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Abstract: Engineers, scientists and mathematicians are greatly concerned about the thermal sta-
bility/instability of any physical system. Current contemplation discusses the role of the Soret
and Dufour effects in hydro-magnetized Carreau–Yasuda liquid passed over a permeable stretched
surface. Several important effects were considered while modelling the thermal transport, including
Joule heating, viscous dissipation, and heat generation/absorption. Mass transportation is presented
in the presence of a chemical reaction. Different nanoparticle types were mixed in the Carreau–Yasuda
liquid in order to study thermal performance. Initially, governing laws were modelled in the form
of PDEs. Suitable transformation was engaged for conversion into ODEs and then the resulting
ODEs were handled via FEM (Finite Element Method). Grid independent analysis was performed
to determine the effectiveness of the chosen methodology. Several important physical effects were
explored by augmenting the values of the influential parameters. Heat and mass transfer rates were
computed against different parameters and discussed in detail.

Keywords: viscous dissipation; chemical reaction; finite element procedure; hybrid nanoparticles;
heat and mass transfer rates; joule heating

1. Introduction

The mechanism of transport phenomenon in different materials has received reason-
able attention recently due to its wider applications in industry and different medical
processes. Several important materials exist for the support of these mechanisms. Due
to their different characteristics, these materials cannot be explained through one consti-
tutive relation. Carreau–Yasuda is one such important material which has the following
constitute relation.

For Y = 0 or n = 1, the Newtonian model is recovered. This model predicts the
relation of shear stress with frequency. Several important contributions have been made by

ηCY
( .
γ
)
= µ∞ + (µ0 − µ∞)

[
1 +

(
Y

.
γ
)d
] n−1

d . (1)

considering this material. For example, Zare et al. [1] discussed this model by experimen-
tally considering the complex viscosity relationship. In their investigation, they found
an excellent settlement of frequency data. They considered the involvement of carbon
nanotubes in the mixture of Carreau–Yasuda material. Kayani et el. [2] reported on the
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behavior of wall properties on the peristaltic flow of the Carreau–Yasuda model in a sinu-
soidal channel by considering the Hall effect. Governing laws for the transport of species,
heat and momentum were modeled under the low-Reynolds-number assumption along
with the long wavelength approach. After implementing the scaling group transformation,
the transformed problem was approximated numerically via the ND-Solve tool in the
MATHEMATICA 15.0 symbolic package. The authors conducted a parametric analysis
and their findings were shown in several graphs. They noticed a decline in the thermal
field for the Biot number and recorded an enhancement in the mounting values of the
Brinkman number. The unsteady rheology of the Carreau–Yasuda material in a circular
tube was examined by Rana and Murthy [3]. In their investigation, they reported the wall
absorption effect. They retrieved different flow behavior cases by considering different
values of material parameters. Sochi [4] presented the modelling of Cross and Carreau
liquid through a circular pipe. Analytical and numerical schemes were jointly implemented
for the solution of flow equations and an excellent settlement was monitored. The rheology
of the Carreau–Yasuda model in a cavity at high-Reynolds-number was examined by
Shamekhi and Aliabadi [5] via the mesh-free algorithm. The phenomenon of blood flow
via the Carreau–Yasuda model was reported by Jahangiri [6] through the FEM package.

