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Abstract	19 

Due to highly personalized biological and lifestyle characteristics, different individuals may 20 
have different metabolic responses to specific foods and nutrients. In particular, the gut 21 
microbiota, a collection of trillions of microorganisms living in our gastrointestinal tract, is highly 22 
personalized and plays a key role in our metabolic responses to foods and nutrients. Accurately 23 
predicting metabolic responses to dietary interventions based on individuals’ gut microbial 24 
compositions holds great promise for precision nutrition. Existing prediction methods are 25 
typically limited to traditional machine learning models. Deep learning methods dedicated to 26 
such tasks are still lacking. Here we develop a new method McMLP (Metabolic response 27 
predictor using coupled Multilayer Perceptrons) to fill in this gap. We provide clear evidence 28 
that McMLP outperforms existing methods on both synthetic data generated by the microbial 29 
consumer-resource model and real data obtained from six dietary intervention studies. 30 
Furthermore, we perform sensitivity analysis of McMLP to infer the tripartite food-microbe-31 
metabolite interactions, which are then validated using the ground-truth (or literature evidence) 32 
for synthetic (or real) data, respectively. The presented tool has the potential to inform the 33 
design of microbiota-based personalized dietary strategies to achieve precision nutrition.  34 
  35 
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Introduction	36 

Precision nutrition aims to provide personalized dietary recommendations based on an 37 
individual’s unique biological and lifestyle characteristics such as genetics, gut microbiota, 38 
metabolomic profiles, and anthropometric data1,2. In addition to the design and implementation 39 
of large-scale clinical studies, one of the critical components for achieving precision nutrition is 40 
the development of predictive models that incorporate diverse individual data types to achieve 41 
an accurate prediction of metabolomic profiles following dietary changes1–3. However, existing 42 
models are limited to traditional machine learning methods such as Random Forest (RF)4,5 and 43 
Gradient-Boosting Regressor (GBR)3. Deep learning techniques have not been leveraged to 44 
predict metabolic responses for precision nutrition. 45 

Among the biological characteristics relevant for precision nutrition, the gut microbiota 46 
is an important factor that explains a large fraction of individual metabolic responses among 47 
populations4–7. Indeed, the human gut microbiota produces many metabolites through the 48 
microbial metabolism of nondigested food components such as dietary fibers, which are 49 
prevalent in grains, vegetables and fruits8. Increasingly, microbial metabolites have been 50 
shown to  impact host health9–13. For example, short-chain fatty acids (SCFAs) are metabolites 51 
produced by intestinal microbes through anaerobic fermentation of indigestible 52 
polysaccharides such as dietary fiber and resistant starch9,10. SCFA concentrations have been 53 
linked to the regulation of immune cell function , gut-brain communication16, and cardiovascular 54 
diseases17,18. Among the SCFAs, butyrate has been shown to be negatively correlated with 55 
pro-inflammatory cytokines19,20. Hence, a high level of butyrate from the gut microbiota is 56 
believed to be beneficial due to its anti-inflammatory effects19–21. Boosting the levels of health-57 
beneficial metabolites by modulating the gut microbiota appears to be a promising approach 58 
to improve host health22–24. 59 

One possible way to modulate the gut microbiota is through dietary interventions6. Gut 60 
microbial composition is affected by the diet6,25–28. As a result, microbiota-targeted dietary 61 
interventions have been proposed to modulate the gut microbiota to increase the production of 62 
metabolites beneficial to the host29–31. Recently, there has been a growing trend to exploit the 63 
tripartite relationship between food/nutrition, gut microbiota, and microbiota-derived 64 
metabolites to provide better dietary advice for each individual3–5,28–32. Indeed, accurate 65 
prediction of personalized metabolic responses to foods and nutrients based on our gut 66 
microbiota holds great promise for precision nutrition33. 67 
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 Many dietary intervention studies have attempted to investigate the relationship 68 
between diet and microbial metabolism of the gut microbiota27,28,32,34. However, most of these 69 
studies only analyzed correlations between dietary treatments, microbes or metabolites. A few 70 
studies have used different analytic approaches to predict postprandial metabolic responses 71 
of markers such as blood glucose3,4 and immune markers4,34. However, the personalized 72 
prediction of how important markers such as SCFAs and bile acids respond to long-term 73 
dietary interventions is under-investigated (Fig. 1). 74 

Herein, we leveraged data from randomized, controlled dietary intervention 75 
studies27,28,35–38 and developed a deep-learning method: Metabolic response predictor using 76 
coupled Multilayer Perceptrons (McMLP) to predict post-dietary intervention metabolite 77 
concentrations based on pre-dietary intervention microbial composition. We first proposed a 78 
microbial consumer-resource model with cross-feeding interactions to simulate the dietary 79 
intervention process and generate synthetic data to validate McMLP.  We found that McMLP 80 
outperforms existing methods (RF and GBR), especially when the training sample size is small. 81 
We then applied all methods to real data from six dietary intervention studies27,28,35–38, finding 82 
that the predictive power of McMLP is higher than existing methods. Finally, based on the well-83 
trained McMLP, we performed sensitivity analysis to infer the tripartite food-microbe-metabolite 84 
relationship. This helps us identify key microbes that serve as both strong consumers of the 85 
intervened food and strong producers of the beneficial metabolite we would like to boost. We 86 
presented some literature evidence that supports the tripartite food-microbe-metabolite 87 
relationship inferred by McMLP. 88 
 89 

