
Thermal Unfolding Pathway of PHD2 Catalytic Domain in
Three Different PHD2 Species: Computational
Approaches
Hamid Hadi-Alijanvand1, Elizabeth A. Proctor2,4, Bahram Goliaei1, Nikolay V. Dokholyan2,3,4,

Ali A. Moosavi-Movahedi1,4*

1 Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran, 2 Program in Molecular and Cellular Biophysics, University of North Carolina at Chapel Hill,

Chapel Hill, North Carolina, United States of America, 3 Department of Biochemistry and Biophysics, School of Medicine, University of North Carolina at Chapel Hill, Chapel

Hill, North Carolina, United States of America, 4 Curriculum in Bioinformatics and Computational Biology, University of North Carolina at Chapel Hill, Chapel Hill, North

Carolina, United States of America, 5 Center of Excellence in Biothermodynamics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran

Abstract

Prolyl hydroxylase domain 2 containing protein (PHD2) is a key protein in regulation of angiogenesis and metastasis. In
normoxic condition, PHD2 triggers the degradation of hypoxia-inducible factor 1 (HIF-1a) that induces the expression of
hypoxia response genes. Therefore the correct function of PHD2 would inhibit angiogenesis and consequent metastasis of
tumor cells in normoxic condition. PHD2 mutations were reported in some common cancers. However, high levels of HIF-1a
protein were observed even in normoxic metastatic tumors with normal expression of wild type PHD2. PHD2 malfunctions
due to protein misfolding may be the underlying reason of metastasis and invasion in such cases. In this study, we scrutinize
the unfolding pathways of the PHD2 catalytic domain’s possible species and demonstrate the properties of their unfolding
states by computational approaches. Our study introduces the possibility of aggregation disaster for the prominent species
of PHD2 during its partial unfolding. This may justify PHD2 inability to regulate HIF-1a level in some normoxic tumor types.
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Introduction

Eukaryotic cells have an arsenal of genes expressed in response

to hypoxia [1]. Regulation of hypoxia response genes plays a

significant role in cell survival in hypoxic conditions like high

altitude, strokes and asthma. These genes include sets that induce

processes such as angiogenesis, cell motility and glucose uptake.

Hypoxia inducible factor 1 (HIF-1) is a transcription factor that

orchestrates the expression of hypoxia response genes [2,3]. The

stability of HIF-1a (the regulatory domain of HIF-1) is mainly

determined by prolyl hydroxylase domain containing protein 2

(PHD2). In normoxic condition, PHD2 performs HIF-1a hydrox-

ylation and triggers its degradation. When oxygen pressure is low,

PHD2 can not start HIF-1a degradation so HIF-1a level remains

high and hypoxia response genes are induced. PHD2 catalytic

domain has jelly roll architecture with a double stranded beta helix

structure composed of eight strands. Fe (II) is necessary for the

PHD2 function and it coordinates to residues that reside in active

site lumen [4–6].

Partial unfolding of protein structure is a prerequisite for protein

misfolding and aggregation. Upon protein unfolding, the structure

of unfolded protein suffers various disturbances that competent

protein structure for aggregation disaster [7]. The correlation

between beta strand propensity and protein aggregation was

demonstrated [8]. The naturally beta sheet proteins have many

mechanisms to suppress beta strand stimulated protein aggrega-

tion [9]. But such inherently inhibitory mechanisms of aggregation

fade upon protein denaturation. Protein hydration is another

critical factor for protein stability. The small value of globular

protein solvation energy indicates high accessibility of polar

residues. Partial protein unfolding may causes high solvent

exposure of hydrophobic residues therefore the increment of

hydrophobic accessible surface area makes sticky regions on

protein surface then it prepares conditions for protein self-

assembly [10]. While there are some methods to measure the

amount of protein exposed region’s hydrophobicity, solvation

energy measurement is a convenient method. Another protein

aggregation’s risk factor is the presence of metal ions in protein

structures. There are proofs that indicate unnatural quantity of

iron and zinc atoms in tissues with high amount of aggregated

proteins [11]. It is possible that these ions accelerate primary stages

of protein aggregation after partial protein unfolding or even at

first stage of protein folding. In this study, we try to find possible

risk factors that accelerate PHD2 protein misfolding upon partial

unfolding.