The involvement of nanoparticles enhanced the thermal performance and heat trans-
portation rate. Several models of the nanomaterials are available and frequently used
to study the thermal performance of different materials. Several researchers have paid
attention to these materials due to their wider applications and usage. For instance, Gorla
and Gireesha [7] developed the modeling of steady viscoelastic material with convec-
tive heat transport. The Buongiorno model is utilized to capture the characteristics of
Brownian diffusion and thermophoresis. Modelling of heat transport is carried out by
considering thermal radiation and heat generation. They solved boundary layer equa-
tions via a shooting procedure in the MATLAB symbolic package. The impact of several
pertinent parameters were displayed through graphs, and tabular results were prepared
to demonstrate the effectiveness and applicability of the shooting scheme for a large set
of nonlinear data arising in the mechanical engineering problem. Muhammad et al. [8]
modelled the squeezed flow of a viscous nanofluid with an updated mass and heat fluxes
between parallel plates and handled the resulting expressions analytically via the OHAM
in MATHEMATICA 15.0 computational tool. They noticed the enhancement in fluid ve-
locity for the larger squeezing parameter. Rashid et al. [9] presented the exact solution of
a water-based mixture of aligned nanoparticle materials under the radiation effect. They
recorded the depreciation in heat transfer rate against the radiation and slip parameter. The
double stratification phenomenon in the buoyancy-driven flow of a micro-polar viscous
nanofluid was examined by Ramzan et al. [10]. They analyzed the depreciation in velocity
for the buoyancy parameter and an enhancement was recorded against the micro-polar
parameter. Hezma et al. [11] studied the behavior of SWCNTs in order to investigate
the mechanical properties of polyvinyl chloride. Upadhay and Raju [12] examined the
inclusion of dust particles in Eyring–Powell material over a stretched sheet. They studied
the thermal and mass transport in dusty Eyring–Powell nanofluid by engaging the revised
definitions of mass and heat fluxes. They found the numerical solutions for nonlinear
modeled equations via the shooting scheme. Several important pieces of research on the
transport phenomenon are reported in [13–17] and the references therein. Nazir et al. [18]
studied comparison analysis among hybrid nanoparticles and nanoparticles in hyperbolic
tangent liquid past a stretching surface. They adopted a finite element approach to conduct
numerical results. Chu et al. [19] modeled correlations between nanoparticles and hybrid
nanoparticles, considering activation energy and chemical reaction. They noticed thermal
aspects past a parabolic surface using a finite element scheme. Cui et al. [20] simulated
effects related to radius and roughness of inserting nanoparticles. Awais et al. [21] applied
the KKL model in the transfer of energy using nanoparticles. Nazir et al. [22] discussed
the numerical results of the Carreau–Yasuda liquid in heat/energy considering the hybrid
nanoparticles and nanomaterials, numerically solved by the finite element approach.
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In the above cited literature, no study deals with the combined behavior of the
following: mass, heat transport in hydro-magnetized Carreau–Yasuda material using Joule
heating, viscous dissipation, heat generation, chemical reaction and the Soret and Dufour
influences in the Darcy–Forchheimer porous stretching sheet. This report fills the gap in
this discussion and should be used as a foundation for researchers to work further on
this model. The inclusion of nanoparticles in the Carreau–Yasuda material is attractive to
researchers. Organization of this research is divided in the following way: the literature
survey is reported in Section 1, modelling with important physical assumptions are covered
in Section 2, Section 3 covers a detailed description of the finite element procedure with
a grid independent survey, a detailed description of the solution and the influence of
several emerging parameters are explained in Section 4 and important findings of the
reported study are listed in Section 5. Figure 1 reveals the division of the base fluids,
hybrid nanoparticles and nanoparticles. In this Figure, Ag, Cu, Al2O3, Ni and MoS2 are
known as nanoparticles whereas H2O, ethylene glycol and oils are called base fluids. In
this current analysis, ethylene glycol is considered as a base fluid. Mixtures of MoS2 and
SiO2 are hybrid nanoparticles.
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2. Development of the Flow Model

An enhancement in the thermal and solute performance of Carreau–Yasuda rheology,
inserting the impact of nanoparticles and hybrid nanoparticles, is considered as shown
in Figure 1. The flow runs towards the stretching surface under the action of a constant
magnetic field. Heat takes place due to Joule heating and viscous dissipation. The Soret
and Dufour influences are captured with heat generation and chemical reaction. Forch-
heimer’s porous theory is imposed in the transport phenomenon. The geometrical flow
diagram is considered in Figure 2 and the thermal properties of the nanoparticles are
shown in Figure 3.

