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The ultimate goal of research is to produce dependable knowledge or to provide the evi-
dence that may guide practical decisions. Statistical conclusion validity (SCV) holds when
the conclusions of a research study are founded on an adequate analysis of the data, gen-
erally meaning that adequate statistical methods are used whose small-sample behavior
is accurate, besides being logically capable of providing an answer to the research ques-
tion. Compared to the three other traditional aspects of research validity (external validity,
internal validity, and construct validity), interest in SCV has recently grown on evidence
that inadequate data analyses are sometimes carried out which yield conclusions that a
proper analysis of the data would not have supported. This paper discusses evidence of
three common threats to SCV that arise from widespread recommendations or practices
in data analysis, namely, the use of repeated testing and optional stopping without control
of Type-I error rates, the recommendation to check the assumptions of statistical tests,
and the use of regression whenever a bivariate relation or the equivalence between two
variables is studied. For each of these threats, examples are presented and alternative
practices that safeguard SCV are discussed. Educational and editorial changes that may
improve the SCV of published research are also discussed.
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Psychologists are well aware of the traditional aspects of research
validity introduced by Campbell and Stanley (1966) and fur-
ther subdivided and discussed by Cook and Campbell (1979).
Despite initial criticisms of the practically oriented and some-
what fuzzy distinctions among the various aspects (see Cook
and Campbell, 1979, pp. 85–91; see also Shadish et al., 2002,
pp. 462–484), the four facets of research validity have gained
recognition and they are currently covered in many textbooks
on research methods in psychology (e.g., Beins, 2009; Good-
win, 2010; Girden and Kabacoff, 2011). Methods and strate-
gies aimed at securing research validity are also discussed in
these and other sources. To simplify the description, construct
validity is sought by using well-established definitions and mea-
surement procedures for variables, internal validity is sought by
ensuring that extraneous variables have been controlled and con-
founds have been eliminated, and external validity is sought by
observing and measuring dependent variables under natural con-
ditions or under an appropriate representation of them. The
fourth aspect of research validity, which Cook and Campbell
called statistical conclusion validity (SCV), is the subject of this
paper.

Cook and Campbell, 1979, pp. 39–50) discussed that SCV
pertains to the extent to which data from a research study can rea-
sonably be regarded as revealing a link (or lack thereof) between
independent and dependent variables as far as statistical issues are
concerned. This particular facet was separated from other factors
acting in the same direction (the three other facets of validity) and
includes three aspects: (1) whether the study has enough statistical

power to detect an effect if it exists, (2) whether there is a risk
that the study will “reveal” an effect that does not actually exist,
and (3) how can the magnitude of the effect be confidently esti-
mated. They nevertheless considered the latter aspect as a mere
step ahead once the first two aspects had been satisfactorily solved,
and they summarized their position by stating that SCV “refers
to inferences about whether it is reasonable to presume covaria-
tion given a specified α level and the obtained variances” (Cook
and Campbell, 1979, p. 41). Given that mentioning “the obtained
variances” was an indirect reference to statistical power and men-
tioning α was a direct reference to statistical significance, their
position about SCV may have seemed to only entail consideration
that the statistical decision can be incorrect as a result of Type-I
and Type-II errors. Perhaps as a consequence of this literal inter-
pretation, review papers studying SCV in published research have
focused on power and significance (e.g., Ottenbacher, 1989; Otten-
bacher and Maas, 1999), strategies aimed at increasing SCV have
only considered these issues (e.g., Howard et al., 1983), and tutori-
als on the topic only or almost only mention these issues along with
effect sizes (e.g., Orme, 1991; Austin et al., 1998; Rankupalli and
Tandon, 2010). This emphasis on issues of significance and power
may also be the reason that some sources refer to threats to SCV as
“any factor that leads to a Type-I or a Type-II error” (e.g., Girden
and Kabacoff, 2011, p. 6; see also Rankupalli and Tandon, 2010,
Section 1.2), as if these errors had identifiable causes that could be
prevented. It should be noted that SCV has also occasionally been
purported to reflect the extent to which pre-experimental designs
provide evidence for causation (Lee, 1985) or the extent to which
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meta-analyses are based on representative results that make the
conclusion generalizable (Elvik, 1998).

But Cook and Campbell’s (1979, p. 80) aim was undoubtedly
broader, as they stressed that SCV “is concerned with sources of
random error and with the appropriate use of statistics and statisti-
cal tests” (italics added). Moreover, Type-I and Type-II errors are
an essential and inescapable consequence of the statistical decision
theory underlying significance testing and, as such, the potential
occurrence of one or the other of these errors cannot be prevented.
The actual occurrence of them for the data on hand cannot be
assessed either. Type-I and Type-II errors will always be with us
and, hence, SCV is only trivially linked to the fact that research will
never unequivocally prove or reject any statistical null hypothesis
or its originating research hypothesis. Cook and Campbell seemed
to be well aware of this issue when they stressed that SCV refers
to reasonable inferences given a specified significance level and a
given power. In addition, Stevens (1950, p. 121) forcefully empha-
sized that“it is a statistician’s duty to be wrong the stated number of
times,” implying that a researcher should accept the assumed risks
of Type-I and Type-II errors, use statistical methods that guaran-
tee the assumed error rates, and consider these as an essential part
of the research process. From this position, these errors do not
affect SCV unless their probability differs meaningfully from that
which was assumed. And this is where an alternative perspective
on SCV enters the stage, namely, whether the data were analyzed
properly so as to extract conclusions that faithfully reflect what the
data have to say about the research question. A negative answer
raises concerns about SCV beyond the triviality of Type-I or Type-
II errors. There are actually two types of threat to SCV from this
perspective. One is when the data are subjected to thoroughly inad-
equate statistical analyses that do not match the characteristics of
the design used to collect the data or that cannot logically give an
answer to the research question. The other is when a proper sta-
tistical test is used but it is applied under conditions that alter the
stated risk probabilities. In the former case, the conclusion will be
wrong except by accident; in the latter, the conclusion will fail to
be incorrect with the declared probabilities of Type-I and Type-II
errors.

