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Abstract: Carbon molecular sieve (CMS) membranes have been developed to replace or support
energy-intensive cryogenic distillation for olefin/paraffin separation. Olefin and paraffin have similar
molecular properties, but can be separated effectively by a CMS membrane with a rigid, slit-like pore
structure. A variety of polymer precursors can give rise to different outcomes in terms of the structure
and performance of CMS membranes. Herein, for olefin/paraffin separation, the CMS membranes
derived from a number of polymer precursors (such as polyimides, phenolic resin, and polymers
of intrinsic microporosity, PIM) are introduced, and olefin/paraffin separation properties of those
membranes are summarized. The effects from incorporation of inorganic materials into polymer
precursors and from a pyrolysis process on the properties of CMS membranes are also reviewed.
Finally, the prospects and future directions of CMS membranes for olefin/paraffin separation and
aging issues are discussed.
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1. Introduction

Light olefins such as C2H4 and C3H6 are extremely important products in the petro-
chemical industry due to their uses in a variety of materials that include such as polyethy-
lene, polypropylene, ethylene glycol, and isopropanol [1–3]. In particular, the polyolefins
are major raw materials used in the production of plastics, fabrics, rubber, paints, cos-
metics, and adhesives [4–6]. Generally, light olefins are manufactured using a naphtha
cracking process, coal/methanol to olefin (CTO/MTO), or a propane dehydrogenation
(PDH) process [7–10]. To produce plastics and polymers from olefins, their purity should
be >99.9% [11,12]. However, light olefins are commonly accompanied with paraffin, and
an additional process is needed to separate them [13,14].

To separate olefins from paraffin, which have similar molecular properties (e.g.,
boiling point (bp): C2H6 (−88.5 ◦C), C2H4 (−102.4 ◦C), C3H8 (−42.2 ◦C), and C3H6
(−47.7 ◦C)), energy-intensive cryogenic distillation at high pressure and low tempera-
ture with 150–200 trays has generally been employed [15,16]. Furthermore, these systems
must use large compressors and heat exchangers that are expensive to build and to operate,
while only being beneficial for producing olefin of high purity [17]. According to the
literature [18], the energy consumed to separate olefins from paraffin (both C2H4 and
C3H6) accounts for up to $5 billion USD per year. Moreover, the large space needed for
such a system, as well as its high cost, is required due to its tall columns (>300 ft) and large
number of trays.
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Such cryogenic distillation, with its enormous cost and space, should be replaced
by effective alternative energy and sustainable technologies. Extractive distillation is
a common process for olefin/paraffin separation, but it is not better than traditional
distillation [19]. For the past several decades, adsorption processes have been investigated
for use in olefin/paraffin separation [20]. An equilibrium adsorption step followed by
thermal regeneration variable-temperature stepwise desorption (VTSD) could be selective
for C3H6 over C3H8 [21]. However, its capital cost is higher than the traditional distillation
process while the energy cost of VTSD was lower. Recently, cyclic adsorption processes
such as simulated moving bed (SMB), vacuum pressure swing adsorption (VPSA), and
thermal swing adsorption (TSA) have been proposed. The successful performance of these
technologies is intrinsically dependent on the selection of particular adsorbents such as
silica-gel, 13X zeolite, 4A zeolite, 5A zeolite, and carbon molecular sieve (CMS) [22–24].

For olefin facilitated transport, transition metal cations are commonly used as carriers,
thereby providing the ability to form reversible complexes of molecules with double bonds.
Even though any transition metal could be used as a complexing agent, Ag+ is the most
frequently employed due to the lower stability of Ag+-olefin complexes (relative to those
of other metal-olefin transition complexes). This relative instability allows olefin to be
released more easily. Ag+-olefin complexes include the following: an overlap between the
occupied π-orbital of the olefin and the empty 5s-orbital of the Ag+ and between a π-bond
offered by the back-donation of electrons from the occupied d-orbitals of the silver and the
empty antibonding π*-orbitals of the olefin, as indicated in Figure 1 [19].
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For olefin/paraffin separation, these separation technologies have great potential as
alternatives to traditional distillation processes in terms of lower capital, operating, and
energy costs. However, only a few non-distillation processes are being utilized in the petro-
chemical industry because these alternative processes still have inherent problems [26].

Membrane technologies offer attractive alternatives that could reduce the large capital
and high operating costs of the cryogenic distillation process for olefin/paraffin sepa-
ration. Sholl and Lively stated that membrane-based separation would use 90% less
energy than distillation [27]. Therefore, a number of articles have been published on
olefin/paraffin separation with membrane technologies [28–33]. Many researchers are
investigating this notion using available membranes and processes to enhance the perfor-
mance of olefin/paraffin separation in terms of possible commercialization. The membrane
technologies for olefin/paraffin separation can be classified into three categories: facilitated-
transport, polymeric, and inorganic membranes.

The facilitated-transport membrane is one of the most favorable and important mem-
branes for olefin/paraffin separation [33–36]. As shown in Figure 1, metal ions are able
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to form reversible chemical bonds with olefins due to the π-bonding between the hybrid
molecular orbitals of olefin and the metal atomic orbitals. As shown in Figure 2, this
chemical complexation between transition metal ions and olefins offers high selectivity and
high capacity. This is due to bonding that is relatively stronger than Van der Waals forces,
but still weak enough to be broken by moderate increases in the temperature or decreases
in the pressure [37]. Studies have also been done utilizing membranes with a variety
of solvents for olefin absorption. The facilitated transport membranes can be operated
as liquid membranes and membrane electrolytes for liquid and solid states, respectively.
However, the inherent problems of facilitated transport membranes, such as short life span
due to carrier poisoning, should be addressed for better commercial application [38,39].
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Polymeric membranes including a variety of materials have been extensively investi-
gated for olefin/paraffin separation [29,30,40]. The separation performance of polymeric
membranes is mostly determined by polymer properties such as molecular weight, shape,
polymer structure, packing, and rigidity. Among the various polymers, glassy polymers
show better performance for olefin/paraffin separation, as well as for the separation of
aromatic, alicyclic, and aliphatic hydrocarbons. Rubbery polymers are appropriate for
hydrocarbon/air separation and pervaporation processes such as hydrocarbon separation
from aqueous solutions [41]. Large-scale polymeric membranes are widely used in the
markets of the world for separation processes due to the availability of low-cost polymer
materials. However, it is very difficult to separate olefin from paraffin using a polymeric
membrane due to the limitation of trade-off between permeability and selectivity and
parasitic plasticization effects. Furthermore, polymeric membranes are not suitable for
application in harsh environments [42,43].

The inorganic membranes have received a great deal of attention as replacements for
polymeric membranes. To surpass the upper bound trade-off for olefin/paraffin separation,
recent researchers have been focusing on the development of inorganic membranes, in
particular, microporous membranes such as zeolite, silica, zeolitic imidazolate frameworks
(ZIFs), and CMS membranes (Figure 3) [25,44–47].

A zeolite membrane has an effective layer with a uniform pore structure of molecular
sieving units, relative to those of other inorganic materials [48]. However, the status
of research on zeolite membranes for olefin/paraffin separation is still laboratory scale.
This is because synthesizing thin-film zeolite membranes is very difficult to do without
defects, more of which tend to form as the membrane surface area increases [49]. Moreover,
zeolite membranes are much more expensive than polymeric membranes and have poor
mechanical stability [50,51].
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ZIFs consisting of transition-metal ions interconnected by imidazolate linkers similar
to the Si–O bond in zeolites, exhibit thermal and chemical stability. The pore size of ZIFs is
distributed in the range 3–5 Å, providing molecular sieving separation appropriate for gas
molecules. Two types of ZIF membranes have been prepared: mixed matrix membranes
(MMMs) made by incorporating ZIF particles in a polymer matrix, and continuous thin-
film membranes on porous supports. In particular, the continuous ZIFs membranes can
offer the full intrinsic potential of ZIFs and achieve excellent separation performance. These
membranes have recently been investigated by many researchers who focused on thin,
defect-free supported membranes [52–54].