The non-linear PDEs are developed according to the physical happenings and the
boundary layer approximations.

∂ũ
∂x

+
∂ṽ
∂y

= 0, (2)
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ũ
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+ ṽ
∂C̃
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= Dhn f
∂2C̃
∂y2 − k0

(
C̃− C∞

)
+

Dhn f kT

Tm

∂2T̃
∂y2 , (7)

where (ũ, ṽ) is velocity componets, space coordinates are (x, y), kinamtic viscosity is ν,
Fs is inertia cofficient (porous medium), permeability (porou medium) is ka, power law
index number is m, time constant is Λ, magnetic induction is B0, electrical conductivity
is σ, temprature is T̃, C̃ is the concentration, heat source is Q, T∞ is ambient temprature,
fluid density is ρ, C̃ is concentarion, mass diffusion is D, Tm is fluid mean temprature, kT is
thermal diffusion, Cs is concentration susceptibility and k0 is chemical reaction number.

The no-slip theory provides the required boundary conditions of the current model:

ũ = ax, ṽ = 0, C̃ = Cw, T̃ = Tw : y = 0,

ũ→ 0, C̃ → C∞, T̃ → T∞ : y→ ∞. (8)

Change in variables is constructed as:

ũ = axF′, ṽ = −
(

aν f

) 1
2 F, ξ =

(
a

ν f

) 1
2

y, (9)

θ(Tw − T∞) = T̃ − T∞, (Cw − C∞)φ = C̃− C∞. (10)

Transformations are used in Equations (1)–(5) and the system of non-linear PDEs are
converted to following ODEs

Fξξξ + (We)d (m−1)(d+1)
d Fξξξ

(
Fξξ

)d
+ A1

(
FFξξ − F2

ξ

)
− εFξ − A1Fr

(
Fξ

)2

−A2M2 sin2 αFξ = 0,
F(0) = 0, Fξ(0) = 1, Fξ(∞) = 1,

, (11)

θξξ + A3PrFθξ + A4Hsθ + A4M2Ec sin2 α
(

Fξ

)2
+ A5PrEC

[
1 + (We)d (m−1)

d
(

Fξξ

)d
](

Fξξ

)2

+A4 A6PrD f φξξ = 0,
θ(0) = 1, θ(∞) = 0,

, (12)

ϕξξ + Sc
(1−φ2)

2.5(1−φ1)
2.5 Fϕξ − KcSc

(1−φ2)
2.5(1−φ1)

2.5 ϕ + ScSrθξξ = 0,

ϕ(0) = 1, ϕ(∞) = 0,

}
. (13)

Here, A1, A2, A3, A4, A5 and H1 are involved parameters (representing the cor-
relation of nanoparticles and hybrid nanostructures) in the above equations which are
defined as

A1 = (1− φ1)
2.5(1− φ2)

2.5

[
(1− φ2)

{
(1− φ1) + φ1

ρs1

ρ f

}]
+ φ2

ρs2

ρ f
, (14)
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A6 = (1− φ1)
2.5(1− φ2)

2.5

[
(1− φ2)

{
(1− φ1) + φ1

(
ρCp

)
s1(

ρCp
)

f

}]
+ φ1

(
ρCp

)
s2(

ρCp
)

f
, (17)

khn f

kb f
=

 ks2 + (n− 1)kb f − (n− 1)φ2

(
kb f − ks2

)
ks2 + (n− 1)kb f − φ2

(
kb f − ks2

)
. (18)

Figure 3 demonstrates the thermal properties of density, electrical conductivity, ther-
mal conductivity and specific heat capacitance for ethylene glycol, MoS2/SiO2 and MoS2.
Density of C2H6O2 is 1113.5, density of MoS2 is 2650, density of MoS2/SiO2 is 5060,
thermal conductivity of C2H6O2 is 0.253, thermal conductivity of MoS2 is 1.5, thermal
conductivity of MoS2/SiO2 is 34.5, electrical conductivity of MoS2 is 0.0005, electrical
conductivity of C2H6O2 is 4.3× 10−5, electrical conductivity of MoS2/SiO2 is 1× 10−18,
Cp of C2H6O2 is 2430, Cp of MoS2 is 730 and Cp of MoS2/SiO2 is 397.746, respectively.