Studies have indicated that PHD2 silencing was concomitant

with cancer cell survival and metastasis [12,13]. It has been

reported that PHD2 gene carries mutations in some cancers. Such

mutations may cause PHD2 inactivation and by this way promotes

HIF-1a stabilization, angiogenesis and metastasis [14,15]. How-

ever, many groups have reported a high level of HIF-1a in some

cancer types even in normoxic condition and in spite of high level
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Figure 1. Representation of unfolding process metrics. The fluctuations of long range native contact fraction (Qsh) and radius of gyration as a
function of simulation time are represented.
doi:10.1371/journal.pone.0047061.g001

Figure 2. The distributions of d metric as a reaction coordinate upon thermal unfolding. The normalized density of d as reaction
coordinate is depicted for PHD2 species.
doi:10.1371/journal.pone.0047061.g002
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of wild type PHD2 protein [16,17]. Such observations improve the

possibility of PHD2 misfolding issues such as instability and

aggregation. For investigating the possible misfolding of PHD2, it

is necessary to illustrate the PHD2 unfolding pathway and

characterize its possible unfolding states. A common computa-

tional method to study protein unfolding pathway is heating of the

protein system to temperatures higher than the protein transition

point [18]. Molecular dynamic simulation helps us to study the

unfolding phenomena in atomic details [19,20].

There is no report about the PHD2 unfolding pathway. We

explain thermal unfolding pathway of the PHD2 catalytic domain

in three different kinds of PHD2 via computational approaches.

Three PHD2 species that are studied here include: the nascent

PHD2 without Fe (II) ion (a-PHD2); the mature PHD2 that has an

iron in its active site (f-PHD2); and f-PHD2 with protonated

histidine residues (fh-PHD2) which may appear in acidic

compartments of cells. The study of PHD2 species unfolding

pathways and characterization of their unfolding states may shed

light on the possible reasons of PHD2 malfunction in some

normoxic cancer cells.

Methods

We extracted the initial structure of PHD2 from the crystal

structure (PDB ID: 3HQU chain A). All atom molecular dynamic

(MD) simulations were carried out using NAMD 2.8 software [21]

and CHARMM22 protein force filed with CMAP corrections

[22]. Generalized Born implicit solvent was used to accelerate

simulations. The non-bonded interactions cutoff and ion concen-

tration were set to 16 Å and 0.15 M respectively. The MD time

step was set to 1.0 femtosecond. After 0.50 nanosecond (ns)

minimization, protein was heated from 0 to 500 K gradually.

Then protein structure was equilibrated for 25 ns at 500 K with

langevin thermostat. The interaction energy between different

PHD2 structural elements is computed via NAMD energy tool of

VMD.

The parameter Qsh measures the fraction of long-range native

contacts between Ca atoms with sequence separation of at least 7

residues and 3D separation ,10 Å. This metric is inferred from

[23].

Qsh~

Pi~N

i~1

Pj~N
j~1 (1

.
1ze10(dij{(dij

nativez1))

Nnative

Where N is the length of protein, dij denotes the distance

between the contacting residues in the sample structure, dnative

denotes the distance between these same residues in the native

reference structure, and Nnative is the total number of contacts in the

native structure.

We wrote Tcl script to compute accessible surface area, radius

of gyration, secondary structure content and RMSD of structures

along trajectories by using VMD 1.9.1 [24]. After removal of

rotation and translation of structures, pairwise Ca RMSDs were

computed. Pairwise Ca RMSDs were used to guess PHD2 species

stability. We calculated the dRMS as a criterion for the deviation

of the distance matrix between same Ca pairs in the native and

query structures [25].

In order to evaluate the difference of properties between query

structures and the native state, we computed ‘‘d’’ metric based on

Daggett method [26]. It has been assumed that d metric acts as an

unfolding reaction coordinate.