The position elaborated in the foregoing paragraph is well sum-
marized in Milligan and McFillen’s (1984, p. 439) statement that
“under normal conditions (. . .) the researcher will not know when
a null effect has been declared significant or when a valid effect
has gone undetected (. . .) Unfortunately, the statistical conclusion
validity, and the ultimate value of the research, rests on the explicit
control of (Type-I and Type-II) error rates.” This perspective on
SCV is explicitly discussed in some textbooks on research methods
(e.g., Beins, 2009, pp. 139–140; Goodwin, 2010, pp. 184–185) and
some literature reviews have been published that reveal a sound
failure of SCV in these respects.

For instance, Milligan and McFillen’s (1984, p. 438) reviewed
evidence that “the business research community has succeeded
in publishing a great deal of incorrect and statistically inade-
quate research” and they dissected and discussed in detail four
additional cases (among many others that reportedly could have
been chosen) in which a breach of SCV resulted from gross mis-
matches between the research design and the statistical analysis.
Similarly, García-Pérez (2005) reviewed alternative methods to

compute confidence intervals for proportions and discussed three
papers (among many others that reportedly could have been cho-
sen) in which inadequate confidence intervals had been computed.
More recently, Bakker and Wicherts (2011) conducted a thorough
analysis of psychological papers and estimated that roughly 50%
of published papers contain reporting errors, although they only
checked whether the reported p value was correct and not whether
the statistical test used was appropriate. A similar analysis carried
out by Nieuwenhuis et al. (2011) revealed that 50% of the papers
reporting the results of a comparison of two experimental effects
in top neuroscience journals had used an incorrect statistical pro-
cedure. And Bland and Altman (2011) reported further data on
the prevalence of incorrect statistical analyses of a similar nature.

An additional indicator of the use of inadequate statistical pro-
cedures arises from consideration of published papers whose title
explicitly refers to a re-analysis of data reported in some other
paper. A literature search for papers including in their title the
terms “a re-analysis,” “a reanalysis,” “re-analyses,” “reanalyses,” or
“alternative analysis” was conducted on May 3, 2012 in the Web
of Science (WoS; http://thomsonreuters.com), which rendered 99
such papers with subject area “Psychology” published in 1990 or
later. Although some of these were false positives, a sizeable num-
ber of them actually discussed the inadequacy of analyses carried
out by the original authors and reported the results of proper alter-
native analyses that typically reversed the original conclusion. This
type of outcome upon re-analyses of data are more frequent than
the results of this quick and simple search suggest, because the
information for identification is not always included in the title of
the paper or is included in some other form: For a simple exam-
ple, the search for the clause “a closer look” in the title rendered
131 papers, many of which also presented re-analyses of data that
reversed the conclusion of the original study.

Poor design or poor sample size planning may, unbeknownst to
the researcher, lead to unacceptable Type-II error rates, which will
certainly affect SCV (as long as the null is not rejected; if it is, the
probability of a Type-II error is irrelevant). Although insufficient
power due to lack of proper planning has consequences on sta-
tistical tests, the thread of this paper de-emphasizes this aspect of
SCV (which should perhaps more reasonably fit within an alter-
native category labeled design validity) and emphasizes the idea
that SCV holds when statistical conclusions are incorrect with the
stated probabilities of Type-I and Type-II errors (whether the lat-
ter was planned or simply computed). Whether or not the actual
significance level used in the research or the power that it had
is judged acceptable is another issue, which does not affect SCV:
The statistical conclusion is valid within the stated (or computed)
error probabilities. A breach of SCV occurs, then, when the data
are not subjected to adequate statistical analyses or when control
of Type-I or Type-II errors is lost.

It should be noted that a further component was included into
consideration of SCV in Shadish et al.’s (2002) sequel to Cook and
Campbell’s (1979) book, namely, effect size. Effect size relates to
what has been called a Type-III error (Crawford et al., 1998), that
is, a statistically significant result that has no meaningful practical
implication and that only arises from the use of a huge sample.
This issue is left aside in the present paper because adequate con-
sideration and reporting of effect sizes precludes Type-III errors,
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although the recommendations of Wilkinson and The Task Force
on Statistical Inference (1999) in this respect are not always fol-
lowed. Consider, e.g., Lippa’s (2007) study of the relation between
sex drive and sexual attraction. Correlations generally lower than
0.3 in absolute value were declared strong as a result of p values
below 0.001. With sample sizes sometimes nearing 50,000 paired
observations, even correlations valued at 0.04 turned out signifi-
cant in this study. More attention to effect sizes is certainly needed,
both by researchers and by journal editors and reviewers.

The remainder of this paper analyzes three common practices
that result in SCV breaches, also discussing simple replacements
for them.