Results	90 

Overview	of	McMLP	91 

Our aim is to predict the post-dietary intervention (or “endpoint”) metabolite concentrations in 92 
fecal or blood samples based on the pre-dietary intervention (or “baseline”) microbial 93 
composition, metabolome data, and the dietary intervention strategy. This is conceptually 94 
different from existing studies on the inference of metabolomic profiles from microbial 95 
compositions measured at the same time39–42. We hypothesized that in order to accurately 96 
predict post-dietary intervention metabolomic profiles, we first need to capture how microbial 97 
composition changes from the baseline to the endpoint. This is because metabolomic profiles 98 
reflect the microbial metabolism of a community7,43.  99 
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To test our hypothesis, we proposed McMLP, which consists of two steps : (step-1) use 100 
the baseline microbiota and metabolome data and the dietary intervention strategy to predict 101 
the endpoint microbial composition; and (step-2) use the predicted endpoint microbial 102 
composition, the baseline metabolome data, and the dietary intervention strategy to predict the 103 
endpoint metabolomic profile (Fig. 2a; Supplementary Fig. 1a). For each step, we used a 104 
multilayer perceptron (MLP) with Rectified Linear Unit (ReLu) as the activation function to 105 
perform the prediction. We emphasize that, in principle, one can just use one MLP to directly 106 
predict endpoint metabolomic profiles based on baseline microbiota/metabolome data and the 107 
dietary intervention strategy (Supplementary Fig. 1b). Later, we confirmed that this one-step 108 
strategy has worse predictive power than our two-step strategy. 109 

From a practical standpoint, our goal is to predict an individual’s metabolic response to 110 
a potential dietary intervention to facilitate precision nutrition. To achieve this goal, we feed the 111 
baseline microbiota and metabolome profiles of this individual and the potential dietary 112 
intervention strategy to a well-trained McMLP to predict the endpoint metabolome profile. Note 113 
that in this application (or test) stage, because the dietary intervention is a thought experiment, 114 
no real endpoint data is available. The first MLP in McMLP will predict the endpoint microbiota 115 
profile, which will be fed into the second MLP to predict the endpoint metabolome profile.  116 

During the training stage of McMLP, we need to collect not only baseline microbiota 117 
and metabolome profiles of different individuals, but also perform dietary interventions to collect 118 
actual endpoint microbiota and metabolome profiles. We emphasize that the actual endpoint 119 
microbiota data will only be used to train the first MLP (Fig. 2b). It shall not be used to train the 120 
second MLP. This is because we need to keep the consistency between the training and 121 
application (or test) stages. After all, during the application stage, it is the predicted endpoint 122 
microbiome profile that will be fed into the second MLP, and the actual endpoint microbiome 123 
profile does not exist at all.  124 

Instead of fine-tuning hyperparameters such as the number of layers "! and the hidden 125 
layer dimension "" for MLP, we overparameterized MLP by using a large and fixed number of 126 
layers "!  and hidden layer dimension ""  ("! = 6  and "" = 2048 ). The overparameterized 127 
machine learning methods, especially deep learning models, yield better performance due to 128 
their high capacity (i.e., more model parameters). In fact, the high-capacity models can be even 129 
simpler due to smoother function approximation and thus less likely to overfit44.  130 

To illustrate the prediction task, we used a hypothetical example comprising "#(= 5) 131 
microbial species, "$(= 3) dietary resources being intervened, "%(= 6) metabolites, and 7 132 
samples (Fig. 2b,c). We will use both the baseline data and the dietary intervention strategy as 133 
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inputs for McMLP (Fig. 2a). 5 samples are used as the training set (Fig. 2b) and the remaining 134 
2 samples form the test set (Fig. 2c). To evaluate the regression performance, we employed 135 
three metrics based on the Spearman correlation coefficient (SCC) - between the predicted 136 
and true values of the concentration of one metabolite across all samples: (1)  -̅: the mean 137 
SCC, (2) /&'(.*: the fraction of metabolites with - greater than 0.5, and (3) -̅*: the mean SCC 138 

of the top-5 best-predicted metabolites.  139 
 140 

McMLP	generates	superior	performance	over	existing	methods	on	synthetic	data	141 

To validate the predictive power of McMLP, we applied it to synthetic data generated from the 142 
Microbial Consumer-Resource Model (MiCRM) which considers microbial interactions through 143 
both nutrient competition and metabolic cross-feeding45. We adapted MiCRM to simulate the 144 
dietary intervention. For simplicity, we considered 20 food resources, 20 microbes, and 20 145 
metabolites in the modeling. Also, we assumed that food resources can only be consumed 146 
while metabolites can be either consumed or produced. Prior to the dietary intervention, one 147 
food resource (referred to as “food resource #1”) was not introduced, while the remaining 19 148 
food resources were supplied. Dietary intervention was simulated by adding food resource #1 149 
at a specific “dose” to microbial communities composed of surviving species before the dietary 150 
intervention and calculating the new ecological steady state. Here, the “dose” is defined as the 151 
ratio between the concentration of the intervened food resource and that of other food 152 
resources.  We split the synthetic data (with 250 samples) with 80/20 ratio five times to 153 
generate five train-test pairs that can be used to reflect the variation in predictive performance. 154 
Details on model simulation and synthetic data generation can be found in the Supplementary 155 
Information. 156 