The multidimensional property space used in this study to

construct the d metric includes total or side chain solvent accessible

surface area (t/s ASA), ASA for total and side chain region of polar

(p) and non-polar (np) residues, ASA of all tryptophan (W)

residues, side chain ASA of each tryptophan residue of PHD2

Figure 3. 2D kernel densities of PCA for the PHD2 species
unfolding states. The most fold state resides in left side of panels and
the most unfold states reside in right side of panels. The densities of a-
PHD2, f-PHD2 and fh-PHD2 are depicted in panel A, B and C
respectively. The panels are the 2D kernel density maps for the
principal components 1, 2. Principal components are computed by
utilizing the properties space used to build the d metric. Horizontal and
vertical dimensions indicate first and second principal components
respectively. The contour levels indicate the density. Darker region is
the most populated region.
doi:10.1371/journal.pone.0047061.g003
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(W258, W334, W367 and W389), ASA of active site lumen (ACS-

lumen) and docking site region (Docking-site) of PHD2 structure

[4], Qsh metric, RMSD and dRMS relative to crystal structure,

radius of gyration, dipole moment for each frame, changes in heat

capacity (DCp) computed based on the changes in polar and

apolar ASA relative to native structure [27], the percent of melted

helixes (l.H) and strands (l.E) and the percent of appeared coil

regions (l.C).

We calculated the normalized fraction of unfolding in regard to

crystal structure for each property during simulations (data are

normalized to the highest value). By composing the normalized

fractions of unfolding based on Daggett method [26], we compute

the d metric for each simulation step as follow;

d~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Py~N

y~1

(Py{Py,native)2

N

vuuut

Where N is the number of properties, P denotes the normalized

fraction of unfolding based on each property (y). The minimization

steps’ structures were considered as the native structures’ pool. For

the pool of native structures, the average of normalized fractions of

unfolding was computed based on y and called Py,native.

Based on each property (e.g. t.ASA) we calculated the fraction

of protein unfolding for each unfolding state (us). We introduced a

Shannon entropy by assuming the equal unfolding fraction for all

states (feU). Another Shannon entropy was calculated based on the

observed unfolding fractions of states (foU). The information

content (I) of the desired property was computed as follow [28]:

I~({
X

us

(feU )us|log2(feU )us){({
X

us

(foU )us|log2(foU )us)

We computed 2D kernel densities and performed affinity

propagation clustering (AP), principal component analysis (PCA)

and non-metric multidimensional scaling (n-MDS) by using the R

1.14 software [29–31]. The solvation free energies of polar and

apolar parts of structures were computed by APBS 1.3 software

[32].

Results and Discussion

The analysis of thermal unfolding MD trajectories provides

insight to reveal the key phenomena of the first steps of protein

unfolding. The study of structural aspects of states along the

unfolding pathway may reveal the basis of wild type PHD2

malfunction in some types of tumors.

Figure 4. The results of structures clustering by Affinity propagation (AP) method for PHD2 species. The most fold cluster resides in left
side of panels and the most unfold clusters reside in right side of panels. The structures’ clusters of a-PHD2, f-PHD2 and fh-PHD2 are depicted in panel
A, B and C respectively. The panels are the results of affinity propagation clustering method. After reducing the dimensionality of the properties space
used to build the d metric by n-MDS, AP clustering is performed. X and Y axes are the output vectors of n-MDS. Points represent structures in AP
method. Clusters (states) are declared with different colors.
doi:10.1371/journal.pone.0047061.g004