STOPPING RULES FOR DATA COLLECTION WITHOUT
CONTROL OF TYPE-I ERROR RATES
The asymptotic theory that provides justification for null hypoth-
esis significance testing (NHST) assumes what is known as fixed
sampling, which means that the size n of the sample is not itself a
random variable or, in other words, that the size of the sample has
been decided in advance and the statistical test is performed once
the entire sample of data has been collected. Numerous procedures
have been devised to determine the size that a sample must have
according to planned power (Ahn et al., 2001; Faul et al., 2007;
Nisen and Schwertman, 2008; Jan and Shieh, 2011), the size of the
effect sought to be detected (Morse, 1999), or the width of the
confidence intervals of interest (Graybill, 1958; Boos and Hughes-
Oliver,2000; Shieh and Jan,2012). For reviews, see Dell et al. (2002)
and Maxwell et al. (2008). In many cases, a researcher simply strives
to gather as large a sample as possible. Asymptotic theory supports
NHST under fixed sampling assumptions, whether or not the size
of the sample was planned.

In contrast to fixed sampling, sequential sampling implies that
the number of observations is not fixed in advance but depends
by some rule on the observations already collected (Wald, 1947;
Anscombe, 1953; Wetherill, 1966). In practice, data are analyzed
as they come in and data collection stops when the observations
collected thus far satisfy some criterion. The use of sequential
sampling faces two problems (Anscombe, 1953, p. 6): (i) devis-
ing a suitable stopping rule and (ii) finding a suitable test statistic
and determining its sampling distribution. The mere statement
of the second problem evidences that the sampling distribution
of conventional test statistics for fixed sampling no longer holds
under sequential sampling. These sampling distributions are rela-
tively easy to derive in some cases, particularly in those involving
negative binomial parameters (Anscombe, 1953; García-Pérez and
Núñez-Antón, 2009). The choice between fixed and sequential
sampling (sometimes portrayed as the “experimenter’s intention”;
see Wagenmakers, 2007) has important ramifications for NHST
because the probability that the observed data are compatible (by
any criterion) with a true null hypothesis generally differs greatly
across sampling methods. This issue is usually bypassed by those
who look at the data as a “sure fact” once collected, as if the sam-
pling method used to collect the data did not make any difference
or should not affect how the data are interpreted.

There are good reasons for using sequential sampling in psycho-
logical research. For instance, in clinical studies in which patients
are recruited on the go, the experimenter may want to analyze

data as they come in to be able to prevent the administration of a
seemingly ineffective or even hurtful treatment to new patients. In
studies involving a waiting-list control group, individuals in this
group are generally transferred to an experimental group mid-
way along the experiment. In studies with laboratory animals, the
experimenter may want to stop testing animals before the planned
number has been reached so that animals are not wasted when an
effect (or the lack thereof) seems established. In these and anal-
ogous cases, the decision as to whether data will continue to be
collected results from an analysis of the data collected thus far, typ-
ically using a statistical test that was devised for use in conditions
of fixed sampling. In other cases, experimenters test their statistical
hypothesis each time a new observation or block of observations is
collected, and continue the experiment until they feel the data are
conclusive one way or the other. Software has been developed that
allows experimenters to find out how many more observations
will be needed for a marginally non-significant result to become
significant on the assumption that sample statistics will remain
invariant when the extra data are collected (Morse, 1998).

The practice of repeated testing and optional stopping has
been shown to affect in unpredictable ways the empirical Type-I
error rate of statistical tests designed for use under fixed sampling
(Anscombe, 1954; Armitage et al., 1969; McCarroll et al., 1992;
Strube, 2006; Fitts, 2011a). The same holds when a decision is
made to collect further data on evidence of a marginally (non)
significant result (Shun et al., 2001; Chen et al., 2004). The inac-
curacy of statistical tests in these conditions represents a breach
of SCV, because the statistical conclusion thus fails to be incorrect
with the assumed (and explicitly stated) probabilities of Type-I
and Type-II errors. But there is an easy way around the inflation
of Type-I error rates from within NHST, which solves the threat
to SCV that repeated testing and optional stopping entail.

In what appears to be the first development of a sequential
procedure with control of Type-I error rates in psychology, Frick
(1998) proposed that repeated statistical testing be conducted
under the so-called COAST (composite open adaptive sequen-
tial test) rule: If the test yields p < 0.01, stop collecting data and
reject the null; if it yields p > 0.36, stop also and do not reject
the null; otherwise, collect more data and re-test. The low crite-
rion at 0.01 and the high criterion at 0.36 were selected through
simulations so as to ensure a final Type-I error rate of 0.05 for
paired-samples t tests. Use of the same low and high criteria
rendered similar control of Type-I error rates for tests of the
product-moment correlation, but they yielded slightly conserv-
ative tests of the interaction in 2× 2 between-subjects ANOVAs.
Frick also acknowledged that adjusting the low and high criteria
might be needed in other cases, although he did not address them.
This has nevertheless been done by others who have modified and
extended Frick’s approach (e.g., Botella et al., 2006; Ximenez and
Revuelta, 2007; Fitts, 2010a,b, 2011b). The result is sequential pro-
cedures with stopping rules that guarantee accurate control of final
Type-I error rates for the statistical tests that are more widely used
in psychological research.