We compared the performance of McMLP with two classical methods (GBR: Gradient-157 
Boosting Regressor3; RF: Random Forest4,5) in the prediction task defined in Fig. 2. For each 158 
method, we considered two sets of input variables: (1) without baseline metabolomic profiles 159 
(denoted as “w/o b” hereafter) and (2) with baseline metabolomic profiles (denoted as “w/ b” 160 
hereafter).  161 

We first used the three metrics (-̅, /&'(.*, -̅*) to benchmark the predictive performance 162 

of the different methods on synthetic data with 50 training samples and an intervention dose of 163 
3. We found that McMLP generated the best performance (Figs. 3a1-a3), especially when 164 
baseline metabolomic profiles were included in the input. When we predict without baseline 165 
metabolomic profiles, McMLP is clearly better than RF and GBR (McMLP yields the highest -̅ 166 
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of 0.399 ± 0.014, the highest /&'(.* of 0.200 ± 0.062, and the highest -̅* of 0.538 ± 0.014; the 167 

standard error is used to measure the variation in performance metrics across 5 train-test 168 
splits). Including baseline metabolomic profiles in the input significantly improves the 169 
performance of all methods, with McMLP still being the best (which yields the highest -̅ of 170 
0.613 ± 0.012, the highest /&'(.* of 0.860 ± 0.036, and highest -̅* of 0.730 ± 0.010). We also 171 

tried to introduce 5 food resources during the dietary intervention (instead of 1 previously; see 172 
Supplemental Information for details) and found that the performance of McMLP is still superior 173 
to other methods when the dietary intervention strategy is more complex (Supplementary Fig. 174 
2). 175 

We further examined the effect of training sample size on model performance. While 176 
maintaining the same 50-sample test set used previously, we found that all performance 177 
metrics for all methods improved as the training sample size increased (Fig. 3b1-b3). More 178 
importantly, we found that the performance of McMLP is better than RF and GBR at small 179 
training sample sizes (20 or 50) and is close to RF and GBR at large training sample sizes 180 
(>50). This demonstrates the superior performance of McMLP with a limited number of samples, 181 
contrary to the traditional notion that deep learning methods tend to overfit at small sample 182 
sizes46.  183 

We finally examined the effect of intervention dose on model performance. By varying 184 
the concentration of the intervened food resource in MiCRM, we generated synthetic data with 185 
different intervention doses and subsequently trained all ML methods on them with 200 training 186 
samples. We found that the performance gap between methods using and not using baseline 187 
metabolomic profiles narrows as the intervention dose increases (Fig. 3c1-c3). We believe this 188 
is because a larger intervention dose significantly changes the endpoint metabolomic profile 189 
away from its baseline level, rendering the baseline metabolomic profile less useful. 190 
 191 
McMLP	accurately	predicts	metabolic	responses	on	real	human	gut	microbiota	192 

data	193 

After validating McMLP using synthetic data, we analyzed real data from six dietary intervention 194 
studies to see if its performance on real data was consistently better than existing methods. 195 
The first dataset we collected was from a study investigating how avocado consumption alters 196 
gut microbial compositions and concentrations of metabolites such as SCFAs and bile acids28. 197 
In this study all participants were divided into two groups based on the food components of the 198 
meals provided: (1) avocado group: 175 g (men) or 140 g (women) of avocado was provided 199 
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as part of a meal once a day for 12 weeks and (2) control group: no avocado was included in 200 
their control meal28. Baseline (i.e., before the dietary intervention) and endpoint (i.e., during 201 
week 12 of the intervention) microbial compositions and concentrations of SCFAs and bile 202 
acids were quantified. The dataset is unique due to its relatively large sample size (66 for both 203 
avocado and control groups)28 compared to other dietary intervention studies27,32,34. 204 

Because the amount of avocado consumed by participants in the avocado group was 205 
very similar and participants in the control group barely consume avocado, for simplicity, we 206 
encoded the participant’s dietary intervention in McMLP and other methods as a binary variable 207 
in the input (green icons/symbols representing diets in Fig. 2) whose value equals 1 or 0 if the 208 
participant is in the avocado or control group, respectively. Note that in this study the 209 
concentrations of SCFAs and bile acids were obtained from two separate targeted 210 
metabolomic assays. Hence, we separated the concentration prediction of SCFAs and bile 211 
acids to compare the predictability of the two metabolite classes. We found that for the 212 
concentration prediction of both SCFAs and bile acids, McMLP with the baseline metabolomic 213 
profiles consistently produces the best performance (Fig. 4a1-a3, b1-b3). Interestingly, the 214 
inclusion of baseline metabolomic profiles in the input of McMLP helps more with the prediction 215 
of bile acid concentrations than with the prediction of SCFA concentrations (-̅ increases from 216 
0.226 to 0.396 for bile acids when metabolomic profiles are included; -̅ increases from 0.302 217 
to 0.385 for SCFAs when metabolomic profiles are included). A potential explanation is that 218 
the correlation of SCFA concentrations between baseline and endpoint samples is weaker than 219 
that of bile acids (Supplementary Fig. 3).  220 