Amorphous silica has sufficiently small pore structure (3–3.5 Å) to serve as a kinetically
selective material. The silica membranes are prepared via chemical vapor deposition (CVD)
and a sol-gel method. They are applied for H2/He separation at high temperature, and
show dramatically improved permselectivity [55–57]. However, silica membranes have
the problem of an unstable amorphous structure when exposed to water vapor, leading to
degradation of separation due to enlargement of their dense and amorphous structure [58].

On the other hand, CMS membranes for olefin/paraffin separation have favorable
performance compared with ordinary polymeric membranes [59,60]. The CMS membranes
are typically prepared using pyrolysis of polymeric precursors at high temperature un-
der O2-free conditions. After carbonization of the polymer precursors, the structure of
CMS membranes is significantly changed to form a rigid pore wall, which gives high
gas permeation and selectivity with better thermal and chemical stability [61,62]. For
commercialization and practical application of CMS membranes in industrial fields, some
efforts have been attempted. Air products in the early 1990s developed the nanoporous
carbon membranes called a selective surface flow membrane (SSFTM). The membrane
consisted of thin layer of 2–3 µm onto alumina tubular support, suiting for the hydro-
gen/hydrocarbon separation. However, this was discontinued in 2003 due to the aging
and deactivation of membranes in the presence of water vapor [63]. Carbon Membranes
Ltd. (Beer-Sheva, Israel) also produced large-scale CMS membrane module (fibers of
10,000 strands and 4 m2/module with the packing density of 2000 m2/m3) by carbon CVD
using propylene as the source into the bore side of fiber bundles after pyrolysis. It was but
closed in 2001 [64]. Blue Membranes GmbH (Saerbeck, Germany) developed a new CMS
membrane module, which was a flat type membrane of a honeycomb configuration. The
patterned sheets were overlapped and sealed to create cross flow channels of the module.
The packing density of the membrane modules was 2500 m2/m3 in a 10 m3 module [65].
Media and Process Technology Inc. (Pittsburgh, PA, USA) developed an 86-tube CMS
membrane bundle/housing for hydrogen separation and contaminants removal from coal-
and biomass-derived raw syngas. The membrane bundle was tested from the laboratory to
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the field-level. During field-testing over several hundred hours, the stable membrane per-
formance was exceptionally observed without pre-treatment [66]. CMS membrane module
with the surface area of 0.5–2.0 m2 was applied for the production of vehicle fuel from
biogas. The membrane module achieved 97 mol% CH4 purity and 98% CH4 recovery [67].
However, comprehensive work on CMS membranes for olefin/paraffin separation is still
inadequate and more is required.

2. Structure and Gas Transport Mechanism of a CMS Membrane for
Olefin/Paraffin Separation

A CMS membrane was produced by the pioneers Barrer and Strachan in early 1955.
A microporous plug was prepared by compressing a high specific-surface area carbon
powder to study the adsorption and diffusion of gases. From this, it was confirmed that
surface flow is important for most polarizable species [68,69]. Barrer and coworkers then
comprehensively investigated the gas and vapor sorption and diffusion properties [70] of
the compacted carbon membranes, which showed excellent intrinsic performance for gas
separation. Most CMS membranes are currently achieved using a process involving pyrol-
ysis of polymeric precursors at high temperature in an O2-free condition. It is considered a
high free-volume material [71].

In particular, CMS membranes have attracted considerable attention for olefin/paraffin
separation [62,72]. The rigid pores of CMS membranes enable penetration of gas molecules
with impressive permselectivity and without deformation and deterioration of the pore
structure during the hydrocarbon separation. Moreover, olefin/paraffin separation often
requires harsh operating conditions (polymeric membranes show abnormal behavior in
this specific situation [73,74]). CMS membranes are also cost-effective and easier to process
than zeolite, metal-organic frameworks (MOFs), and silica membranes [75].

CMS membranes consists of a rigid and amorphous structure with small pore size dis-
tribution [76,77]. The pore structure of a CMS membrane has ultramicropores (0.3–0.5 nm),
which allow molecular-sieving separation. However, larger micropores (0.6–2 nm) are also
present and permit excellent penetration of gas due to their high sorption coefficient, which
provides both high permeability and selectivity [78,79]. To allow gas diffusion by the molec-
ular sieve mechanism, the molecules adsorbed in micropores must have more activation
energy that is required to overcome repulsion from the walls of ultramicropores [64,80].

To examine the micropore structure and pore size of CMS membrane, several charac-
terization technologies have been employed. The XRD patterns can provide the d-spacing
value between basal planes of CMS membrane. This distance can be a transport pathway
for the gas molecules, which help measure the change of carbon structure at different prepa-
ration process or polymer precursors. However, this is not indicative of pore size. CO2 or
N2 physisorption is the most frequently used method to characterize the pore size of CMS
membrane. In particular, CO2 physisorption using the density functional theory (DFT) can
qualitatively describe the ultramicropore size distribution of CMS membrane. Besides, the
pore size distribution of CMS membrane obtained from positron annihilation lifetime spec-
troscopy (PALS) has been often reported [81–83]. Positrons can either annihilate or trap in
pores of CMS membrane. Therefore, the average positron lifetime increases with increasing
pore size. In general, the results obtained from PALS is consistent with that of XRD. To
measure the ultramicropores of CMS membrane, an approach based on gases of different
size as molecular scale probes was designed. This provides the structure-performance
relationships of CMS membrane [81].

On the other hand, Rungta et al. explained well the distinguishing features between
CMS and zeolite membranes in terms of molecular sieve [84]. The CMS membrane consists
of a slit-like pore structure with a one-dimensional (1-D) size restriction while the zeolite
has open pores with 2-D size restriction. This unique pore structure of CMS membranes
enables olefin, with a rather more planar molecular configuration than paraffin, to penetrate
easily and effectively through the slit-like pores. In contrast, the specific configurational
property of an olefin is meaningless to the open pores of zeolite. From this perspective,
CMS membranes for olefin/paraffin separation are more theoretically ideal than zeolite



Membranes 2021, 11, 482 6 of 34

is. The researchers also described the difference in entropic selectivity between O2/N2
and C2H4/C2H6 [60]. Both O2 and N2 can pass through the slit-like pore structure in the
diffusion direction. However, the planar C2H4 molecule has higher probability of passing
through the CMS pore while C2H6 may either need greater effort to pass through or may
get rejected, as shown in Figure 4.
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3. Polymer Precursors for CMS Membranes

A variety of polymer precursors can produce different outcomes in terms of the struc-
ture and performance of a CMS membrane. However, it is expected that the transition
process from polymer chain to amorphous or turbostratic carbon structure during pyrolysis
may be similar among most of the polymer precursors because they undergo the same
heat-derived processes (such as ramping, soaking, and cooling) in sequence [61,80]. There
is a progression from amorphous chains of the polymer precursor to the disordered stacked
plates of carbon structures during the pyrolysis process. Rungta et al. [85] systemati-
cally and logically rearranged a pyrolysis protocol with 4,4′-(hexafluoroisopropylidene)
diphthalic anhydride/3,3′-4,4′-biphenyl tetracarboxylic dianhydride-2,4,6-trimethyl-1,3-
phenylene diamine (6FDA/BPDA-DAM) as polymer precursor, as indicated in Figure 5.