Yet, these methods do not seem to have ever been used in actual
research, or at least their use has not been acknowledged. For
instance, of the nine citations to Frick’s (1998) paper listed in WoS
as of May 3, 2012, only one is from a paper (published in 2011) in
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which the COAST rule was reportedly used, although unintend-
edly. And not a single citation is to be found in WoS from papers
reporting the use of the extensions and modifications of Botella
et al. (2006) or Ximenez and Revuelta (2007). Perhaps researchers
in psychology invariably use fixed sampling, but it is hard to believe
that “data peeking” or “data monitoring” was never used, or that
the results of such interim analyses never led researchers to collect
some more data. Wagenmakers (2007, p. 785) regretted that “it
is not clear what percentage of p values reported in experimen-
tal psychology have been contaminated by some form of optional
stopping. There is simply no information in Results sections that
allows one to assess the extent to which optional stopping has
occurred.” This incertitude was quickly resolved by John et al.
(2012). They surveyed over 2000 psychologists with highly reveal-
ing results: Respondents affirmatively admitted to the practices of
data peeking, data monitoring, or conditional stopping in rates
that varied between 20 and 60%.

Besides John et al.’s (2012) proposal that authors disclose these
details in full and Simmons et al.’s (2011) proposed list of require-
ments for authors and guidelines for reviewers, the solution to
the problem is simple: Use strategies that control Type-I error
rates upon repeated testing and optional stopping. These strate-
gies have been widely used in biomedical research for decades
(Bauer and Köhne, 1994; Mehta and Pocock, 2011). There is no
reason that psychological research should ignore them and give up
efficient research with control of Type-I error rates, particularly
when these strategies have also been adapted and further devel-
oped for use under the most common designs in psychological
research (Frick, 1998; Botella et al., 2006; Ximenez and Revuelta,
2007; Fitts, 2010a,b).

It should also be stressed that not all instances of repeated test-
ing or optional stopping without control of Type-I error rates
threaten SCV. A breach of SCV occurs only when the conclu-
sion regarding the research question is based on the use of these
practices. For an acceptable use, consider the study of Xu et al.
(2011). They investigated order preferences in primates to find
out whether primates preferred to receive the best item first rather
than last. Their procedure involved several experiments and they
declared that “three significant sessions (two-tailed binomial tests
per session, p < 0.05) or 10 consecutive non-significant sessions
were required from each monkey before moving to the next
experiment. The three significant sessions were not necessarily
consecutive (. . .) Ten consecutive non-significant sessions were
taken to mean there was no preference by the monkey” (p. 2304).
In this case, the use of repeated testing with optional stopping at
a nominal 95% significance level for each individual test is part
of the operational definition of an outcome variable used as a
criterion to proceed to the next experiment. And, in any event,
the overall probability of misclassifying a monkey according to
this criterion is certainly fixed at a known value that can eas-
ily be worked out from the significance level declared for each
individual binomial test. One may object to the value of the resul-
tant risk of misclassification, but this does not raise concerns
about SCV.

In sum, the use of repeated testing with optional stopping
threatens SCV for lack of control of Type-I and Type-II error
rates. A simple way around this is to refrain from these practices

and adhere to the fixed sampling assumptions of statistical tests;
otherwise, use the statistical methods that have been developed for
use with repeated testing and optional stopping.

PRELIMINARY TESTS OF ASSUMPTIONS
To derive the sampling distribution of test statistics used in para-
metric NHST, some assumptions must be made about the proba-
bility distribution of the observations or about the parameters of
these distributions. The assumptions of normality of distributions
(in all tests), homogeneity of variances (in Student’s two-sample
t test for means or in ANOVAs involving between-subjects fac-
tors), sphericity (in repeated-measures ANOVAs), homoscedas-
ticity (in regression analyses), or homogeneity of regression slopes
(in ANCOVAs) are well known cases. The data on hand may or
may not meet these assumptions and some parametric tests have
been devised under alternative assumptions (e.g., Welch’s test for
two-sample means, or correction factors for the degrees of free-
dom of F statistics from ANOVAs). Most introductory statistics
textbooks emphasize that the assumptions underlying statistical
tests must be formally tested to guide the choice of a suitable test
statistic for the null hypothesis of interest. Although this recom-
mendation seems reasonable, serious consequences on SCV arise
from following it.

Numerous studies conducted over the past decades have shown
that the two-stage approach of testing assumptions first and subse-
quently testing the null hypothesis of interest has severe effects on
Type-I and Type-II error rates. It may seem at first sight that this is
simply the result of cascaded binary decisions each of which has its
own Type-I and Type-II error probabilities; yet, this is the result of
more complex interactions of Type-I and Type-II error rates that
do not have fixed (empirical) probabilities across the cases that end
up treated one way or the other according to the outcomes of the
preliminary test: The resultant Type-I and Type-II error rates of
the conditional test cannot be predicted from those of the prelim-
inary and conditioned tests. A thorough analysis of what factors
affect the Type-I and Type-II error rates of two-stage approaches
is beyond the scope of this paper but readers should be aware that
nothing suggests in principle that a two-stage approach might be
adequate. The situations that have been more thoroughly stud-
ied include preliminary goodness-of-fit tests for normality before
conducting a one-sample t test (Easterling and Anderson, 1978;
Schucany and Ng, 2006; Rochon and Kieser, 2011), preliminary
tests of equality of variances before conducting a two-sample t
test for means (Gans, 1981; Moser and Stevens, 1992; Zimmerman,
1996,2004; Hayes and Cai,2007),preliminary tests of both equality
of variances and normality preceding two-sample t tests for means
(Rasch et al., 2011), or preliminary tests of homoscedasticity before
regression analyses (Caudill, 1988; Ng and Wilcox, 2011). These
and other studies provide evidence that strongly advises against
conducting preliminary tests of assumptions. Almost all of these
authors explicitly recommended against these practices and hoped
for the misleading and misguided advice given in introductory
textbooks to be removed. Wells and Hintze (2007, p. 501) con-
cluded that “checking the assumptions using the same data that
are to be analyzed, although attractive due to its empirical nature,
is a fruitless endeavor because of its negative ramifications on the
actual test of interest.” The ramifications consist of substantial but
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unknown alterations of Type-I and Type-II error rates and, hence,
a breach of SCV.