We checked the predictive performance of the one-step strategy (Supplementary Fig. 221 
1b), finding that it is not as good as that of McMLP (Supplementary Fig. 4). We also compared 222 
McMLP with the state-of-art method of predicting metabolomic profiles from microbial 223 
compositions measured at the same time --- mNODE42, finding that it has worse performance 224 
than McMLP (Supplementary Fig. 5). The worse performance of mNODE is likely due to the 225 
fact that it is not dedicated to predicting metabolomic profiles at different time points. More 226 
technical reasons can be found in the Supplementary Information. 227 

We extended the method comparison to five additional datasets from independent 228 
dietary studies investigating how microbiota compositions and metabolomic profiles were 229 
influenced by adding grains35, walnuts27, almonds36, broccoli37, and high-fiber or fermented 230 
foods38 (see Table 1 and Methods section for details of the studies). Each participant’s dietary 231 
intake was similarly encoded as either a binary variable or a vector whose value is proportional 232 
to the consumed amount of the added dietary component, depending on the complexity of the 233 
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dietary intervention. Further details of the data processing and model architecture setup can 234 
be found in the Supplementary Information. As shown in Fig. 4,  McMLP consistently produces 235 
the best performance across all datasets. The relatively poor performance of all methods on 236 
the data from the study that investigated fibers and fermented foods38 is likely due to the fact 237 
that a variety of foods within the fiber and fermented foods categories were consumed by the 238 
participants at will, while other studies were complete feeding trials38.  239 

 240 
Inferring	the	tripartite	food-microbe-metabolite	relationship	241 

It has been previously shown that an individual’s metabolic response depends on her/his gut 242 
microbial composition7,43. If we want to introduce a new dietary resource to boost the 243 
concentration of a health-beneficial metabolite mediated by gut microbes, we need “key” 244 
microbial species that meet two criteria: (1) the species can consume one or more nutrient 245 
components in the introduced food resource; (2) the species can produce the metabolite we 246 
want to boost. If either criterion is not met, it is difficult to boost the metabolite concentration 247 
via this dietary intervention. We aim to identify these “key” species that satisfy both criteria by 248 
revealing the food-microbe consumption and microbe-metabolite production patterns, which 249 
can be summarized in a tripartite food-microbe-metabolite graph (Supplementary Fig. 6). To 250 
achieve this, we performed sensitivity analysis of McMLP. In particular, we interpreted a 251 
potential relationship between an input variable 5 and an output variable 6 by perturbing 5 by 252 
a small amount (denoted as Δ5) and then measuring the response of 6 (denoted as Δ6). 253 

Following the notion of sensitivity in engineering sciences, we defined sensitivity 8 = +,

+-
 and 254 

used its sign (positive/negative) to reflect whether 6 changes in the same/opposite direction as 255 
5. Details of this calculation can be found in the Methods section and in our previous study42. 256 

We calculated sensitivities for step-1 (and step-2) in McMLP to infer potential food-257 
microbe consumption (and microbe-metabolite production) interactions, respectively (Fig. 5a). 258 
Specifically, in step-1, we perturbed the amount of food resource 9 and measured the change 259 
in the relative abundance of species :. The sensitivity of species : to food resource 9 is s./ =260 
+,!
+-"

 and its sign can be used to reflect the interaction between species : and food resource 9. 261 

s./ > 0, indicates that species : can consume some nutrient components of food resource 9. 262 

Similarly, for step-2, we define the sensitivity of metabolite = to species : as s0. =
+,#
+-!

. The 263 

positive sensitivity, s0. > 0 , reveals potential production of the metabolite = by species :.  264 
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We first evaluated our sensitivity method on the synthetic data for which we know the 265 
ground truth of food-microbe consumption and microbe-metabolite production interactions. We 266 
found that the inferred sensitivity values for all food-microbe and microbe-metabolite pairs (Fig. 267 
5b) have a zero-nonzero pattern very similar to the ground-truth consumption and production 268 
rates assigned in MiCRM (Fig. 5c). We chose zero as the sensitivity threshold and kept only 269 
positive values for food-microbe pairs (green cells in Fig. 5b&c) and for microbe-metabolite 270 
pairs (red cells in Fig. 5b&c) to explore consumption and production interactions respectively. 271 
To statistically verify the agreement between ground-truth interactions and inferred interactions 272 
based on sensitivity values, we computed the AUROC (Area Under the Receiver Operating 273 
Characteristic curve) based on the overlap between true and predicted interactions when the 274 
classification threshold is varied. More specifically, for each classification threshold 8thres, we 275 
predicted the consumption of food resource 9 by species : (or production of metabolite 9 by 276 
species :) to be true only if s./ > 8thres (or s/. > 8thres). We achieved excellent performance in 277 
inferring either food-microbe consumption interactions (green line and dots with AUROC=0.9 278 
in Fig. 5d) or microbe-metabolite production interactions (red line and dots with AUROC=0.92 279 
in Fig. 5d). 280 