To obtain a stable and desirable CMS membrane in terms of separation performance
and structure, the polymer precursor is an important parameter. The preferred precursors
for CMS membranes typically exhibit heat-resistance property without considerable de-
formation during the required pyrolysis. During pyrolysis, the polymer precursor goes
through a structural rearrangement process as follows: thermal decomposition and defor-
mation, condensation, and aromatization, even though the polymer has a thermosetting
property [86]. Nevertheless, the thermoplastic and lower molecular weight polymers
have higher chain mobility and fractional free volume. Adjusting the molecular weight
of the polymer precursors is a simple method by which to affect the degree of structural
rearrangement and pore formation, and to determine the separation properties of the CMS
membrane [86,87]. Herein, we review several representative polymer precursors applied
for olefin/paraffin separation. The various precursors and manufacturing processes are
shown in Table 1.
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3.1. Polyimide

Polyimide is a highly aromatic polymer commonly used as a precursor of CMS mem-
branes due to its high carbon yield, which originates from its high glass-transition temperature
(Tg) and rigid structure. In addition, polyimide has the advantage of being able to tune vari-
ous chemical structures, which facilitates the change of properties accordingly. Kapton and
Matrimid (commercial polyimides) have frequently been used for CMS membranes, and
synthesized polyimide precursors based on 6FDA and BPDA have been reported.

3.1.1. Matrimid

Matrimid is a commercial polyimide that has been widely used in the field of gas
separation due to its high thermal stability and processability (Figure 6). In particular, it is
a very attractive material for polymeric membranes and provides excellent permeability
and selectivity. These advantages allow the CMS membrane to offer excellent performance.
Thus, this representative, useful polymer precursor has been studied by many researchers.
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Table 1. Polymer precursors and processes for manufacturing CMS membranes.

Materials Configuration Pre-Treatment Post-Treatment Pyrolysis
Temperature (◦C)

Heating Rate
(◦C/min)

Soaking
Time (h) Atmosphere Ref.

Matrimid Film 550, 800 4 2, 8 Vacuum (<0.03 mmHg) [88]

Matrimid Film 550–800 0.25–13.3 2 Vacuum (<10 mtorr), Ar [60]

Matrimid Film 675 0.25–13.3 2 Ar [85]

Matrimid Film 550–800 4 Vacuum (0.03 mmHg) [89]

Matrimid Film, hollow fiber 550–800 0.25–13.3 2 Vacuum (<15 mtorr) [62]

Matrimid Hollow fiber 550 0.25–13.3 2 Ar (200 mL/min) [90]

Matrimid Hollow fiber 550 0.25–13.3 2 Ar (200 mL/min) [91]

Matrimid Alumina hollow
fiber supported 650 2.8 1 He (100 mL/min) [92]

Matrimid Film 500–800 0.25–13.3 2 Vacuum, Ar [81]

6FDA/BPDA-DAM Film 550, 800 4 2, 8 Vacuum (<0.03 mmHg) [88]

6FDA/BPDA-DAM Film 675 0.25–13.3 2 Ar [85]

6FDA-DETDA/DABA Film O2 doping 550–800 0.25–13.3 2 Ar [77]

6FDA-DETDA/DABA Film Pre-crosslinking at 370 ◦C
for 1.5 h 800 0.25–13.3 2 Ar [77]

6FDA-DABA Film Crosslinking at
350–450 ◦C for 2 h 550 1 2 N2 (200 mL/min) [93]

6FDA-DAM/DABA Film, hollow fiber 675 0.25–10 2 Ar (400 mL/min) [94]

6FDA-DAM/DABA Alumina disc supported 550–750 4 2 Ar (100 mL/min) [42]

6FDA-DAM Film 550, 675 0.25–13.3 2 Ar (200 mL/min) [95]

6FDA/BPDA-DAM Hollow fiber 550 0.25–13.3 2 Ar (200 mL/min) [90]

6FDA-DAM Hollow fiber 550 0.25–13.3 2 Ar (200 mL/min) [90]

6FDA/BPDA-DAM Hollow fiber 550 0.25–13.3 2 Ar (200 mL/min) [91]

6FDA-based polyimide Hollow fiber 550 0.25–13.3 2 Ar (200 mL/min) [91]

6FDA-based polyimide Alumina disc supported Pre-aging
(oxidation) 550 4 2 Ar (100 mL/min) [75]
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Table 1. Cont.

Materials Configuration Pre-Treatment Post-Treatment Pyrolysis
Temperature (◦C)

Heating Rate
(◦C/min)

Soaking
Time (h) Atmosphere Ref.

6FDA-based polyimide Alumina disc supported 550 4 2 Ar (100 mL/min) [96]

Kapton Film
Activation at 400 ◦C

under Ar and He
containing water vapor

1000 10 2 Vacuum (10−5 torr) [97]

BPDA-ODA/DAT Alumina
tubular supported

Oxidation in air at
400–500 ◦C 500–700 5 N2 (100 mL/min) [98]

BPDA-pp’ODA Alumina
tubular supported

Imidizing at
300 ◦C for 1 h

Oxidation using O2/N2
mixture or pure O2 for 3 h 600–900 5 N2 [99]

BPDA_aromatic
diamine Hollow fiber

Thermostabilization
at 400 ◦C for
30 min in air

600–1000 15 N2 (2000 mL/min) [100]

BPDA-based Hollow fiber Thermostabilization in air
at 400 ◦C for 0.5 h 500–700 5 N2 (100 mL/min) [59]

BPDA-pp’ODA Film 370–450 5 1.5 N2 (100 mL/min) [39]

NTDA-BDSA/BAPF Film 700 5 Ar [101]

Phenolic resin Ceramic
tubular supported

Curing at 150 ◦C
for 2 h

Oxidizing with air at
300–400 ◦C for 30 min 700 Vacuum (<0.01 mbar) [102]

Phenolic resin Ceramic
tubular supported

Curing at 150 ◦C
for 2 h

Storage under air, N2,
and C3H6

700 Vacuum (<0.01 mbar) [103]

Phenolic resin Alumina
tubular supported 550 274 2 N2 (100 mL/min) [104]

Phenolic resin Alumina
tubular supported 550 1 2 N2 [105]

Phenolic resin Ceramic
tubular supported 700–1000 0.5–10 1–8 Vacuum (<1 Pa),

N2 (285 mL/min) [106]

Phenolic resin Alumina
tubular supported

Air oxidative
treatment at
250–400 ◦C

Air oxidative treatment
at 300–400 ◦C 700 Vacuum (<0.01 mbar) [107]
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Table 1. Cont.

Materials Configuration Pre-Treatment Post-Treatment Pyrolysis
Temperature (◦C)

Heating Rate
(◦C/min)

Soaking
Time (h) Atmosphere Ref.

Phenolic resin Alumina
tubular supported

Curing at 150 ◦C
for 2 h

Air oxidative treatment at
75–350 ◦C for 0.5 h 700 Vacuum (<0.01 mbar) [74]

PIM-1 Film 500–900 1 1 Vacuum (<0.006 torr) [108]

PIM-6FDA Film 500–800 3 0.5 N2 (1000 mL/min) [109]

PIM Film Annealing at
250 ◦C for 24 h 400–800 3 0.5 N2 (1000 mL/min) [110]

PIM-CD Film 300–600 1 2 Vacuum [110]

PIM-6FDA-OH Film 500–800 3 0.5 N2 (1000 mL/min) [111]

PIM-6FDA-OH Film 600 3 0.5 N2 [112]

PAEK/Azide Film 450–650 0.2–2 2 vacuum [113]

Polyimide Film

Imidization at
100–300 ◦C for 1 h

and 450 ◦C
for 10 min

600 5 1 Inert gas (150 mL/min) [114]

Polyester-resin Alumina
tubular supported

Oxidation at 300–400 ◦C
for 0.5 h 700–800 1 0.5–1 Ar [76]
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Steel et al. prepared CMS membranes derived from Matrimid precursors pyrolyzed at
different temperatures and characterized their micropore structures. The high pyrolysis
temperature of 800 ◦C significantly reduced the ultramicropore size, which excludes the
passage of both C3H6 and C3H8, resulting in poor separation properties. The lower final
temperature of 500 ◦C led to more attractive transport due to its more open structure,
resulting in C3H6 permeance of 13 barrer and selectivity of 40. Furthermore, the slit-like
carbon structure was suitable for C3H6 and C3H8 molecules of a compact nature [89]. In
addition, the C2H4 permeance of a Matrimid-based CMS membrane could be increased
by accelerating the heating rate without the loss of selectivity. The fast pyrolysis induced
a shorter densification period of the carbon matrix and a larger mass loss compared
to the existing pyrolysis protocol, resulting in slightly higher permeability. The CMS
membrane showed high entropic selectivity that enabled diffusion (favoring the slimmer
C2H4 molecule) across the carbon layer of rigid slit-like structures [60].