Figure 5. Comparing the percentage of PHD2 species contribution to each variable during partial unfolding. The contribution of PHD2
species to each property’s information content is represented in percent. p, np note polar or non-polar parts of the molecule. ASA stands for
accessible surface area, t and s stand for total and side chain respectively. Rgyr stands for radius of gyration. Dpm notes the dipole moment. W stands
for tryptophan residue. Docking site and active site lumen are the ASA of corresponding parts of PHD2. l.E% and l.H% stand for the amount of strand
or helix structure melting respectively. l.C% notes the amount of appeared coiled structure.
doi:10.1371/journal.pone.0047061.g005
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Variations in protein dimension and native contacts are

indicators of protein structural changes during thermal denatur-

ation. We compute the radius of gyration and the fraction of long-

range native contacts for the structures of PHD2 species along

25 ns thermal unfolding simulations (Figure 1). The corruption of

long-range native contacts is apparent by the decrease in Qsh value

for the a-PHD2 (nascent form of PHD2), f-PHD2 (PHD2 with

iron in active site) and fh-PHD2 (f-PHD2 with protonated

histidine residues) structures upon heating. Also, an increase in

protein radius of gyration indicates that the structures swell as a

consequence of partial thermal unfolding. Changes in these

metrics indicate that, despite identical protein sequence and initial

structure, these three different species of PHD2 exhibit different

properties upon unfolding.

A suitable reaction coordinate is necessary to study the

unfolding pathway chronologically. The average distance of query

structure’s properties from the native state properties (d) is a

suitable reaction coordinate to analyze protein unfolding [26]. We

measure the distance (d) of PHD2 unfolded structures from the

crystal structure. This metric assigns a value of zero to native

structure and one to the most unfolded structures. Probability

densities of d indicate that, while most structures are a large

distance from the native state and therefore unfolded, the

distributions of populated structures vary between the different

PHD2 species (Figure 2 and Tables S1, S2, S3). This finding

implies the possibility of various unfolding pathways for PHD2.

For example, f-PHD2 has a clear population when it loses 45% of

its similarity to its native state properties (d = 0.45) while other

species do not have such population. On the other hand, the most

populated structure of fh-PHD2 appears at d = 0.7 and other two

species have the most populated structures in other regions of

reaction coordinate.

To confirm the distance (d) distributions of structure popula-

tions, we perform PCA with the properties used to construct d as

the reaction coordinate. PCA reduces the multidimensionality of

property space [26]. The first two components of PCA cover over

95% of data variance. The 2D kernel density maps of principal

components 1 and 2 indicate different highly populated regions for

partial unfolding process of PHD2 species (Figure 3). Because the

2D kernel density of PCA components is a population density (Xi),

it is possible to consider it as 2D potential of mean force (PMF)

map for unfolding trajectories (PMF = 2RTln(Xi)).

The appearance of highly populated regions in the 2D PCA

maps (darker regions) demonstrates that three species of PHD2

have different populated states during thermal unfolding, implying

a multi-state model of unfolding. The populated regions of such

maps are in good consistency with d kernel density distributions

(Figure 2). The 2D PCA map for a-PHD2 indicates this species has

four populated states in the most unfolded region of its trajectory

(Figure 3A). The coordination of Fe (II) to the active site lumen of

a-PHD2 creates the f-PHD2 species, decreasing the number of

states to two. Protonation of histidine residues in f-PHD2 (fh-

PHD2) reduces its unfolded populations to a single populated state

(Figure 3C).

What are the properties of the thermal unfolding states of the

various PHD2 species? How do the addition of iron and protons to

the PHD2 structure change the prominent states of thermal

unfolding? In the following section we attempt to answer these

questions and reveal the consequences of PHD2 species partial

unfolding.

Notably, PCA presumes a linear relationship between variables,

and thus ignores non-linear interrelationships between variables.

To compensate for this effect, we perform non-metric multidi-

mensional scaling (n-MDS) for the properties used to construct the

d metric [33]. We use the first two-fitted n-MDS configuration

vectors to cluster trajectory structures into separate populations.

Although data compressing methods such as PCA and n-MDS

reveal separate populations for PHD2 species unfolding, they are

unable to find the border and a representative structure for each

population. To provide these data, we utilize exemplar-based

affinity propagation (AP) clustering [23]. The AP clustering of n-

MDS outputs reveals the same populations as when using the d

metric distribution and 2D-PCA maps for thermal unfolding of

PHD2 species (Figure 4). The representative structures are the

centroids of the clusters.

