Temam, Inertial manifolds for nonlinear evolutionary equations.
J. Differ. Equations 73, 309–353 (1988).

27. M. Jolly, I. Kevrekidis, E. Titi, Approximate inertial manifolds for the Kuramoto-
Sivashinsky equation: Analysis and computations. Physica D Nonlinear Phenom. 44,
38–60 (1990).

28. E. S. Titi, On approximate inertial manifolds to the Navier-Stokes equations. J. Math.
Anal. Appl. 149, 540–557 (1990).

29. M. Marion, Approximate inertial manifolds for reaction-diffusion equations in high
space dimension. J. Dyn. Differ. Equations 1, 245–267 (1989).

30. S. Ross, D. Bagnell, “Efficient reductions for imitation learning” in Proceedings of
the 13th International Conference on Artificial Intelligence and Statistics, Y. W. Teh,
M. Titterington, eds. (PMLR, Chia Laguna Resort, Sardinia, Italy, 2010), vol. 9, pp.
661–668.

31. I. Goodfellow, Y. Bengio, A. Courville, Y. Bengio, Deep Learning (MIT Press,
Cambridge, MA, 2016).

32. N. J. Zabusky, M. D. Kruskal, Interaction of ”solitons” in a collisionless plasma and the
recurrence of initial states. Phys. Rev. Lett. 15, 240–243 (1965).

33. D. Zwillinger, Handbook of Differential Equations (Gulf Professional Publishing,
1998).

34. U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cambridge University Press,
1996).

35. M. Sundararajan, A. Taly, Q. Yan, “Axiomatic attribution for deep networks,” in
Proceedings of the 34th International Conference on Machine Learning (ICML),
D. Precup, Y. W. Teh, Eds. (PMLR, 2017), vol. 70, pp. 3319–3328.

36. A. Shrikumar, P. Greenside, A. Kundaje, “Learning important features through prop-
agating activation differences” in Proceedings of the 34th International Conference
on Machine Learning (ICML), D. Precup, Y. W. Teh, Eds. (PMLR, 2017), vol. 70, pp.
3145–3153.

37. Y. Romano, J. Isidoro, P. Milanfar, RAISR: Rapid and accurate image super resolution.
IEEE Trans. Comput. Imaging 3, 110–125 (2017).

38. P. Getreuer et al., “BLADE: Filter learning for general purpose computational photog-
raphy” in 2018 IEEE International Conference on Computational Photography (ICCP)
(IEEE, 2018).

39. J. Gilmer, S. S. Schoenholz, P. F. Riley, O. Vinyals, G. E. Dahl, “Neural message pass-
ing for quantum chemistry” in Proceedings of the 34th International Conference
on Machine Learning (ICML), D. Precup, Y. W. Teh, Eds. (PMLR, 2017), vol. 70, pp.
1263–1272.

40. C. R. Qi, L. Yi, H. Su, L. J. Guibas, “Pointnet++: Deep hierarchical feature learning on
point sets in a metric space” in Advances in Neural Information Processing Systems,
I. Guyon et al., Eds. (Curran Associates, Inc., 2017), vol. 30.

Bar-Sinai et al. PNAS | July 30, 2019 | vol. 116 | no. 31 | 15349

https://iclr.cc/Conferences/2018/Schedule?showEvent=40