The pore structure of a Matrimid-based CMS membrane was studied using a method
based on differently sized gas probes as well as XRD, positron annihilation lifetime spec-
troscopy (PALS), and CO2 sorption. At a high pyrolysis temperature, the d-spacing of the
CMS membrane (~3.8 Å) became narrower and a large number of smaller pores (<4.2 Å)
were developed. Furthermore, the corrected diffusivity trends showed that a majority of
the ultramicropores in the CMS membrane were in the range 2.6–3.5 Å. In particular, the
more sorptive and planar C2H4 can more easily penetrate the CMS membrane compared
to round or bulky molecules such as CH4 and C2H6 (Figure 7) [81].
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In another case, the separation performance of the CMS membrane derived from
Matrimid dense film and asymmetric hollow fiber, was compared for C2H4/C2H6 sepa-
ration. The selectivities of both were very similar (~12), but the thickness of the carbon
active layer was very different. This difference was attributed to collapse of the porous,
hollow-fiber substructure due to the relatively low glass-transition temperature (Tg) of
Matrimid. Nevertheless, this collapse phenomenon enabled the defective hollow fibers to
transform into a highly selective CMS membrane during pyrolysis [62].

Commercial Matrimid material is expensive and the resulting CMS membrane is brittle
and fragile. To overcome these problems, a CMS composite membrane on low-cost alumina
hollow fiber was prepared. This provides high packing density, good mechanical strength,
and lower material cost. The thin and defect-free CMS hollow fiber composite membrane
derived from Matrimid was successfully prepared using a one-coating process. It showed
good separation performance: 69.2 GPU and 18 for C3H6 permeance and C3H6/C3H8
selectivity, respectively [92].

3.1.2. 6FDA-Based Polyimides

The 6FDA-based polyimides are the polymer precursors most frequently used for
olefin/paraffin separation. Studies on 6FDA-based CMS membranes have steadily pro-
gressed and are still reported to provide excellent performance for olefin/paraffin sepa-
ration. The bulky –C(CF3)2- linkage of 6FDA-based polymers inhibits chain packing and
offers a high fractional free volume, leading to high gas permeability [115]. In addition,
it is believed that the bulky 6F group gives rise to a CMS membrane with higher gas
permeability if derived from 6FDA-based polymers than if derived from Matrimid [116].
Furthermore, the 6FDA-based polyimides facilitate tuning of the chemical structure, which
allows the polymer precursor to provide a variety of physical properties, as shown in
Figure 8.

Steel et al. compared the carbon pore structures of CMS membranes derived from
6FDA/BPDA-DAM and Matrimid, and their performance for C3H6/C3H8 separation. The
6FDA/BPDA-DAM polyimide has an intrinsically less densely packed nature compared
to Matrimid. This induces a greater cumulative pore volume (4–11 Å), resulting in higher
permeability and lower selectivity. The CMS membrane derived from 6FDA/BPDA-DAM
polyimide, after heating to 550 ◦C, showed very attractive performance of 200 barrer and
100 for C3H6 permeability and C3H6/C3H8 selectivity, respectively [88]. These polyimides
were also compared using a gas probe method to determine the transport properties of the
CMS membranes and differences in their ultramicropore distributions. These researchers
mentioned that the structure of the polymer precursor material has a non-trivial connection
with the resulting performance [85]. Furthermore, Xu et al. reported that a CMS membrane
derived from 6FDA/BPDA-DAM hollow fiber maintained a better asymmetric structure
during pyrolysis, while a substructure collapse with related loss of permeance was found
in a Matrimid-based CMS membrane. This is attributed to a higher Tg (424 ◦C) and greater
rigidity of the 6FDA/BPDA-DAM polyimide, leading to a thin active carbon layer and
higher permeance [90].

Pre-crosslinking of a DABA-containing 6FDA-based polyimide at a temperature below
Tg has been done [117,118]. This improved the chemical and physical stability of the
polymer material and resulted in an increase of the gas permeability of the polymeric
membrane. The crosslinkable 4,4′-(hexafluoroisopropylidene) diphthalic anhydride-3,5-
diaminobenzoic acid (6FDA-DABA) polyimide was utilized to prepare CMS membranes
(Figure 9) [93]. The pre-crosslinked CMS membrane possessed higher graphitic carbon
content, which induced π-π interaction between the C3H6 and graphitic carbons, resulting
in remarkably increased C3H6/C3H8 selectivity.
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Fu et al. investigated the effect of O2 doping and pre-crosslinking of 4,4′-(hexafluoro-
isopropylidene) diphthalic anhydride/2,5-diethyl-6-methyl-1,3-diaminobenzene-3,5-dia-
minobenzoic acid (6FDA/DETDA-DABA)-based CMS membranes on their performance
for C3H6/C3H8 separation [77]. The use of O2 doping as a fine-tuning method gave rise
to a narrower ultramicropore structure in the CMS membrane and enhanced C3H6/C3H8
selectivity by more than 50. With pre-crosslinking, limiting the movement of polymer
chains creates microvoids and packing disruptions, as shown in Figure 10.
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This structure might be maintained after the subsequent pyrolysis; therefore, the
available sorption sites could be increased and the permeability significantly enhanced
with only a slight loss of selectivity.

CMS membranes derived from 6FDA-based polyimide have also been developed on
inorganic supports due to its brittleness and handling issues in practical applications of
non-supported CMS membranes. The inorganic support can provide mechanical strength
to a CMS membrane. Furthermore, the collapse of the porous substructure of asymmetric
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CMS hollow fibers was often reported, which collapse causes reduction of gas permeance.
Ma et al. prepared 6FDA-based CMS composite membranes on an alumina disc with
intermediate layer [42]. The CMS membrane showed a C3H6 permeance of 9 GPU and
C3H6/C3H8 selectivity of 36. Moreover, the effects of feed pressure, gas fraction, operating
temperature, and carbon layer thickness on the C3H6/C3H8 separation performance were
thoroughly studied [75,96].

Therefore, a CMS membrane that exceeds the upper bound performance and has ex-
cellent stability is promising either to replace or to support, the energy-intensive distillation
process. However, it is difficult to completely replace the conventional distillation pro-
cess with membrane-only processes due to limitations on separation performance. Some
researchers reported using an advanced hybrid membrane-distillation process and 6FDA-
based CMS membrane with enhanced olefin/paraffin separation performance. L. Xu et al.
suggested a new hybrid process with an olefins-selective membrane unit and two distilla-
tion columns, or a series of olefin-selective membrane units and a distillation column [90].
The hybrid system can achieve significant energy savings and reduction of footprint in the
hydrocarbon processes. Furthermore, a techno-economic analysis of the hybrid process
(membrane followed by distillation) for C3H6/C3H8 separation resulted in a lower total
cost of 13.1% compared to the conventional distillation process [94].