Here, the Weissenberg number is We =
(

Λxa3/2

(ν f )
1/2

)
, the magnetic number is M2

(
=

B2
0σf

aρ f

)
,

the porosity number is ε
(
=

Fsν f
a

)
, the Forchheimer number is Fr =

(
xFs√

k∗

)
, the Prandtl

number is Pr
(
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µ f (cp) f
k f

)
, the Eckert number is Ec

(
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)
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= Q
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)
, the Schmidt number is Sc

(
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ν f
D f

)
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number is Kc

(
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a

)
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(
=
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)
and the Soret number is
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(
=
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)
. The surface force in attendance of the Carreau–Yasuda liquid at the

wall of the melting surface is

(Re)
1
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(1− φ1)
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2.5

[
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d
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WeFξξ(0)

)2
]
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The temperature gradient because of the nano and hybrid nanoparticles is

Nu =
xQw

k f (T − T∞)
, Qw = −khn f

∂T
∂y

, (20)

(Re)−1/2Nu =
−khn f

k f
θξ(0). (21)

Concentration gradient at the surface of the melting sheet is

Sh =
xlm(

C̃w − C̃∞

)
Dhn f

, lm = −Dhn f
∂C̃
∂y
|y=0, (Re)−

1
2 Sh = − ϕ′(0)

(1− φ1)
2.5(1− φ2)

2.5 , (22)

The local Reynolds number is Re = ax2

ν f
.
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3. Numerical Approach and Convergence Analysis

The finite element method is an effective method in the view of accuracy and the
convergence of a problem compared with other numerical approaches. There are many
advantages to FEM but some are discussed here:

â FEM has the ability to handle various complex geometries;
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â This numerical method is thought to be most significant in solving physical problems
with wide ranges;

â FEM requires less investment in the view of time and resources;
â A main advantage of FEM is its handling of various types of boundary conditions and
â It has a good ability with regards to the discretization (of derivative) problems into

small elements;
â The Working scheme of finite element method has been shown with the help of

Figure 4.

The numerical approach called finite element scheme is used to simulate the numer-
ical results of highly non-linear PDEs and numerous applications of FEM are found in
CFD (computational fluid dynamics) problems. The FEM approach is explained in the
following steps:

Step I: The division of a problem domain into a finite number of elements and residu-
als. The weak form is captured from the strong form due to residuals. The approximation
result is simulated using shape functions and the approximation simulations of the vari-
ables are:

H =
2

∑
l=1

(
Hlωj

)
, F =

2

∑
l=1

(
Flωj

)
, θ =

2

∑
l=1

(
θlωj

)
, φ =

2

∑
l=1

(
φlωj

)
. (23)

Here Fξ is H and the shape function is defined as:

ωj = (−1)l−1
1− ξ

ξl−1

1− ξl
ξl−1

, l = 1, 2. (24)

Step II: In this step, the matrices are stiffness, vector and boundary (integral vector).
The global stiffness (matrix) is obtained whereas the Picard (linearization approach) is
utilized to obtain a linear system of equations that are defined as:

H =
2

∑
l=1

ωHl , F =
2

∑
l=1

ωFl . (25)

Here Fl and Hl are variables (nodal values).
Step III: The algebraic equations (non-linear) resulting from the assembly process are:

Mat(F, H, θ, φ)

 F
θ
φ

 = (F), (26)

where (Mat) is the global stiffness matrix, (F) is the force vector and the nodal values