We then performed the same inference on real data from the avocado study28. The 281 
results are shown in Fig. 5e. (Inference results of other studies are provided in the 282 
Supplementary Tables.) Our results shown in Fig. 5e are in agreement with prior biological 283 
knowledge that Faecalibacterium prausnitzii is a stronger producer of butyrate47 than 284 
Ruminococcus callidus, and R. calidus is a stronger producer of acetate than F. prausnitzii48,49.  285 

The inference results also enable us to construct the tripartite food-microbe-metabolite 286 
graph. For the sake of simplicity, here we visualize the avocado-microbe-butyrate subgraph 287 
(Fig. 5f). Note that increased butyrate levels have been shown to be beneficial to host health 288 
by enhancing immune status19–21. For the avocado-microbe-butyrate subgraph, we focused on 289 
the top-20 avacado-microbe consumption and top-20 microbe-butyrate production interactions 290 
ranked by their absolute sensitivity values. Only nodes and links associated with these 291 
interactions were shown in this subgraph. Widths of individual edges in this figure are 292 
proportional to the absolute values of the corresponding sensitivities and node sizes for 293 
microbes are proportional to the products of edge widths connecting this microbe to avocado 294 
at the top and butyrate at the bottom of this subgraph. We ordered microbial nodes in the 295 
middle layer in the increasing order of node sizes from left to right (Fig. 5f). This organization 296 
helps us identify the key species that serve as both strong consumers of avocado and strong 297 
producers of butyrate. F. prausnitzii emerged as the most important key species for butyrate 298 
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production in response to avocado intervention. Our results are consistent with previous 299 
studies47. For example, F. prausnitzii levels have been previously shown to be elevated when 300 
avocado is supplied by diet50. In a separate study, F. prausnitzii has also been shown to 301 
produce butyrate as a metabolic byproduct47.  302 

 303 

Discussion	304 

A highly accurate computational method for predicting metabolic responses based on baseline 305 
data and a potential dietary intervention strategy is a prerequisite for precision nutrition. In this 306 
paper, we developed a deep learning method, McMLP, which predicts metabolomic profiles 307 
after a dietary intervention better than existing methods. We first validated the superior 308 
performance of McMLP using synthetic data generated by a microbial consumer-resource 309 
model and investigated the influence of diet intervention doses and training sample sizes. We 310 
then demonstrated that McMLP produced the most accurate predictions across six different 311 
dietary intervention studies27,28,35–38. We proceeded with a biological interpretation of McMLP 312 
results using sensitivity analysis to infer the tripartite food-microbe-metabolite relationship, 313 
finding that the inferred relationship was quite accurate in synthetic data. Finally, we 314 
demonstrated that our sensitivity analysis applied to real data revealed key species whose 315 
metabolic capabilities were consistent with prior biological knowledge. 316 

Currently available dietary intervention studies have many limitations for use in 317 
machine learning. First, the sample size (or number of participants) of these studies is typically 318 
small, on the order of dozens27,32,37,38. The relatively small sample size fundamentally limits the 319 
performance of any predictive model. This problem may be mitigated in ongoing large-scale 320 
research cohorts with many participants. One such cohort is the All of Us Research Program, 321 
which is attempting to build a diverse health database of more than one million people across 322 
the U.S. and then use the data to learn how our biology, lifestyle, and environment affect health. 323 
As part of this observational cohort, the recently announced Nutrition for Precision Health Study 324 
will recruit 10,000 participants to conduct precision dietary interventions51. Second, only a 325 
handful of dietary components have ever been the subject of a dedicated diet-microbiota 326 
studies. As a result, the computational approaches can only predict metabolic responses for 327 
the limited set of dietary components used in these studies. However, to realize the promise of 328 
precision nutrition to provide accurate personalized dietary recommendations, we need a 329 
predictive model that can accurately predict metabolic responses for a wide range of dietary 330 
components. Last, other baseline variables unavailable to us here (e.g., meal composition, age, 331 
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sex, demographics, and anthropometric data) might help to improve the predictive 332 
performance. If such data are available, they can be incorporated into McMLP as extra input 333 
variables. 334 

Our McMLP architecture is quite generic --- its input variables and their dimensions can 335 
be easily adapted to fit more complex datasets. For example, if a particular dietary intervention 336 
study documents an extensive list of dietary components, McMLP can be modified to include 337 
an input node for each dietary component to reflect the amount and frequency of its 338 
consumption. Similarly, the predicted output variables of McMLP need not be limited to 339 
metabolomic profiles measured in fecal samples. It can be generalized to predict other 340 
variables such as immune biomarkers or metabolite concentrations from blood samples.  341 