3.1.3. Other Polyimides

The development of polyimide precursors based on BPDA was carried out for olefin/
paraffin separation until the year 2000. BPDA could easily be imidized with diamines at
high temperature, and the derived CMS membrane showed excellent separation perfor-
mance after an additional oxidation process. Optimization of CMS membrane derived from
3,3′-4,4′-biphenyl tetracarboxylic dianhydride-4,4′-oxydianiline/diaminotoluene (BPDA-
ODA/DAT) could be achieved by oxidation in air at 400 ◦C while the gas permeance of
a CMS membrane without oxidation post-treatment was much lower [98]. J.I. Hayashi
et al. studied the performance of CMS membranes derived from 3,3′-4,4′-biphenyl tetracar-
boxylic dianhydride-4,4′-oxydianiline (BPDA-ODA) for C3H6/C3H8 and C2H4/C2H6
separations according to the change of operating temperature. The selectivities for both
increased from 4–5 and 25–29 to 5–7 and 33–56 for C2H4/C2H6 and C3H6/C3H8, respec-
tively, while the gas permeance decreased [101]. The change of pore structure of a CMS
membrane derived from BPDA-ODA according to pyrolysis temperature was also studied.
The slit-like pores were gradually decreased with increasing pyrolysis temperature, result-
ing in the reduction of gas permeance. In addition, the post-oxidation process enhanced
the gas permeance without the reduction of selectivity, which is attributed to increase of
the micropore volume [99]. An asymmetric CMS hollow fiber membrane was prepared
with polyimide precursor of 3,3′-4,4′-biphenyl tetracarboxylic dianhydride-dimethyl-3,7-
diaminodiphenyl-thiophene-5,5-dioxide/3,5-diaminobenzoic acid (BPDA-DDBT/DABA).
The asymmetric structure was maintained after carbonization, even though fusion of nod-
ules was observed. The CMS membrane showed good stability and C3H6/C3H8 selectivity
of 13 with high C3H6 permeance of 50 GPU [59].

In another study, CMS membranes derived from 1,4,5,8-naphthalene tetracarboxylic di-
anhydride (NTDA)-based sulfonated polyimides were prepared. The NTDA-based polyimide
was synthesized by condensation polymerization and thermal imidization using chemicals
with sulfonic groups such as benzidine-2,2′-disulfonic acid (BDSA), 4,4′-diaminodiphenylether-
3,3′-disulfonic acid (ODADS), 9,9′-bis(4-aminophenyl)fluorene (BAPF), and 2,2-bis [4-(4-
aminopheoxy)phenyl]hexafluoropropane disulfonic acid (BAHFDS). This resulted in the
formation of NTDA-BAHFDS, NTDA-BAHFDS/BAPF, NTDA-BDSA/BAPF, NTDA-BDSA,
and BTDA-ODADS polyimides, as shown in Figure 11. The large amount of microvoids
caused by the template-like effect of sulfonic groups gave rise to higher gas permeability.
Therefore, higher content of sulfonic groups led to increase in the gas permeability [39].
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Kapton is another representative commercial polyimide precursor of CMS membranes,
besides Matrimid. A CMS membrane made from Kapton polyimide precursor could be
prepared without modification because it has homogeneous fine pores without defects such
as cracks or large pores [119]. Suda et al. carried out mild activation of a Kapton-based
CMS membrane at 400 ◦C under Ar gas to enlarge the pore size, and obtained the increased
pore size distribution of 3.7–3.9 Å The modified CMS membrane showed high C2H4 and
C3H6 permeance of 55.58 and 11.85 barrer and C2H4/C2H6 and C3H6/C3H8 selectivity of
5.82 and 25.27, respectively [97].

Recently, CMS membrane derived from hydroxyl polyimide (HPI-HD5) as a represen-
tative TR-able polyimide was introduced, but this is not for olefin/paraffin separation. The
HPI-HD5 was thermally treated for thermally rearranged (TR) conversion and carbonized
in IR furnace. The carbonization of polymer precursor in IR furnace containing oxygen gave
rise to less processing time and energy requirement. This can improve the productivity by
hundreds of times compared to that of conventional electrical furnace [120].

3.2. Phenolic Resin

Phenolic resin is a very attractive material for CMS membranes due to its thermoset-
ting, high heat resistance, and carbon yielding properties [121]. Furthermore, it is a very
inexpensive polymer. For these reasons, it is applied in a variety fields. This attractive
polymer is being used as a precursor to create CMS membranes for gas separation, but in
some studies, these membranes have been used for olefin/paraffin separation.

A thermal curing process is typically part of the preparation of CMS membranes de-
rived from phenolic resin; this provides high thermal resistance and maintains the integrity
of the membrane during pyrolysis. Fuertes et al. prepared CMS membranes derived from
phenolic resin cured in air at 150 ◦C for 2 h on alumina tubular supports [74,102,103,106,107].
In addition, pre-oxidation and post-oxidation were carried out until reaching 400 ◦C. The
former creates the O2 bridge between aromatic molecules, which results in more open
porosity and in better performance for olefin/paraffin separation. The latter enhances the
surface diffusion of condensable hydrocarbon by adsorption in micropores instead of via
the molecular sieve mechanism [74,102,107]. These researchers also systematically studied
the effects of pyrolysis temperature, heating rate, soaking time, and atmosphere on the
separation performance of CMS membranes [106].



Membranes 2021, 11, 482 17 of 34

3.3. Polymer of Intrinsic Microporosity (PIM)

PIM is a relatively new, state of the art material for CMS membranes, as well as
a polymer membrane used for gas separation. As shown in Figure 12, this polymer
has a rigid backbone that induces inefficient packing of chains in the solid state, which
condition provides high surface area, high free volume, and undetectable Tg [108,110].
These properties enable it to provide excellent separation performance with good flexibility
and processability. A PIM-1-based CMS membrane was prepared by heating in the range
400–800 ◦C for C2H4/C2H6 separation. The C2H4 permeability was 44 and 1.3 barrer,
and the C2H4/C2H6 selectivity was 6.29 and 13, at 600 and 800 ◦C, respectively [110]. To
increase the separation performance of the PIM-based CMS membrane, additional study
of the PIM precursor was carried out. A CMS membrane derived from PIM-6FDA-OH
showed higher C2H4 permeability (10 barrer) and C2H4/C2H6 selectivity of 17.5 compared
to that of the PIM-1-based CMS membrane [111]. Furthermore, the C3H6/C3H8 separation
performances of thermally rearranged (TR) and CMS membranes derived from PIM-6FDA-
OH were compared. The CMS membrane showed higher C3H6 permeance (45 barrer) and
C3H6/C3H8 selectivity (33) than the TR membrane did [112]. After an OH-free PIM-6FDA
was carbonized at 800 ◦C, it showed a more ordered carbon structure compared to a CMS
membrane derived from PIM-6FDA-OH, which indicated increased graphitization. The
more ordered graphitic carbon structure enhanced C2H4/C2H6 selectivity up to ~16 [109].
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Liu et al. prepared PIM-cyclodextrin (CD) via nucleophilic substitution copolymeriza-
tion and then thermally treated the polymer in the range 300–600 ◦C [122]. With increase
in the thermal treatment temperature, the thermally liable CDs were decomposed. The
CD cavities became micropores after thermal-treatment, which crosslinked points in the
polymer matrix. The 3-D network provided selective, narrow gates without loss of gas
diffusion (Figure 13). However, there was concern about severe packing and shrinkage
of micropores and ultrafine micropores by excessive crosslinking and carbonization at
high temperature because these could decrease the gas permeability. The CMS membrane
derived from PIM-CD at 400 ◦C showed very high C3H6 permeability (2093 barrer) with
low C3H6/C3H8 selectivity (5.19).
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3.4. Other Polymers

Many other polymer precursors, such as polyacrylonitrile (PAN), polyfurfuryl al-
cohol (PFA), polyetherimide (PEI), poly(2,6-dimethyl-1,4-phenylene oxide) (PPO), and
Poly(phthalazinone ether sulfone ketone) (PPESK), in addition to the aforementioned
polymers, have also been used for gas separation. However, among them, only a few pre-
cursors were reported useful for olefin/paraffin separation due to their complex synthetic
processes, relatively low free volume, poor separation performance, and poor process-
ability. The polymer poly (aryl ether ketone) (PAEK) formed a semi-interpenetrating
network (IPN) with 2,6-bis(4-azidobenzylidene)-4-methyl-cyclohexanone (Azide) as a pho-
tosensitive crosslinker, and PEAK-Azide was used as the precursor of a CMS membrane
(Figure 14) [113]. The semi-IPN matrix provided stronger thermal stability and higher car-
bon yield than pure PAEK did. In addition, the CMS membrane derived from PAEK-Azide
(80:20) showed good separation performance of 48 barrer and 44 for C3H6 permeability and
C3H6/C3H8 selectivity, respectively. Moreover, this precursor is a less expensive material
than polyimide is.