Some authors suggest that the problem can be solved by replac-
ing the formal test of assumptions with a decision based on a
suitable graphical display of the data that helps researchers judge
by eye whether the assumption is tenable. It should be emphasized
that the problem still remains, because the decision on how to ana-
lyze the data is conditioned on the results of a preliminary analysis.
The problem is not brought about by a formal preliminary test,
but by the conditional approach to data analysis. The use of a non-
formal preliminary test only prevents a precise investigation of the
consequences on Type-I and Type-II error rates. But the “out of
sight, out of mind” philosophy does not eliminate the problem.

It thus seems that a researcher must make a choice between two
evils: either not testing assumptions (and, thus, threatening SCV
as a result of the uncontrolled Type-I and Type-II error rates that
arise from a potentially undue application of the statistical test) or
testing them (and, then, also losing control of Type-I and Type-
II error rates owing to the two-stage approach). Both approaches
are inadequate, as applying non-robust statistical tests to data that
do not satisfy the assumptions has generally as severe implica-
tions on SCV as testing preliminary assumptions in a two-stage
approach. One of the solutions to the dilemma consists of switch-
ing to statistical procedures that have been designed for use under
the two-stage approach. For instance, Albers et al. (2000) used
second-order asymptotics to derive the size and power of a two-
stage test for independent means preceded by a test of equality of
variances. Unfortunately, derivations of this type are hard to carry
out and, hence, they are not available for most of the cases of inter-
est. A second solution consists of using classical test statistics that
have been shown to be robust to violation of their assumptions.
Indeed, dependable unconditional tests for means or for regres-
sion parameters have been identified (see Sullivan and D’Agostino,
1992; Lumley et al., 2002; Zimmerman, 2004, 2011; Hayes and Cai,
2007; Ng and Wilcox, 2011). And a third solution is switching to
modern robust methods (see, e.g., Wilcox and Keselman, 2003;
Keselman et al., 2004; Wilcox, 2006; Erceg-Hurn and Mirosevich,
2008; Fried and Dehling, 2011).

Avoidance of the two-stage approach in either of these ways
will restore SCV while observing the important requirement that
statistical methods should be used whose assumptions are not
violated by the characteristics of the data.

REGRESSION AS A MEANS TO INVESTIGATE BIVARIATE
RELATIONS OF ALL TYPES
Correlational methods define one of the branches of scientific psy-
chology (Cronbach, 1957) and they are still widely used these days
in some areas of psychology. Whether in regression analyses or
in latent variable analyses (Bollen, 2002), vast amounts of data
are subjected to these methods. Regression analyses rely on an
assumption that is often overlooked in psychology, namely, that
the predictor variables have fixed values and are measured without
error. This assumption, whose validity can obviously be assessed
without recourse to any preliminary statistical test, is listed in all
statistics textbooks.

In some areas of psychology, predictors actually have this
characteristic because they are physical variables defining the

magnitude of stimuli, and any error with which these magnitudes
are measured (or with which stimuli with the selected magnitudes
are created) is negligible in practice. Among others, this is the
case in psychophysical studies aimed at estimating psychophysi-
cal functions describing the form of the relation between physical
magnitude and perceived magnitude (e.g., Green, 1982) or psy-
chometric functions describing the form of the relation between
physical magnitude and performance in a detection, discrimina-
tion, or identification task (Armstrong and Marks, 1997; Saberi
and Petrosyan, 2004; García-Pérez et al., 2011). Regression or anal-
ogous methods are typically used to estimate the parameters of
these relations, with stimulus magnitude as the independent vari-
able and perceived magnitude (or performance) as the dependent
variable. The use of regression in these cases is appropriate because
the independent variable has fixed values measured without error
(or with a negligible error). Another area in which the use of regres-
sion is permissible is in simulation studies on parameter recovery
(García-Pérez et al., 2010), where the true parameters generating
the data are free of measurement error by definition.

But very few other predictor variables used in psychology meet
this requirement, as they are often test scores or performance mea-
sures that are typically affected by non-negligible and sometimes
large measurement error. This is the case of the proportion of hits
and the proportion of false alarms in psychophysical tasks, whose
theoretical relation is linear under some signal detection mod-
els (DeCarlo, 1998) and, thus, suggests the use of simple linear
regression to estimate its parameters. Simple linear regression is
also sometimes used as a complement to statistical tests of equality
of means in studies in which equivalence or agreement is assessed
(e.g., Maylor and Rabbitt, 1993; Baddeley and Wilson, 2002), and
in these cases equivalence implies that the slope should not differ
significantly from unity and that the intercept should not differ
significantly from zero. The use of simple linear regression is also
widespread in priming studies after Greenwald et al. (1995; see also
Draine and Greenwald, 1998), where the intercept (and sometimes
the slope) of the linear regression of priming effect on detectability
of the prime are routinely subjected to NHST.