Unlike other machine learning methods that typically require hyperparameter tuning to 342 
achieve the best performance for each dataset with a different set of hyperparameters, McMLP 343 
consistently outperformed existing machine learning methods across six real datasets even 344 
without hyperparameter tuning. We speculate that McMLP exploited the recently observed 345 
“double-descent” behavior for the risk curve52, which suggests that an overparametrized deep-346 
learning model (i.e., one with an extremely large number of model parameters) can generate 347 
better and more consistent performance than models with less capacity and more carefully 348 
tuned hyperparameters. To reach this overparameterized regime, we used a large and fixed 349 
number of layers "! = 6 and a large hidden layer dimension "" = 2048, exceeding both the 350 
number of microbial species and the number of metabolites. One benefit of using such a model 351 
free of hyperparameter tuning is the shorter training time. Since the typical 5-fold cross-352 
validation used to select the best set of hyperparameters is the most time-consuming part of a 353 
typical deep learning workflow, McMLP saves a significant amount of time required for 354 
hyperparameter tuning and thus has a shorter training time (~ 5 minutes for each run of McMLP 355 
on the avocado intervention study28). 356 
 357 
 358 

Methods	359 

Datasets.  360 
The datasets utilized herein were generated as part of work on bacterial53 and metabolite54 361 
biomarkers of food intake, which provided anonymized microbial and metabolomic data on 362 
Github. The main characteristics of the dietary intervention studies used above are 363 
summarized in Table 1. Across all studies, fecal or blood samples were collected before and 364 
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after each dietary intervention period. Gut microbiota composition was determined by the 16S 365 
rRNA gene sequencing and metabolomic profiles of either fecal samples or blood serum 366 
samples were determined by tandem liquid chromatography-mass spectrometry (LC-MS/MS) 367 
and gas chromatography-mass spectrometry (GC-MS) metabolomics. For all machine learning 368 
tasks, the same five random 80/20 train-test splits were used to ensure a fair comparison of 369 
methods. Further details are described below: 370 

Avocado intervention study. This dataset was reported by a dietary intervention study 371 
that investigated how avocado consumption altered the relative abundance of gut bacteria and 372 
concentrations of microbial metabolites in 132 overweight or obese adults28. All participants 373 
were assigned to the avocado treatment or no-avocado control group (66 each for arm). They 374 
consumed isocaloric meals with or without avocado (175 g, men; 140 g, women) once daily for 375 
12 weeks. For fecal samples collected before and after the dietary intervention, 278 ASVs 376 
(Amplicon Sequence Variants) were determined by the 16S rRNA gene sequencing and 377 
profiles of 6 SCFAs and 21 bile acids were generated by LC-MS/MS metabolomics.  378 

Grains intervention study. This dietary intervention study investigated how grain barley 379 
and oat consumption affects gut bacteria relative abundances and concentrations of microbial 380 
metabolites in 68 healthy adults35. All participants were randomly assigned to receive one of 381 
three treatments: (1) a control diet containing 0.8 daily servings of whole grain/1800 kcal, (2) 382 
a diet containing 4.4 daily servings of whole grain barley/1800 kcal or (3) a diet containing 4.4 383 
daily servings of whole grain oats/1800 kcal. Fecal samples were collected before and after 384 
the dietary intervention. 385 

Walnut intervention study. This dietary intervention study investigated how walnut 386 
consumption affects the gut microbiota and metabolite concentrations in 18 healthy adults27. 387 
All participants completed two 3-week treatment/intervention periods separated by a 1-week 388 
washout period. Fecal samples were collected before and after the dietary intervention period. 389 

Almond intervention study. This dietary intervention study was conducted in 18 healthy 390 
adults36. All participants completed four 3-week treatment periods and one control period 391 
separated by a 1-week washout period. Fecal samples were collected before and after the 392 
dietary intervention period. 393 

Broccoli intervention study. In this study, 18 healthy adults completed two 18-day 394 
treatment periods separated by a 24-day washout period37. Fecal samples were collected 395 
before and after the dietary intervention period.  396 

Fibers or fermented foods intervention study. This dietary intervention study was 397 
designed to investigate how consumption of plant-based foods rich in dietary fibers or 398 
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fermented foods alters gut bacteria and their associated metabolites in 36 healthy adults38. All 399 
participants were divided to the high-fiber or the high-fermented-foods arm (18 each for arm). 400 
The entire dietary intervention lasted 17 weeks. Their fecal or blood serum samples were 401 
collected before and after the dietary intervention period. Gut microbiota composition in fecal 402 
samples was determined by the 16S rRNA gene sequencing and metabolomic profiles of 403 
serum samples were generated by the LC-MS metabolomics.  404 

 405 
McMLP.	McMLP consists of two coupled MLPs: (step-1) in the first step (using the MLP at the 406 
top in Supplementary Fig. 1a), we predict endpoint microbial compositions based on baseline 407 
microbial compositions, baseline metabolomic profiles, and dietary intervention strategy; (step-408 
2) in the second step (using the MLP at the bottom in Supplementary Fig. 1a), we take the 409 
predicted endpoint microbial compositions from the first MLP, baseline metabolomic profiles, 410 
and dietary intervention strategy to predict endpoint metabolomic profiles. 411 

• Data processing: The CLR (Centered Log-Ratio) transformation is applied to microbial 412 
relative abundances and the log10 transformation is applied to metabolite 413 
concentrations. 414 

• Model detail: Each MLP model (for either the top or the bottom MLP in Supplementary 415 
Fig. 1) has 6 hidden layers in the middle, sandwiched by input and output variables. 416 
Each hidden layer has a fixed hidden layer dimension of 2048. 417 