Now, we are able to compute various structural and thermo-

dynamical properties of each state (AP cluster) along the unfolding

pathway (Tables S4, S5, S6). To simplify the representation of at

least 20 different parameters for 7 states of each PHD2 species, we

compute the information content of each averaged parameter for

all states of each species. A variable with high information content

is likely to be important in the process of unfolding. By comparing

the information content of each property between different PHD2

species, we capture which properties are more influenced by the

addition of iron or protons to a-PHD2 (Figure 5).

The stand-out variables in information content graph are the

accessible surface area of tryptophan residues (s.Wxxx.ASA).

Tryptophan 258 (W258), which resides at the entrance of the

PHD2 active site lumen, is the first tryptophan residue that reaches

its maximal exposure in the a-PHD2 species, which occurs when

the protein reaches a state that is only 40% unfolded (d = 0.4),

compared to other tryptophan residues in a-PHD2 that do not

become exposed until the last steps of protein unfolding (Table S4).

Two tryptophan residues (W334 and W389) located along the

active site lumen reach their maximal solvent accessibility when fh-

PHD2 becomes 60% unfolded. Tryptophan 389 (W389) reaches

its maximal accessibility in f-PHD2 when the protein is in 70%

unfolded structure. These observations indicate that the coordi-

nation of the Fe (II) ion to the PHD2 active site sensitizes

tryptophan 389 to structural changes before the completion of

thermal unfolding. The acidic environment in fh-PHD2 induces

the selective exposure of tryptophan 334 upon PHD2 partial

unfolding. Knowledge of the effects of selective exposure of

Table 1. The changes of protein solvation free energy upon
unfolding.

d Polar Apolar Total

a-PHD2 0.2–0.4 271 68 23

0.4–0.6 242 112 69

0.6–0.8 2275 177 298

0.8–1.0 24 176 172

f-PHD2 0.2–0.4 51 85 136

0.4–0.6 4 109 113

0.6–0.8 123 110 232

0.8–1.0 246 133 379

fh-PHD2 0.2–0.4 2160 92 268

0.4–0.6 2153 122 231

0.6–0.8 2325 188 2137

0.8–1.0 2230 198 232

For each state with a special d value, we compute the free energy of solvation
for the state’s representative structure. The difference between this value and
solvation free energy of native state (d = 0.0) is reported here in kcal/mol.
doi:10.1371/journal.pone.0047061.t001
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tryptophan residues as the consequence of iron or proton addition

are helpful for designing single molecule fluorescent labels for

further experimental study of PHD2 unfolding pathway.

Another parameter whose information content varies between

the three PHD2 species is the change in heat capacity (DCp) along

the unfolding pathway (Figure 5 and Table S4). The DCp reaches

its maximum value in f-PHD2, a-PHD2, and fh-PHD2 sequen-

tially. This results in the f-PHD2 hydrophobic surface becoming

accessible to solvent in the early steps of protein unfolding.

By scrutinizing the decay rate of strand structures (l.E%) (Table

S4), we observe that f-PHD2 strand structures are more stable

than other PHD2 species, although they reside at the same

distance from the native structure. The structure of f-PHD2

retains 50% of its strand structures even though the protein is far

from the native state (d = 0.8). The amount of hydrophobic surface

exposure and the percent of remaining strand structures suggest

that the common version of cellular PHD2, f-PHD2, may be

vulnerable to aggregation upon partial denaturation [7,34]. These

observations provide misfolding and aggregation as a possible

mechanism for wild type PHD2 malfunction in normoxic tumor

cells.

For further analysis of the aggregation propensity of the states of

the various PHD2 species, we compute changes in the protein

hydration free energy (DG(h)) for the representative structures of

three species of PHD2 using the APBS software. This software is

able to compute the hydration free energy of the polar and apolar

parts of each structure (Table 1). A positive DG(h) indicates an

unfavorable hydration upon unfolding [10]. The a-PHD2 species

has an unfavorable total hydration free energy when it passes 50 or

90% of the way along its unfolding pathway. Therefore,

considering DG(h), a-PHD2 is aggregation prone in most unfolded

states. In contrast, fh-PHD2 is hydrated all over the unfolding

pathway (Table 1). The functional form of PHD2, f-PHD2, does

not hydrate along the unfolding pathway. The change in total

hydration free energy, the strand structural content, and the DCp

suggest that f-PHD2 is the aggregation prone species of PHD2.