In all the cases just discussed and in many others where the
X variable in the regression of Y on X is measured with error,
a study of the relation between X and Y through regression is
inadequate and has serious consequences on SCV. The least of
these problems is that there is no basis for assigning the roles of
independent and dependent variable in the regression equation
(as a non-directional relation exists between the variables, often
without even a temporal precedence relation), but regression para-
meters will differ according to how these roles are assigned. In
influential papers of which most researchers in psychology seem
to be unaware, Wald (1940) and Mandansky (1959) distinguished
regression relations from structural relations, the latter reflecting
the case in which both variables are measured with error. Both
authors illustrated the consequences of fitting a regression line
when a structural relation is involved and derived suitable estima-
tors and significance tests for the slope and intercept parameters
of a structural relation. This topic was brought to the attention
of psychologists by Isaac (1970) in a criticism of Treisman and
Watts’ (1966) use of simple linear regression to assess the equiva-
lence of two alternative estimates of psychophysical sensitivity (d ′

www.frontiersin.org August 2012 | Volume 3 | Article 325 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


García-Pérez Statistical conclusion validity

measures from signal detection theory analyses). The difference
between regression and structural relations is briefly mentioned in
passing in many elementary books on regression, the issue of fitting
structural relations (sometimes referred to as Deming’s regression
or the errors-in-variables regression model) is addressed in detail in
most intermediate and advance books on regression (e.g., Fuller,
1987; Draper and Smith, 1998) and hands-on tutorials have been
published (e.g., Cheng and Van Ness, 1994; Dunn and Roberts,
1999; Dunn, 2007). But this type of analysis is not in the toolbox
of the average researcher in psychology1. In contrast, recourse to
this type analysis is quite common in the biomedical sciences.

Use of this commendable method may generalize when
researchers realize that estimates of the slope β and the intercept α

of a structural relation can be easily computed through

β̂ =

S2
y − λS2

x +

√(
S2

y − λS2
x

)2
+ 4λS2

xy

2Sxy
, (1)

α̂ = Ȳ − β̂X̄ , (2)

where X̄ , Ȳ , S2
x , S2

y , and Sxy are the sample means, variances, and

covariance of X and Y, and λ = σ2
εy

/σ2
εx

is the ratio of the vari-

ances of measurement errors in Y and in X. When X and Y are
the same variable measured at different times or under different
conditions (as in Maylor and Rabbitt, 1993; Baddeley and Wilson,
2002), λ= 1 can safely be assumed (for an actual application, see
Smith et al., 2004). In other cases, a rough estimate can be used,
as the estimates of α and β have been shown to be robust except
under extreme departures of the guesstimated λ from its true value
(Ketellapper, 1983).

For illustration, consider Yeshurun et al. (2008) comparison of
signal detection theory estimates of d ′ in each of the intervals of a
two alternative forced-choice task, which they pronounced differ-
ent as revealed by a regression analysis through the origin. Note
that this is the context in which Isaac (1970) had illustrated the
inappropriateness of regression. The data are shown in Figure 1,
and Yeshurun et al. rejected equality of d ′1 and d ′2 because the
regression slope through the origin (red line, whose slope is 0.908)
differed significantly from unity: The 95% confidence interval for
the slope ranged between 0.844 and 0.973. Using Eqs 1 and 2,
the estimated structural relation is instead given by the blue line
in Figure 1. The difference seems minor by eye, but the slope of
the structural relation is 0.963, which is not significantly differ-
ent from unity (p= 0.738, two-tailed; see Isaac, 1970, p. 215). This
outcome, which reverses a conclusion raised upon inadequate data
analyses, is representative of other cases in which the null hypoth-
esis H 0: β= 1 was rejected. The reason is dual: (1) the slope of
a structural relation is estimated with severe bias through regres-
sion (Riggs et al., 1978; Kalantar et al., 1995; Hawkins, 2002) and

1SPSS includes a regression procedure called “two-stage least squares” which only
implements the method described by Mandansky (1959) as “use of instrumental
variables” to estimate the slope of the relation between X and Y. Use of this method
requires extra variables with specific characteristics (variables which may simply not
be available for the problem at hand) and differs meaningfully from the simpler and
more generally applicable method to be discussed next

d̂’
1

d̂
’ 2

0 1 2 3 4 5

0

1

2

3

4

5

FIGURE 1 | Replot of data fromYeshurun et al. (2008, their Figure 8)
with their fitted regression line through the origin (red line) and a
fitted structural relation (blue line). The identity line is shown with
dashed trace for comparison. For additional analyses bearing on the SCV of
the original study, see García-Pérez and Alcalá-Quintana (2011).

(2) regression-based statistical tests of H 0: β= 1 render empiri-
cal Type-I error rates that are much higher than the nominal rate
when both variables are measured with error (García-Pérez and
Alcalá-Quintana, 2011).

In sum, SCV will improve if structural relations instead of
regression equations were fitted when both variables are measured
with error.