• Training method: The Adam optimizer55 is used for the gradient descent. Training stops 418 
when the mean SCC (Spearman Correlation Coefficient) of annotated metabolites -̅ on 419 
the training set is less than 0.1 and -̅ on the validation/test set starts to decrease within 420 
the last 20 epochs.  421 

• Activation function: ReLU (Rectified Linear Unit). 422 
 423 

Inference	of	food-microbe	and	microbe-metabolite	interactions	via	sensitivity. The 424 
two MLP models in the well-trained McMLP can be interpreted separately. We first interpret 425 
the first MLP (step 1) in McMLP for food-microbe consumption interactions by the amount of 426 
food resource 9 (Δ5/) and then measure the change in the relative abundance of species 427 
:	(Δ6. ). Mathematically, for the sample ? in the training set, we set the new value of this 428 

variable as zero. As a result, the perturbation amount for this variable in sample	? is Δ5/
(7) =429 

0 − 5/
(7) = −5/

(7) where 5/
(7) is the unperturbed value. We can measure the change in the 430 
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relative abundance of species :	for sample	? (Δ6.
(7)) and define the sensitivity of species :	to 431 

food resource 9  for sample 	?  as 8./
(7) = +,!

(%)

+-"
(%) . Finally, we can average sensitivity values 432 

across samples to obtain the average sensitivity of species :	to food resource 9: 8./ =
∑ :!"

(%)
%
;'()*+

 433 

where "<=>?@  is the number of training samples. Similarly, for the second MLP (step-2) in 434 

McMLP, we can define 80.
(7) =

+,#
(%)

+-!
(%) and 80. =

∑ :#!
(%)

%
;'()*+

 to infer microbe-metabolite interactions 435 

by perturbing the relative abundance of species : (Δ5.) and then measuring the change in 436 
concentration of metabolite	= (Δ60). 437 

 438 
Statistics.	To calculate correlations throughout the study, we used Spearman’s correlation 439 
coefficient. Wherever P-values were used we calculated the associated null distributions were 440 
computed from scratch. All statistical tests were performed using standard numerical and 441 
scientific computing libraries in the Python programming language (version 3.7.1) and Jupyter 442 
Notebook (version 6.1). 443 
 444 
Data and code availability. All code for the simulations used in this manuscript can be found 445 
at https://github.com/wt1005203/McMLP. 446 
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 594 
Figure 1: A typical dietary intervention study design. Before the dietary intervention, the 595 
baseline gut microbial compositions and metabolomic profiles (of either fecal samples or blood 596 
samples) are measured. During the dietary intervention, one or a few dietary resources are 597 
introduced (represented here by avocado) in addition to the baseline diet. The task we intend 598 
to solve is to predict personalized metabolic responses after dietary intervention based on the 599 
baseline gut microbial compositions, baseline metabolomic profiles, and the dietary 600 
intervention strategy.  601 
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 602 
Figure 2: The workflow of McMLP. We aim to predict endpoint metabolomic profiles (i.e., 603 
metabolomic profiles after the dietary interventions) based on the baseline microbial 604 
compositions (i.e., microbial compositions before the dietary intervention), dietary intervention 605 
strategy, and baseline metabolomic profiles. Here we used a hypothetical example with n=5 606 
training samples and 2 samples in the test set. For each sample, we considered "# microbial 607 
species, "$  dietary resources, and "%  metabolites. Across three panels, microbial species 608 
and their relative abundances are colored blue, dietary resources and their intervention doses 609 
are colored green, and metabolites and their concentrations are colored red. Icons associated 610 
with baseline/endpoint data are bounded by solid black/dashed lines respectively. a, The 611 
model architecture of McMLP. McMLP comprises two coupled MLPs. The first MLP at the top 612 
(step 1) predicts the endpoint microbial compositions based on the baseline data and the 613 
dietary intervention strategy. The predicted endpoint microbial compositions from the first MLP 614 
are then provided as input to the second MLP at the bottom (step 2). The second MLP 615 
combines the predicted endpoint microbial compositions, the dietary intervention strategy, and 616 
the baseline metabolomic profiles to finally predict the endpoint metabolomic profiles. Details 617 
of both MLPs can be found in Supplementary Fig. 1 and Methods. b, McMLP takes two types 618 
of baseline data (baseline microbial compositions and baseline metabolomic profiles) and the 619 
dietary intervention strategy as input variables and is trained to predict corresponding endpoint 620 
metabolomic profiles. During training, the endpoint microbial composition is needed to train the 621 
first MLP. By contrast, the second MLP directly takes the predicted endpoint microbial 622 
composition instead of the actual endpoint microbial composition. c, The well-trained McMLP 623 
can generate predictions for metabolomic profiles for the test set. During testing, no endpoint 624 
microbial composition is needed because the second MLP directly takes the predicted 625 
endpoint microbial composition from the first MLP as the input.  626 
  627 
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 628 