The quantity of the polar hydration free energy also indicates an

odd behavior of the f-PHD2: that the amounts of polar solvation of

the f-PHD2 structures do not facilitate f-PHD2 unfolding (the

polar part of DG(h) is usually negative because polar regions

become hydrated easily). It is possible that the iron in the f-PHD2

structure causes gathering of polar regions around some nuclei

while allowing hydrophobic regions to become exposed during the

protein partial unfolding. Therefore, Fe (II) possibly contributes to

f-PHD2 aggregation.

Because the iron atom plays critical role in PHD2 function and

also is a risk factor for possible PHD2 aggregation, we study in

detail the iron experienced events during PHD2 unfolding.

There is an arginine residue (R383) at the end of PHD2 active

site lumen which is essential for substrate binding. The position of

R383 does not change severely during PHD2 partial unfolding.

The measurement of iron – R383 distance indicates that the

distance between iron and R383 is increased suddenly in fh-PHD2

unfolding (Figure 6A) while such distance increment did not

observe for f-PHD2 unfolding. Possibly, such Fe atom jump is

necessary to alleviate harsh conditions during fh-PHD2 unfolding.

The study of Fe atom – basic residues interactions indicates the

repulsion between the fh-PHD2 Fe atom and basic residues

decreases and reaches to a minimum during first 5 ns where the

distance between Fe atom and active site lumen is increased

(Figure 6B, S1). On the other hand, the interaction of Fe atom and

acidic residues is attractive for f-PHD2 (Figure S2). There are two

important strand structures in PHD2 active site lumen. A strand is

made by residues from 308 to 320 (strand HD). This strand carries

D315 and H313 residues. These two residues with an additional

histidine (H374) which resides in the second important strand

(residues 372 to 377, strand H) make PHD2 active sites. The

strand H and HD cover the floor of active site. The study of

interaction energy between strand H and HD indicates that these

two strands interaction energy is decreased gradually during f-

PHD2 unfolding. It means the floor of f-PHD2 active site is

disrupted upon unfolding while the interaction energy between fh-

PHD2 strand H and HD does not change critically (Figure 6C).

We propose the protonation of histidine residues makes

additional electrostatic attractions between strand H and HD in

fh-PHD2. Also it is concluded the Fe atom is pushed out from fh-

PHD2 active site lumen therefore it does not make trouble for

active site floor integrity. Such Fe atom pushing out causes severe

rupture of f-PHD2 active site floor (Figures S3, S4, S5). These

observations denote that D315 traps the Fe atom during PHD2

unfolding. D315 acts as a relay between strand HD and the

outside of active site lumen. In this study, it is inferred that D315 is

free to guide Fe atom from fh-PHD2 active site lumen to outside.

While the mentioned aspartate residue is not free to relay Fe ion

movement in f-PHD2 therefore the Fe-rooted repulsion between

strand H and HD increases. Such Fe residence in f-PHD2

structure possibly prepares conditions for starting protein assembly

and seeding the aggregation.

To estimate the total stability of each PHD2 species, we need a

structural criterion to derive protein stability from a single

temperature protein unfolding trajectory. To derive such a

criterion, we return to the basic definition of the transition

temperature (Tm), where the populations of native and unfold

structures are in equilibrium.

For a structure x residing at dx along the unfolding pathway, we

compute the fraction of structures within 3 angstroms RMSD of x

with d , dx, and the fraction of structures within 3 angstroms

RMSD of x with d . dx. The point at which these two fractions

become equal represents the transition point and its d value

(Figure 7). The junction in this graph represents the position of the

main transition point of PHD2 species thermal unfolding. We set

the cutoff of pairwise RMSD to 3 angstroms because the average

RMSD value at d = 0.5 with respect to the native state is 3

angstroms. At d = 0.5 the PHD2 structures are not completely

folded nor completely unfolded, and hence do not have a bias

toward either state.