(variables) are

 F
θ
φ

. The Equation (18) related to the residual form is

(R) =
[

M
(

F(r−1), H(r−1), θ(r−1), ϕ(r−1)
)] Fr

θr

ϕr

 = [F], (27)

(
∑N

l=1
(
Tr − Tr−1))1/2

(
∑N

l=1|Tr|2
)1/2 <

1
108 . (28)

Step IV: The computational domain is considered as [0, 8] while mesh-free analysis
is computed along with 270 elements. The problem is converged at mid of each of the
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270 elements. Hence, simulations of the problem are performed along with the 270 elements.
Table 1 reveals the study of convergence analysis. The solution to the problem is converged
after simulations of 210 to 270 elements. It is observed that 270 elements are ensured for
the convergence of the problem. Outcomes are provided for velocity, concentration and
temperature at mid of each of the 270 elements. All numerical simulations related to tables
and graphs are captured for the 270 elements.

Comparative analysis: The numerical result of the current problem is verified with
published results [23] by the disappearing effects of We = ε = Fr = Hs = Ec = M =
D f = ϕ1 and ϕ2 = 0. Numerical values of the Nusselt number are computed against the
distribution in Prandtl number. Good agreements among the results of the present problem
and published work [23] are presented in Table 2.
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Table 1. Mesh-free analysis of velocity, mass diffusion and thermal energy considering 270 elements.

Number of Elements Fξ( ξ∞
2 ) θ( ξ∞

2 ) ϕ( ξ∞
2 )

30 0.001723308133 0.3009272684 0.5332200981
60 0.001476057680 0.2862125651 0.5165526300
90 0.001389387659 0.2814243572 0.5109967127

120 0.001345741043 0.2790514389 0.5082194520
150 0.001319507594 0.2776354377 0.5065521700
180 0.001302011520 0.2766938280 0.5054410754
210 0.001289514516 0.2760222981 0.5046476756
240 0.001280142826 0.2755193140 0.5040526977
270 0.001272856820 0.2751285026 0.5035909496

Table 2. Comparative simulations of Nusselt number considering by We = ε = Fr = Hs = Ec =

M = D f = ϕ1 = ϕ2 = 0..

Bilal et al. [23] Present Results

Pr (Re)−1/2Nu (Re)−1/2Nu
0.07 0.0663 0.0662110383
0.20 0.1619 0.1619120330
0.70 0.4539 0.4529370132
2.00 0.9113 0.9112098201

4. Results and Discussion

Mechanisms of velocity, thermal energy and diffusion of mass influenced by chemical
reaction are addressed over a stretched melting surface. Correlations between silicon
dioxide and Molybdenum dioxide in EG (ethylene glycol) are used in the presence of the
Carreau–Yasuda liquid. Various kinds of influences (Soret, Dufour, viscous dissipation,
Joule heating and magnetic field) are also addressed. As such, the complex transport
phenomenon is simulated with the help of a numerical approach (FEM). The graphical
computational investigations are captured in graphs and tables. The detailed outcomes are
discussed below:

Graphical investigations of velocity against distribution in various parameters:
The change in Weissenberg, power law index, Forchheimer numbers and Carreau–Yasuda
variables are addressed in the motion of fluid particles considered in Figures 5–8. Figure 5 is
plotted to measure the role of We in the motion of hybrid nanoparticles. It is estimated that
the motion of hybrid and fluid - nanoparticles is slowed down by applying higher We Val-
ues. The Weissenberg number is constructed in the current model due to the consideration
of the rheology of the Carreau–Yasuda fluid while We is defined as a ration of elastic and
viscous forces. An increase in We brings the declination in motion of fluid particles in the
presence of nanoparticles and hybrid nanoparticles. Hence, a reduction is noticed versus
the change in We. Moreover, the thickness of the momentum boundary layers decline
when We is increased. The flow for Newtonian fluid is the dominated flow for a case of
non-Newtonian fluid. The relationship between the velocity and power law index number
is shown in Figure 6. The decreasing phenomenon of motion in fluid particles is captured
and m is created due to tensor of the Carreau–Yasuda liquid. The numerical values of m are
decided by the category of fluids (shear thinning or shear thickening). The fluid becomes
thick in the case of large m values. Hence, the power law index number is not a significant
parameter in the case of an enhancement in flow involvement of nanoparticles and hybrid
nanoparticles. Parameter related to the power law number has a significant impact on
adjusting the momentum boundary layer thickness. The role of Fr is noticeable in the flow
of nanoparticles and hybrid nanoparticles (see Figure 7). It is demonstrated that the param-
eter related to Fr occurs in the momentum equation because of the Forchheimer porous.
This kind of parameter behaves like a non-linear-type function in the flow of nanoparticles.
In this case, the retardation force is created in fluid motion and brings resistance of the fluid
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particles into motion. Moreover, the thickness related to the boundary layer is reduced
when large values of Fr are applied. Further, the motion created by the Forchheimer porous
is less than the motion created in the particles, excepting the involvement of Forchheimer
porous media. The parameter associated with d is called the fluid variable and the change
in d versus the velocity is captured in Figure 8. The large values of d create the resistance
force during the flow of hybrid nanoparticles and nanoparticles. Meanwhile, the motion of
fluid particles declines against the higher values of d. Momentum boundary layers have a
decreasing function versus the impact of d.
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Graphical investigations of heat energy against distribution in various parameters:
Figures 9–12 reveal the characterization of thermal energy phenomenon versus the variation
of Hs, Fr, Ec and D f . The thermal energy performance is measured with respect to the
variation in heat generation number while this phenomena is shown in Figure 9. The
production of heat energy is at its maximum when using higher values of Hs. The external
heat source at the sheet surface results in the maximum production into heat energy.
to Thickness related to thermal layers is also enhanced due to the large values of heat
generation number. Thus, the heat generation number is a significant parameter for the
maximum production of heat energy. Moreover, an inclination in thermal energy is created
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due to the direct relation to thermal energy. It is demonstrated that the positive values
for Hs are present due to the phenomena of heat generation. As such, the impact of heat
generation is visualized in our analysis. Figure 10 plots the enhancement in heat energy
against the change in Eckert number. Physically, an enhancement in heat energy due to
viscous dissipation is simulated. A direct relationship between viscous dissipation and the
kinetic energy phenomenon was found. The temperature of the fluid particles is enhanced
due to the Eckert number. The work-done rate is enhanced by the particle heat energy
when viscous dissipation occurs. The relationship between Fr and temperature profile
is visualized in Figure 11. This figure captures the better performance in heat energy,
including the appearance of Fr. In fact, Fr is generated due to the Forchheimer porous while
Fr generates more heat energy in the presence of nanoparticles and hybrid nanoparticles.
Moreover, the concept of Dufour’s number is characterized in the dimensionless heat
equation due to the first law of thermodynamics while terms related to thermodynamics
refer to the concept of Dufour (heat energy) because of the concentration gradient. The
concentration gradient is enhanced using large values of D f . The fluid particles absorb
more heat energy when D f is increased. Hence, the temperature profile is increased when
there are higher values of D f (see Figure 12). Further, thickness of the thermal boundary
layers are controlled by the impacts of Fr and D f .