CONCLUSION
Type-I and Type-II errors are essential components of the statis-
tical decision theory underlying NHST and, therefore, data can
never be expected to answer a research question unequivocally.
This paper has promoted a view of SCV that de-emphasizes con-
sideration of these unavoidable errors and considers instead two
alternative issues: (1) whether statistical tests are used that match
the research design, goals of the study, and formal characteristics
of the data and (2) whether they are applied in conditions under
which the resultant Type-I and Type-II error rates match those
that are declared as limiting the validity of the conclusion. Some
examples of common threats to SCV in these respects have been
discussed and simple and feasible solutions have been proposed.
For reasons of space, another threat to SCV has not been covered
in this paper, namely, the problems arising from multiple testing
(i.e., in concurrent tests of more than one hypothesis). Multiple
testing is commonplace in brain mapping studies and some impli-
cations on SCV have been discussed, e.g., by Bennett et al. (2009),
Vul et al. (2009a,b), and Vecchiato et al. (2010).

All the discussion in this paper has assumed the frequentist
approach to data analysis. In closing, and before commenting on
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how SCV could be improved, a few words are worth about how
Bayesian approaches fare on SCV.

THE BAYESIAN APPROACH
Advocates of Bayesian approaches to data analysis, hypothesis
testing, and model selection (e.g., Jennison and Turnbull, 1990;
Wagenmakers, 2007; Matthews, 2011) overemphasize the prob-
lems of the frequentist approach and praise the solutions offered
by the Bayesian approach: Bayes factors (BFs) for hypothesis test-
ing, credible intervals for interval estimation, Bayesian posterior
probabilities, Bayesian information criterion (BIC) as a tool for
model selection and, above all else, strict reliance on observed data
and independence of the sampling plan (i.e., fixed vs. sequential
sampling). There is unquestionable merit in these alternatives and
a fair comparison with their frequentist counterparts requires a
detailed analysis that is beyond the scope of this paper. Yet, I cannot
resist the temptation of commenting on the presumed problems of
the frequentist approach and also on the standing of the Bayesian
approach with respect to SCV.

One of the preferred objections to p values is that they relate to
data that were never collected and which, thus, should not affect
the decision of what hypothesis the observed data support or fail
to support. Intuitively appealing as it may seem, the argument is
flawed because the referent for a p value is not other data sets
that could have been observed in undone replications of the same
experiment. Instead, the referent is the properties of the test sta-
tistic itself, which is guaranteed to have the declared sampling
distribution when data are collected as assumed in the derivation
of such distribution. Statistical tests are calibrated procedures with
known properties, and this calibration is what makes their results
interpretable. As is the case for any other calibrated procedure or
measuring instrument, the validity of the outcome only rests on
adherence to the usage specifications. And, of course, the test sta-
tistic and the resultant p value on application cannot be blamed for
the consequences of a failure to collect data properly or to apply
the appropriate statistical test.

Consider a two-sample t test for means. Those who need a ref-
erent may want to notice that the p value for the data from a given
experiment relates to the uncountable times that such test has been
applied to data from any experiment in any discipline. Calibration
of the t test ensures that a proper use with a significance level of,
say, 5% will reject a true null hypothesis on 5% of the occasions,
no matter what the experimental hypothesis is, what the variables
are, what the data are, what the experiment is about, who carries
it out, or in what research field. What a p value indicates is how
tenable it is that the t statistic will attain the observed value if
the null were correct, with only a trivial link to the data observed
in the experiment of concern. And this only places in a precise
quantitative framework the logic that the man on the street uses
to judge, for instance, that getting struck by lightning four times
over the past 10 years is not something that could identically have
happened to anybody else, or that the source of a politician’s huge
and untraceable earnings is not the result of allegedly winning top
lottery prizes numerous times over the past couple of years. In any
case, the advantage of the frequentist approach as regards SCV is
that the probability of a Type-I or a Type-II error can be clearly and
unequivocally stated, which is not to be mistaken for a statement

that a p value is the probability of a Type-I error in the current
case, or that it is a measure of the strength of evidence against the
null that the current data provide. The most prevalent problems of
p values are their potential for misuse and their widespread mis-
interpretation (Nickerson, 2000). But misuse or misinterpretation
do not make NHST and p values uninterpretable or worthless.

Bayesian approaches are claimed to be free of these presumed
problems, yielding a conclusion that is exclusively grounded on the
data. In a naive account of Bayesian hypothesis testing, Malakoff
(1999) attributes to biostatistician Steven Goodman the assertion
that the Bayesian approach “says there is an X% probability that
your hypothesis is true–not that there is some convoluted chance
that if you assume the null hypothesis is true, you will get a similar
or more extreme result if you repeated your experiment thou-
sands of times.” Besides being misleading and reflecting a poor
understanding of the logic of calibrated NHST methods, what
goes unmentioned in this and other accounts is that the Bayesian
potential to find out the probability that the hypothesis is true will
not materialize without two crucial extra pieces of information.
One is the a priori probability of each of the competing hypothe-
ses, which certainly does not come from the data. The other is
the probability of the observed data under each of the competing
hypothesis, which has the same origin as the frequentist p value
and whose computation requires distributional assumptions that
must necessarily take the sampling method into consideration.