The junction point appears in d = 0.6 for a-PHD2, while the

transition points of f-PHD2 and fh-PHD2 appear at d = 0.72 and

0.70 respectively. Therefore, the coordination of Fe (II) to PHD2

structure improves the protein stability, but at the same time

prominently enhances the protein aggregation propensity in

response to partial unfolding. Possibly, the coordination of the

Fe (II) ion to PHD2 stabilizes the states that are reactive for

aggregation.

Figure 6. The consequences of Fe atom detaching from PHD2 active site lumen. The distance between Fe ion and arginine 383 is
computed during f and fh-PHD2 unfolding (A). The interaction energy (repulsion) between Fe atom and f or fh-PHD2 basic residues is computed (B).
The interaction energy between strand HD (residues 308 to 320) and strand H (residues 372 to 377) is computed for f and fh-PHD2 (C).
doi:10.1371/journal.pone.0047061.g006
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Figure 7. The maximal stability of PHD2 species. The fraction of structures which are more folded (red spheres) or more denatured (blue
spheres) than the corresponding structure of each d value is represented. The junction of blue and red spheres indicates the position of main
transition for (A) a-PHD2, (B) f-PHD2 and (C) fh-PHD2.
doi:10.1371/journal.pone.0047061.g007
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Conclusion
We conducted MD simulations of the partial thermal unfolding

pathways of three species of the PHD2 protein. We clustered

structures along the MD trajectories and characterized their

corresponding unfolded states.

Partial unfolding is a critical step for protein misfolding and

aggregation. We inferred that immature PHD2 (a-PHD2) may

aggregate at the last stages of unfolding. However, the functional

form of PHD2 is aggregation prone even in the first stages of

unfolding.

The addition of the Fe (II) and protons to PHD2 structure

severely changes its unfolding pathway states. Among the PHD2

species, f-PHD2 unfolding states may be more susceptible for

misfolding and aggregation. Such misfolding propensity arises

from positive DG(h), high content of strand structures as

aggregation triggering structures, Fe ion derived rupture of

structure and high exposed hydrophobic area during unfolding.

It may provide explanation for PHD2 malfunctions in some

normoxic tumor cells.

Supporting Information

Figure S1 The interaction energy between Fe ion and
histidine residue 374 is indicated.

(TIF)

Figure S2 The interaction energy between Fe ion and
acidic residues is indicated.

(TIF)

Figure S3 It is a scheme of Fe detaching consequence.
Fe atom is pushed out from active site lumen of fh-PHD2 without

rupturing active site floor. In f-PHD2, Fe ion tries to escape from

active site while D315 traps Fe so it rupture active site floor.

(TIF)

Figure S4 The animated GIF file shows the fate of Fe
atom upon f-PHD2 unfolding. The Fe atom is mentioned by

yellow sphere. The red surface represents active site lumen.

(GIF)

Figure S5 The animated GIF file shows the fate of Fe
atom upon fh-PHD2 unfolding. The Fe atom is mentioned by

yellow sphere. The red surface represents active site lumen.

(GIF)

Table S1 The metrics used to construct the d metric is
represented for a-PHD2.
(XLS)

Table S2 The metrics used to construct the d metric is
represented for f-PHD2.
(XLS)

Table S3 The metrics used to construct the d metric is
represented for fh-PHD2.
(XLS)

Table S4 The details of structural properties for the
states that determined by using affinity propagation
clustering, tabulated. The reported values are the average of

the fraction of unfolding that computed for the state’s members.

(DOC)

Table S5 The details of structural properties for the
states that determined by using affinity propagation
clustering, tabulated. The reported values are the average of

properties (real observed values) for the state’s members.

(DOC)

Table S6 The standard error of mean for the average
values that reported in Table S5.
(DOC)
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