Graphical investigations of mass diffusion against distribution in various param-
eters: Figures 13–15 have been plotted to visualize the transport of diffusion against the
change in Sc, Kc and Sr. The measurement of mass diffusion is captured in Figure 13,
considering the influence of Sc. The diffusion of mass decreases when Sc is enhanced.
We can observe that this reduction into mass diffusion happens due to the definition of
Sc. Physically, Sc is rationed among mass and momentum diffusivities. According to the
concept of Sc, the concentration curves are reduced when Sc is inclined. A similar situation
occurs in terms of the boundary layer thickness in relation to concentration. Figure 14
visualizes the effect of the chemical reaction number on the transport of mass diffusion We
found that the parameter related to Kc revealed the coefficient of thermal energy along with
the chemical reaction. The positive values of Kc correspond to the destructive chemical
reaction. In this case, a reduction is captured in the diffusion of the mass species. In the
current flow model, the case related to a destructive chemical reaction is used. Thickness
associated with the concentration layers is reduced when Kc is increased. The decreasing
graph is plotted between the Soret number and diffusion of mass as shown in Figure 15.
The concept of Sr (fractioned between the difference in temperature and concentration)
appears due to the temperature gradient in the concentration equation. Using Soret’s
theory, the solute diffusion is enhanced due to thermal energy.

Mechanisms of gradient temperature, surface force and mass diffusion rate versus
the distribution of various parameters: The computational analysis of surface force (skin
friction coefficient), gradient temperature (Nusselt number) and rate of mass diffusion
versus the variation of D f , Sc, Hs, Fr and We is simulated in Table 3. Table 3 reveals that the
drag force (skin friction coefficient) declines when We and Fr are increased. However, we
see a reduction in the skin friction coefficient when the heat generation number is increased.
When D f is enhanced, the constant variation is simulated in surface force at the wall. The
temperature gradient decreases using the large values of D f , Hs, Fr and We. The parameter
related to Sc plays a vital impact in maximizing the rate of thermal energy. As for the
concentration gradient, it shows the same behavior as the temperature gradient.
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Table 3. Computational analysis of surface force, gradient temperature and rate of mass diffusion
versus the variation of D f , Sc, Hs, Fr and We in view of hybrid nanoparticles and nanoparticles.

Parameters (Re)
1
2 Cf (Re)−1/2Nu (Re)−

1
2 Sh

0.0 0.2565506571 0.9069968916 0.4191080595
We 0.4 0.3021743934 0.5709115739 0.3046713057

0.8 0.6496811069 0.4087628063 0.1059290192
0.3 0.3500005761 2.800587924 0.3350535080

Fr 0.5 0.5935103805 2.331989057 0.2339179505
1.2 0.7690074135 1.272381650 0.11317865862
0.0 0.5541216982 0.4657146871 0.99748124590

Hs 0.7 0.3541216982 0.3493805142 0.89748124590
1.3 0.1541216982 0.1173513733 0.69748124590
0.2 0.5541216982 0.1186981159 0.04850074987

Sc 0.4 0.5541216982 0.1186575085 0.36213534820
0.8 0.5541216982 0.1181890841 0.57775563972
0.3 0.5541216982 0.7182669750 0.37626972734

D f 0.6 0.5541216982 0.5183838165 0.27404085874
1.3 0.5541216982 0.3177686869 0.18920433118

5. Prime Consequences of the Problem

The transport features in the rheology of Carreau–Yasuda liquid and involvement
of nanostructures and hybrid nanoparticles over a heated surface have been visualized.
The Dufour and Soret effects under the action of a magnetic field have been addressed.
Forchheimer porous media was also considered. The simulations of the current model
were computed by finite element approach. The prime findings are captured below:

• Convergence of the problem is ensured at 270 elements;
• The motion of nanoparticles and hybrid nanoparticles in ethylene glycol is boosted

versus the enhancement in fluid variable, power law index number, Weissenberg
number and Forchheimer porous number;

• Significant production of heat energy versus higher values of heat generation, Eckert,
Dufour and Forchheimer porous numbers;
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• The transportation of solute particles declines versus the large values of Schmidt and
chemical reaction numbers, but solute particles accelerate against higher values of
Soret number;

• Surface force is increased via large values of Weissenberg and Forchheimer porous
numbers but surface force is decreased versus the large values of heat generation
number and

The role of the Schmidt number is significant in the development of temperature and
concentration gradient.
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