Figure 3: McMLP provides better predictive power than previously developed 629 
computational methods for predicting endpoint metabolomic profiles on synthetic data 630 
generated from microbial consumer-resource models. Three computational methods are 631 
compared: Random Forest (RF), Gradient Boosting Regressor (GBR), and McMLP. For each 632 
method, we either included (“w/ b” label) or did not include ( “w/o b” label) baseline metabolomic 633 
profiles as input variables. Each method with a particular combination of input data is colored 634 
the same way in all panels. Standard errors are computed based on five random train-test 635 
splits and shown in all panels (as solid black vertical lines or transparent areas around their 636 
means). To compare different methods, we adopted three metrics: the mean Spearman 637 
Correlation Coefficient (SCC) -̅ , the fraction of metabolites with SCCs greater than 0.5 638 
(denoted as /&'(.*), and the mean SCC of the top-5 predicted metabolites -̅*. Error bars denote 639 
the standard error (n=5).  a1-a3, For the synthetic data with intervention dose of 3 and 50 640 
training samples, McMLP provides the best performance for all three metrics regardless of 641 
whether the baseline metabolomic profiles are included or not. b1-b3, When the intervention 642 
dose is 3, the predictive performance of all methods gets better and closer to each other as 643 
the training sample size increases. Including baseline metabolomic profiles also helps to 644 
improve the prediction. c1-c3, When 200 training samples are used, the performance gap 645 
between including and not including baseline metabolomic profiles shrinks as the intervention 646 
dose increases.  647 
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 648 
Figure 4: McMLP is superior to previous methods in terms of predicting endpoint 649 
metabolomic profiles on real data from six dietary intervention studies. Three 650 
computational methods are compared: Random Forest (RF), Gradient Boosting Regressor 651 
(GBR), and McMLP. For each method, we either included (“w/ b” label) or did not include (“w/o 652 
b” label) baseline metabolomic profiles as input variables. Each method with a particular 653 
combination of input data is colored the same in all panels. Standard errors are computed 654 
based on five random train-test splits and shown in all panels (solid black vertical lines). To 655 
compare different methods, we adopted three metrics: the mean Spearman Correlation 656 
Coefficient (SCC) -̅, the fraction of metabolites with SCCs greater than 0.5 (denoted as /&'(.*), 657 
and the mean SCC of the top-5 predicted metabolites -̅*. Error bars denote the standard error 658 
(n=5). a1-a3, Comparison of the performance in predicting SCFAs on the data from the 659 
avocado intervention study28. b1-b3, Comparison of performance in predicting bile acids on 660 
the data from the avocado intervention study28. c1-c3, Comparison of predictive performance 661 
on the data from the grain intervention study35. d1-d3, Comparison of predictive performance 662 
on the data from the walnut intervention study27. e1-e3, Comparison of predictive performance 663 
on the data from the almond intervention study36. f1-f3, Comparison of predictive performance 664 
on the data from the broccoli intervention study37. g1-g3, Comparison of predictive 665 
performance on the data from the high-fiber food or fermented food intervention study38.  666 
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 667 
Figure 5: Applying sensitivity analysis of McMLP accurately infers food-microbe 668 
consumption interactions and microbe-metabolite production interactions in both 669 
synthetic and real data. a, The sensitivity of the relative abundance of species :  to the 670 
supplied dietary resource 9 is denoted as s./. It is defined as the ratio between the change in 671 
the relative abundance of species : (Δ6. ) and a small perturbation in the supplied dietary 672 
resource 9 (Δ5/). Similarly, the sensitivity of the concentration of metabolite = to the relative 673 
abundance of species : is denoted as s0. 	. It is defined as the ratio between the change in the 674 
concentration of metabolite = (Δ60) and the perturbation in the relative abundance of species 675 
: (Δ5.). b, The sensitivity values for food-microbe consumption interactions (colored in green) 676 
and microbe-metabolite production interactions (colored in red) in the synthetic data. c, The 677 
ground-truth food-microbe consumption rates (colored in green) and microbe-metabolite 678 
production rates (colored in red) in the synthetic data. d, The Area Under the Receiver 679 
Operating Characteristic (AUROC) curve based on True Positive (TP) rates and False Positive 680 
(FP) rates which are obtained by using different sensitivity thresholds to classify interactions. 681 
e, The sensitivity values for avocado-microbe consumption interactions (colored in green) and 682 
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microbe-metabolite production interactions (colored in red) for the real data from the avocado 683 
intervention study. f, The avocado-microbe-butyrate tripartite graph constructed based on the 684 
sensitivity values of avocado-microbe consumption interactions and microbe-butyrate 685 
production interactions for the real data from the avocado intervention study. The edge width 686 
and edge arrow sizes are proportional to the absolute values of the sensitivities. All microbes 687 
in the middle layer are arranged from left to right in the increasing order of the incoming edge 688 
width multiplied by the outgoing edge width.  689 
  690 
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Dietary Intervention 
Studies 

# of 
participants 

# of intervention 
periods/groups 

# of ASVs # of 
metabolites 

Avocado28 132 2 278 27 
Grains35 68 3 650 43 
Walnut27 18 2 419 41 
Almond36 18 5 714 43 
Broccoli37 18 2 855 35 

Fibers or fermented 
foods38 

32 2 503 9 

 691 

Table 1: Summary of key features of dietary intervention studies used in our method 692 
comparison. ASVs: Amplicon Sequence Variants. 693 

  694 
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