Richter et al. prepared a CMS membrane derived from a polyester-resin precur-
sor prepared by crosslinking unsaturated polyester and styrene with a 3-D network [76].
The CMS membrane, which had a very thin carbon layer (125 nm) on an alumina tubu-
lar support, was applied for C4H8/C4H10 separation. Furthermore, the CMS mem-
brane O2-treated at 350 ◦C showed very high C4H8 permeance (574 GPU). However, low
C4H8/C4H10 selectivity (1.93) was observed because this membrane was prepared for
H2/hydrocarbon separation.
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3.5. Inorganic-Containing Polymers

To improve their separation performance and physical properties, inorganic nanopar-
ticles, MOFs, and carbon-based nanomaterials have been introduced into the matrix of
membranes. Incorporating such inorganic materials into CMS membranes has been also
employed. Teixeira et al. reported a CMS membrane derived from phenolic resin pre-
cursor loaded with boehmite nanoparticles. The boehmite was transformed to alumina
via dihydroxylation at high temperature, which process provided a high carbon yield.
This membrane exhibited C3H6 permeance of 154.1 barrer and C3H6/C3H8 selectivity
of 14.6, which surpassed the upper bound trade-off [105]. Furthermore, this research
team varied the content of boehmite nanoparticles in the range 0.5–1.2 wt%. The higher
carbon/alumina ratio increased the volume and average length of the micropores. The
separation performance of a CMS membrane with the carbon/alumina ratio of 4.4 was
420 barrer and 18.1 for C3H6 permeability and C3H6/C3H8 selectivity, respectively [104].

For a carbon-silica membrane, a polyimide-silica precursor was prepared by mixing
tetraethyl orthosilicate (TEOS, the silica precursor) and diethoxydimethylsilane (DEDMS,
the silica-network modifier) in poly(acrylic acid) (PAA) synthesized from pyromellitic
dianhydride (PMDA) and ODA. The well-dispersed spherical silica particles and the
spaces between the carbon matrix and silica particles facilitated gas permeation. At the
same time, a carbon matrix offered a selective domain, which provided good separation
performance compared with other carbon membranes. The resultant gas permeability and
selectivity were 398 barrer and 5.3 for C2H4/C2H6, and 375 barrer and 25.0 for C3H6/C3H8
separation [114]. A carbon-silica membrane was also fabricated with 6FDA-DAM/DABA
polyimide and ladder-structured polysilsesquioxane (LPSQ) for C3H6/C3H8 separation, as
shown in Figure 15. In this case, the densified and impermeable nonporous inorganic silica
phase decreased C3H6 permeance, while C3H6/C3H8 selectivity significantly increased.
This was attributed to its 6-fold enhanced diffusivity selectivity [94].

Various boron compounds with different molecular sizes were incorporated into a
hydrolyzed PIM-1 as the polymer precursor [108]. The pore size of the boron-embedded
CMS membranes increased, and the number of pores increased, due to the large size of
the boron compound. This CMS membrane exhibited higher gas diffusivity and greater
diffusion selectivity: C2H4 permeability of 13.7 barrer and C2H4/C2H6 selectivity of 9.7 in
mixed gases.

In another case, Chu et al. prepared Fe-containing CMS membranes for olefin/paraffin
separation [95]. They employed 1.1–3.2 wt% transition metal ions incorporated into the
6FDA-DAM/DABA polymer precursor and pyrolyzed under various conditions. The most
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suitable CMS membrane was obtained at the pyrolysis temperature of 550 ◦C using a rapid
ramp rate due to the interaction between olefins and active Fe2+ cations. The slow-pyrolysis
protocol can induce oxidation of Fe, which reduces the sorption selectivity. Furthermore, the
Fe complex provided greater diffusion selectivity by blocking less selective ultramicropores,
as shown in Figure 16, resulting in C2H4 permeability of 100 barrer and C2H4/C2H6
selectivity of 8.53. Performance of CMS membranes for olefin/paraffin separation was
shown in Table 2.
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Table 2. Performance of CMS membranes for olefin/paraffin separation.

Materials Pyrolysis
Temperature (◦C)

Operating
Temperature (◦C) Test Gas * C2H4

Permeance **
C2H4/C2H6
Selectivity

C3H6
Permeance *

C3H6/C3H8
Selectivity

C4H8
Permeance *

C4H8/C4H10
Selectivity Ref.

Matrimid 550 35 S 9.1 B 5.8 [88]

Matrimid 800 35 S 0.1 B 4.4 [88]

Matrimid 550 35 M 8.3 B 7.7 [60]

Matrimid 675 35 M 10.9 B 12.3 [60]

Matrimid 675 35 S ~18.0 B ~11.25 [85]

Matrimid 500 35 S 13 B 40 [89]

Matrimid 675 35 S 10 B ~12 [62]

Matrimid 700 35 S 0.25 G ~12 [62]

Matrimid 550 35 S 2.1 G 4 0.76 G 21 [90]

Matrimid 550 35 M 5.5 G 3.1 [91]

Matrimid 650 25 M 69.2 G 18 [92]

Matrimid 500 35 S ~78.9 B ~3.96 [81]

Matrimid 550 35 S ~18.7 B ~6.31 [81]

Matrimid 675 35 S ~17.7 B ~10.4 [81]

6FDA/BPDA-DAM 550 35 S 196 B 100 [88]

6FDA/BPDA-DAM 800 35 S 1.3 B 7.9 [88]

6FDA/BPDA-DAM 675 35 S ~58.7 B ~7.63 [85]

6FDA/DETDA-DABA 550 35 M 2444 B 12.7 [77]

6FDA/DETDA-DABA
(O2 doping) 550 35 M 941 B 23.1 [77]

6FDA/DETDA-DABA
(O2 doping) 550 35 M 101 B 50.7 [77]

6FDA/DETDA-DABA 800 35 M 71 B 63.7 [77]

6FDA/DETDA-DABA
(pre-crosslinking) 800 35 M 200 B 52 [77]
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Table 2. Cont.

Materials Pyrolysis
Temperature (◦C)

Operating
Temperature (◦C) Test Gas * C2H4

Permeance **
C2H4/C2H6
Selectivity

C3H6
Permeance *

C3H6/C3H8
Selectivity

C4H8
Permeance *

C4H8/C4H10
Selectivity Ref.