In practice, Bayesian hypothesis testing generally computes BFs
and the result might be stated as “the alternative hypothesis is x
times more likely than the null,” although the probability that this
type of statement is wrong is essentially unknown. The researcher
may be content with a conclusion of this type, but how much of
these odds comes from the data and how much comes from the
extra assumptions needed to compute a BF is undecipherable. In
many cases research aims at gathering and analyzing data to make
informed decisions such as whether application of a treatment
should be discontinued, whether changes should be introduced
in an educational program, whether daytime headlights should be
enforced, or whether in-car use of cell phones should be forbidden.
Like frequentist analyses, Bayesian approaches do not guarantee
that the decisions will be correct. One may argue that stating how
much more likely is one hypothesis over another bypasses the deci-
sion to reject or not reject any of them and, then, that Bayesian
approaches to hypothesis testing are free of Type-I and Type-II
errors. Although this is technically correct, the problem remains
from the perspective of SCV: Statistics is only a small part of a
research process whose ultimate goal is to reach a conclusion and
make a decision, and researchers are in a better position to defend
their claims if they can supplement them with a statement of the
probability with which those claims are wrong.

Interestingly, analyses of decisions based on Bayesian
approaches have revealed that they are no better than frequentist
decisions as regards Type-I and Type-II errors and that parametric
assumptions (i.e., the choice of prior and the assumed distribu-
tion of the observations) crucially determine the performance of
Bayesian methods. For instance, Bayesian estimation is also subject
to potentially large bias and lack of precision (Alcalá-Quintana and
García-Pérez, 2004; García-Pérez and Alcalá-Quintana, 2007), the
coverage probability of Bayesian credible intervals can be worse
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than that of frequentist confidence intervals (Agresti and Min,
2005; Alcalá-Quintana and García-Pérez, 2005), and the Bayesian
posterior probability in hypothesis testing can be arbitrarily large
or small (Zaslavsky, 2010). On another front, use of BIC for model
selection may discard a true model as often as 20% of the times,
while a concurrent 0.05-size chi-square test rejects the true model
between 3 and 7% of times, closely approximating its stated per-
formance (García-Pérez and Alcalá-Quintana, 2012). In any case,
the probabilities of Type-I and Type-II errors in practical decisions
made from the results of Bayesian analyses will always be unknown
and beyond control.

IMPROVING THE SCV OF RESEARCH
Most breaches of SCV arise from a poor understanding of statisti-
cal procedures and the resultant inadequate usage. These problems
can be easily corrected, as illustrated in this paper, but the prob-
lems will not have arisen if researchers had had a better statistical
training in the first place. There was a time in which one simply
could not run statistical tests without a moderate understanding
of NHST. But these days the application of statistical tests is only a
mouse-click away and all that students regard as necessary is learn-
ing the rule by which p values pouring out of statistical software
tell them whether the hypothesis is to be accepted or rejected, as
the study of Hoekstra et al. (2012) seems to reveal.

One way to eradicate the problem is by improving statisti-
cal education at undergraduate and graduate levels, perhaps not
just focusing on giving formal training on a number of meth-
ods but by providing students with the necessary foundations
that will subsequently allow them to understand and apply meth-
ods for which they received no explicit formal training. In their
analysis of statistical errors in published papers, Milligan and
McFillen (1984, p. 461) concluded that “in doing projects, it is
not unusual for applied researchers or students to use or apply a
statistical procedure for which they have received no formal train-
ing. This is as inappropriate as a person conducting research in
a given content area before reading the existing background lit-
erature on the topic. The individual simply is not prepared to
conduct quality research. The attitude that statistical technology
is secondary or less important to a person’s formal training is
shortsighted. Researchers are unlikely to master additional sta-
tistical concepts and techniques after leaving school. Thus, the

statistical training in many programs must be strengthened. A
single course in experimental design and a single course in mul-
tivariate analysis is probably insufficient for the typical student
to master the course material. Someone who is trained only
in theory and content will be ill-prepared to contribute to the
advancement of the field or to critically evaluate the research of
others.” But statistical education does not seem to have changed
much over the subsequent 25 years, as revealed by survey stud-
ies conducted by Aiken et al. (1990), Friedrich et al. (2000),
Aiken et al. (2008), and Henson et al. (2010). Certainly some
work remains to be done in this arena, and I can only second
the proposals made in the papers just cited. But there is also
the problem of the unhealthy over-reliance on narrow-breadth,
clickable software for data analysis, which practically obliterates
any efforts that are made to teach and promote alternatives (see
the list of “Pragmatic Factors” discussed by Borsboom, 2006,
pp. 431–434).

The last trench in the battle against breaches of SCV is occupied
by journal editors and reviewers. Ideally, they also watch for prob-
lems in these respects. There is no known in-depth analysis of the
review process in psychology journals (but see Nickerson, 2005)
and some evidence reveals that the focus of the review process is
not always on the quality or validity of the research (Sternberg,
2002; Nickerson, 2005). Simmons et al. (2011) and Wicherts et al.
(2012) have discussed empirical evidence of inadequate research
and review practices (some of which threaten SCV) and they have
proposed detailed schemes through which feasible changes in edi-
torial policies may help eradicate not only common threats to
SCV but also other threats to research validity in general. I can
only second proposals of this type. Reviewers and editors have
the responsibility of filtering out (or requesting amendments to)
research that does not meet the journal’s standards, including SCV.
The analyses of Milligan and McFillen (1984) and Nieuwenhuis
et al. (2011) reveal a sizeable number of published papers with
statistical errors. This indicates that some remains to be done in
this arena too, and some journals have indeed started to take action
(see Aickin, 2011).
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