6FDA-DABA 550 35 M 257 B 20 [93]

6FDA-DAM/DABA
(embedding silica) 675 35 M ~67 B ~52 [94]

6FDA-DAM/DABA
(embedding silica) 675 35 M ~4.1 G ~35 [94]

6FDA-based polyimide 550 25 M 9 G 36 [42]

6FDA-DAM/DABA
(Fe loading) 550 35 M 10 B 11 [95]

6FDA-DAM/DABA
(Fe loading) 550 35 M ~100 B ~8.53 [95]

6FDA-DAM/DABA
(Fe loading) 550 35 S ~45.6 B ~304.9 [95]

6FDA/BPDA-DAM 550 35 S 15.9 G 3.9 17.5 G 3.9 [90]

6FDA-DAM 675 35 M 16.1 G ~4.8 [91]

6FDA/BPDA-DAM 550 35 M 8.8 G 3.9 [91]

6FDA-based polyimide 550 120 M 25.6 G ~13 [75]

6FDA-based polyimide 550 25 M ~9.94 G ~34 [75]

6FDA-based polyimide 550 RT M 29.8 G ~31 [96]

BPDA-ODA/DAT 600 35 M 4.179 G 25 [98]

BPDA-ODA/DAT 600 100 M 18.5 G 18 [98]

BPDA-pp’ODA 700 100 S ~13.2 G ~19.1 [99]

BPDA-aromatic diamine 700 50 S ~8.69 ~3.30 [100]

BPDA-aromatic diamine 850 80 S ~0.30 G ~7.26 [100]

BPDA-DDBT/DABA 600 100 M 51 G 12 [59]

BPDA-DDBT/DABA 600 100 M 110 G 3.1 [59]

NTDA-BDSA/BAPF 450 35 S 31 B 4.2 15 B 34 [39]
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Table 2. Cont.

Materials Pyrolysis
Temperature (◦C)

Operating
Temperature (◦C) Test Gas * C2H4

Permeance **
C2H4/C2H6
Selectivity

C3H6
Permeance *

C3H6/C3H8
Selectivity

C4H8
Permeance *

C4H8/C4H10
Selectivity Ref.

NTDA-BDSA/BAPF 450 35 M 9.3 B 19 [39]

NTDA-BAHFDS 450 35 S 66 B 3.5 41 B 26 [39]

NTDA-BAHFDS 450 35 M 30 B 11 [39]

NTDA-BAHFDS/BAPF 450 35 S 30 B 3.4 15 B 21 [39]

NTDA-BDSA 450 35 S 14 B 4.8 6.4 B 29 [39]

BPDA-pp’ODA 700 35 M 2.36 G 46 [101]

BPDA-pp’ODA 700 100 M 8.66 G 33 [101]

BPDA-pp’ODA 700 S ~40 B ~7 [101]

Kapton 400–1000 100 S ~55.5 B ~5.82 ~11.8 B ~25.2 [97]

Phenolic resin 700 20 ± 1 S ~1.38 G 14 [102]

Phenolic resin 700 20 ± 1 S ~3027 G 1.3 ~3092 G 1.45 [102]

Phenolic resin 700 20 ± 1 S ~49.85 G 2.35 ~45.0 G 16.59 [103]

Phenolic resin 550 20 M ~286.6 B ~12.8 [104]

Phenolic resin 550 20 M ~392.6 B ~7.92 [104]

Phenolic resin
(boehmite composite) 550 20 S ~154.1 B 14.6 [105]

Phenolic resin 800 M 16 B 5.4 19 B 35 [106]

Phenolic resin 700 20 S ~48.7 G ~3.75 ~52.9 G ~33.1 [107]

Phenolic resin 700 S 8.65 G 2.2 84.4 G 11.4 [74]

PIM (boron-doped) 700 35 M ~13.6 B ~9.69 [108]

PIM-6FDA 800 35 M 3.02 B 17.9 [108]

PIM-1 600 35 S 44 B 6.29 [110]

PIM-1 800 35 S 1.3 B 13 [110]

PIM-CD 400 35 S 2093 B 5.19 [122]
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Table 2. Cont.

Materials Pyrolysis
Temperature (◦C)

Operating
Temperature (◦C) Test Gas * C2H4

Permeance **
C2H4/C2H6
Selectivity

C3H6
Permeance *

C3H6/C3H8
Selectivity

C4H8
Permeance *

C4H8/C4H10
Selectivity Ref.

PIM-CD 600 35 S 42 B 8.4 [122]

PIM-6FDA-OH 800 35 S 10 B 17.5 [111]

PIM-6FDA-OH 800 35 M ~10 B 14 [111]

PIM-6FDA-OH 600 35 M 31 B 17 [112]

PAEK/Azide 550 35 M 3.6 B 32 [113]

PI (silica dispersion) 600 25 S 40 B 13.3 36 B 51.4 [114]

PI (silica dispersion) 600 25 S 150 B 8.3 143 B 30.4 [114]

PI (silica dispersion) 600 25 S 280 B 5.4 244 B 20.3 [114]

PI (silica dispersion) 600 25 S 155 B 7.8 147 B 29.4 [114]

PI (silica dispersion) 600 25 S 398 B 5.3 375 B 25 [114]

Polyester-resin 800 150 S ~574.0 G ~1.93 [76]

* S and M indicate single and mixture, respectively. ** B and G indicate barrer and GPU, respectively.
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4. Pyrolysis Process

Pyrolysis is the key parameter and a necessary process for CMS membranes. It pro-
duces the microporous carbon structure needed to provide the molecular sieving property.
A variety of polymer precursors have been transformed through pyrolysis processes under
different conditions. During pyrolysis, volatile chemical byproducts are typically emit-
ted (i.e., NH4, CH4, H2, N2, CO, and CO2). The graphite-like structure derived from H2
evolution leads to significant weight loss of the polymer precursor. The heteroatoms in
the polymer precursor are eliminated, which rearranges the molecular structure. Then,
an amorphous, rigid, carbon matrix with a non-homogeneous, microporous structure is
formed. The pore structure is generally determined by the polymer precursor and py-
rolysis chemistry. Therefore, many researchers have been varying pyrolysis conditions
such as temperature, heat ramping rate, thermal soaking time, and atmosphere as effective
parameters [70]. To achieve excellent separation performance with a CMS membrane, these
pyrolysis parameters should be optimized.

The pyrolysis temperature is the most effective parameter among the various pyrol-
ysis conditions for predicting the final structure and separation performance of a CMS
membrane. Pyrolysis is typically carried out in the range 500–1000 ◦C, which is in the
range of decomposition and graphitization temperatures for the polymer precursors. A
higher pyrolysis temperature leads to lower gas permeability and higher selectivity. This
is attributed to greater compactness and crystallinity, which cause narrower interplanar
spacing between the graphite-like layers in the carbon structure [123,124].

The heat ramping rate is generally maintained in the range 0.5–13 ◦C/min, which
choice is related to the pore structure of the CMS membrane. The ramping rate determines
the rate of progression of the polymer precursor into volatile components. As the heat
ramping rate decreases, smaller pores and higher carbon crystallinity are obtained, while
cracks, pinholes, distortions, and blisters may occur at faster heat ramping rates, lowering
selectivity [125,126].

The soaking time is the amount of time a temperature is maintained after reaching
the pyrolysis temperature. This parameter finely influences the transport property of a
CMS membrane even though it is hard to expect big enhancement or change in terms of
separation performance. Nevertheless, several researchers have studied variation of the
heat ramping rate with long thermal soak times [106].

Pyrolysis is carried out in vacuum or under O2-free gases such as He, N2, and Ar to
obtain a carbon structure without undesirable damage to the polymer precursor. The inert
gases cause a CMS membrane to have a more open pore structure than occurs in vacuum.
This is due to the higher gas-phase heat and mass transfer [127].

5. Aging and Stability Issues of CMS Membranes
5.1. Mechanical Stability

CMS membranes are undergoing a challenge of low mechanical strength due to brittle
property after carbonization. This may be mitigated by optimizing the polymer precursor
and preparation process [128–130]. However, enhancing the mechanical strength by these
methods is limited because it is related to the performance of the CMS membrane.

The membrane configuration has significant impact on the mechanical stability of
CMS membrane. The hollow fiber morphology which has relatively higher mechanical
strength compared with flat sheet facilitates the modulation of CMS membranes, achieving
the defect-free carbon layer as well as offering the high packing density [131]. In particular,
supported CMS membrane is ideal to provide commercially-viable mechanical strength,
which is favorable for operating at high temperature and high pressure. The substrate
generally plays a role of mechanical support while the thin surface layer determines the
permeability and selectivity of the membrane. The membrane thickness is main parameter
to determine the transport rate. Therefore, composite CMS membrane can provide both
high performances and mechanical stability.
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On the other hand, a pre-crosslinking of polymer precursor can increase the flexibility
of the CMS membrane. A crosslinked polymer generally becomes more brittle due to
increase in the rigidity of the polymer chains. However, the CMS membrane undergoes the
procedures of decomposition, aromatization, and fragmentation during pyrolysis, leading
to rigid graphene-like layers with high fragility and brittleness [132]. This characteristic
might be alleviated by the crosslinking between polymer chains, resulting in a more flexible
CMS membrane. This crosslinking effect on CMS membrane was reported by Koh et al. for
pre-crosslinked PVDF precursors [133].

5.2. Chemical Aging

Chemical aging in a CMS membrane is induced by adsorption or interaction with
external species such as organic contaminants, O2 (or air), and humidity, as illustrated in
Figure 17. This causes severe degradation of gas permeation due to plugging of the pore
structure [91].
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For chemical aging by organic contaminants, Jones et al. exposed CMS membranes to
hexane, vacuum pump oil, phenol, and toluene, resulting in reduction of gas permeance
due to the hydrophobic property of carbon [134]. However, the chemically aged pore
structure of a CMS membrane could be regenerated simply by exposure to C3H6.

Menendez et al. investigated chemical aging by exposure to air, N2, and C3H6 of
a phenolic resin-based CMS membrane. In particular, when the CMS membrane was
exposed to O2, the permeance was significantly decreased, which may be attributed to
reactive edge sites in the carbon structure for O2 chemisorption [103]. Moreover, the water
was strongly adsorbed to the CMS membrane in high humidity, leading to the formation
of water clusters on hydrophobic carbon pores. The adsorption of water significantly
decreased gas permeance by reducing the available pore volume and pore size, as with
aging by organic components.

Despite many attempted solutions aimed at recovering from the chemical aging of
CMS membranes, this unwanted phenomenon is still a critical issue in their commercializa-
tion. A fundamental solution to chemical aging must be developed in further work.

5.3. Physical Aging

Recently, an unexpected form of permeance loss was observed while CMS membranes
were stored under vacuum or in O2-free dry conditions. This observation was attributed to
physical aging in 2014 by Xu et al. [91], as a possible explanation. Moreover, physical aging
was observed in continuous gas permeation processes under O2-free conditions. This team
hypothesized that CMS membranes undergo physical rearrangements to reach thermody-
namic equilibrium due to initial imperfections of the graphene-like layers, as indicated
in Figure 18. Physical aging was mainly caused during the early stage after pyrolysis. A
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similar phenomenon was observed by Lin et al. [75] in 2015. Raman spectroscopy of CMS
membranes clearly revealed that the D/G ratio decreased after physical aging under pure
N2 gas for one week. Such data indicates that the graphene-like layer of CMS membranes
tends to rearrange into a more ordered structure.
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Some efforts aimed at avoiding permeance loss by CMS membranes due to physical
aging have been reported. CMS membranes derived from 6FDA-DABA could be thermally
crosslinked at 350 and 450 ◦C prior to pyrolysis process. The pre-crosslinking of polymer
chains increased Tg and restricted movements, leading to higher graphitic carbon content.
This could prevent collapse of the pore structure in a CMS membrane, resulting in only
2% reduction of C3H6 permeability [93]. There are other studies that, even though they
were not about olefin/paraffin separation, did involve efforts to prevent physical aging.
Post-crosslinking of the CMS backbone was proposed to impede segmental movements (i.e.,
rearrangements and densification) of the graphene-like layers. This technique prevented
physical aging to some extent, under a continuous active feed of 50 psia. However, a
significant performance loss was still observed after 4 months of storage in vacuum [135].
In another case, a polydimethylsiloxane (PDMS) coating on the surface of a CMS membrane
was employed to delay physical aging, even though this could not completely prevent the
physical aging. The researchers mentioned that the PDMS layer may act as a resistance
layer. A PDMS-coated CMS membrane showed a 35% reduction ratio of CO2 permeance
while the original CMS membrane had 60% [136].

To apply CMS membranes at industrial scale, it is crucial to overcome this aging
phenomenon to guarantee long-term operation. Based on the literature on this topic, it is
clear that the shrinkage or densification of graphene-like layers as steps toward achieving
a state of thermodynamic equilibrium must be prevented. Therefore, ways to modify or
apply pre-/post-treatment of CMS membranes will be key technologies.

6. Conclusions and Prospects

Olefin is a useful product that has historically been separated from paraffin using an
energy-intensive cryogenic distillation process. To replace this with alternative energy-
effective, sustainable technologies, attempts involving such as adsorption, facilitated trans-
port, and membranes have been reported. In particular, CMS membranes have proven
attractive for olefin/paraffin separation due to their rigid, slit-like pore structure, which
effectively allows the penetration and passage of the rather planar olefin molecule while
blocking those of paraffin. Therefore, we reviewed the polymer precursors used to make
CMS membranes for olefin/paraffin separation.

For olefin/paraffin separation, a variety of polymer precursors with a heating-resistant
property have been employed. The progress of polymer precursor materials for CMS
membrane was indicated in Figure 19. Initially, phenolic resin, PAN, and PPO with high
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aromatic carbon were typically used. In the 2000s polyimides such as Matrimid and 6FDA-
based polymers have been commonly used as precursors of CMS membranes, which are
polymers with relatively high thermal stability, good processability, and high free volume,
which provide high carbon yield and gas permeability. In particular, 6FDA-based polyimide
polymer with bulky -C(CF3)2-linkage is still the most widely used precursor with high
separation performance as shown in Figure 20. PIM-based CMS membranes have recently
been reported. These are favored due to their high free volume and undetectable Tg which
are provided from rigid and twisted polymer chains. This give rise to excellent separation
performance and good flexibility. For these reasons, polymers with high free volume and
thermal stability are attracting much attention for CMS membranes. To provide even
more beneficial properties to the polymers, several efforts have been carried out. These
include such as chemical modification and addition of inorganic materials. These efforts
enable better tuning of the ultramicropore and micropore carbon structures, and physical
properties. This can enhance the separation performance and improves the stability of CMS
membranes. However, the performance of CMS membrane for olefin/paraffin separation
is relatively lower than with other inorganic membranes such as MOFs and organo-silica,
even though CMS membranes have better processability. Therefore, polymer precursors
with excellent physical properties should be investigated more, and the technologies
needed for their fine-tuning must be further developed. The polymer precursor structure
should be designed into higher.
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The polymer precursor structure should be designed with a higher free volume and
low structural deformation at high temperatures. The introduction of bulky CF3 group in
6FDA or twisted structure in PIM may be good examples. In addition, research on employ-
ing a filer that can provide higher porosity and physical properties while maintaining the
pore structure of CMS membrane should be continuously studied.

On the other hand, the aging issues of CMS membranes have become a bottleneck to
commercialization. In fact, chemical aging has been approached by many researchers over
a long time, and a great deal of effort has been expended to solve the problem.

Nevertheless, a fundamental solution has not yet been proposed to completely stop
aging. Furthermore, physical aging has recently become a major issue for CMS membranes.
The degree of this unexpected phenomenon differs depending on the polymer precursors.
Therefore, work must be carried out in the future to investigate physical aging of the
various precursors and to propose a solution that stops or delays the loss of permeability.
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