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Abstract
Introduction: Temporomandibular disorder is a commonmusculoskeletal pain condition with development of chronic symptoms in
49% of patients. Although a number of biological factors have shown an association with chronic temporomandibular disorder in
cross-sectional and case control studies, there are currently no biomarkers that can predict the development of chronic symptoms.
The PREDICT study aims to undertake analytical validation of a novel peak alpha frequency (PAF) and corticomotor excitability
(CME) biomarker signature using a human model of the transition to sustained myofascial temporomandibular pain (masseter
intramuscular injection of nerve growth factor [NGF]). This article describes, a priori, the methods and analysis plan.
Methods: This study uses a multisite longitudinal, experimental study to follow individuals for a period of 30 days as they
progressively develop and experience complete resolution of NGF-induced muscle pain. One hundred fifty healthy participants will
be recruited. Participants will complete twice daily electronic pain diaries from day 0 to day 30 and undergo assessment of pressure
pain thresholds, and recording of PAF and CME on days 0, 2, and 5. Intramuscular injection of NGF will be given into the right
masseter muscle on days 0 and 2. The primary outcome is pain sensitivity.
Perspective: PREDICT is the first study to undertake analytical validation of a PAF and CME biomarker signature. The study will
determine the sensitivity, specificity, and accuracy of the biomarker signature to predict an individual’s sensitivity to pain.
Registration details: ClinicalTrials.gov: NCT04241562 (prospective).
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1. Introduction

Temporomandibular disorder (TMD) is the secondmost common
musculoskeletal pain condition after back pain, with an annual
incidence of 4%and development of chronic symptoms in 49%of

patients.36,38 Although a number of biological factors have shown
an association with chronic TMD in cross-sectional and case
control studies including sensitivity to mechanical stimuli,39

upregulated central nociceptive processing,30,32 increased heart
rate and reduced heart rate variability,22 single-nucleotide
polymorphisms,37,40 elevated levels of proinflammatory cyto-
kines,37 elevated interstitial glutamate concentration,2 and
altered brain structure and function,21 these have either failed
to yield clinically meaningful predictive power or have not
undergone comprehensive validation in prospective trials. Con-
sequently, there are no biomarkers available that can predict the
development of chronic TMD. In fact, there are no biomarkers
qualified (considered valid and psychometrically sound) by the
Food and Drug Administration for use in clinical trials or clinical
practice for any musculoskeletal pain condition.41

In most patients with chronic musculoskeletal pain, a
peripheral anatomical cause for pain cannot be identified. For
example, myofascial TMD is more commonly associated with
stress and anxiety than anatomical pathology,42 whereas 90% of
all chronic low back pain is diagnosed as “nonspecific.”18 In
conditions where a structural impairment can be detected (ie,
articular cartilage damage in osteoarthritis), themagnitude of pain
fails to correlate with the extent of tissue damage.11 These
observations suggest a role for the brain in the development and
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maintenance of chronic pain. Indeed, early investigations suggest
that variability in brain connectivity circuits can predict sensitivity
to a transient pain stimulus in healthy individuals.31 Although
these data have not yet been expanded and the relevance to
clinical pain is unknown, brain imaging methods are widely
considered to have potential as diagnostic, prognostic, and
predictive biomarkers of chronic pain.6

Using brain imaging methods of electroencephalography
(EEG) and transcranial magnetic stimulation (TMS), preliminary
evidence for a unique biomarker signature—combined resting-
state peak alpha frequency (PAF; the frequency band within the
8–12 Hz range displaying maximal power) and corticomotor
excitability (CME; excitability of the corticomotor representation of
a target muscle)—has recently been demonstrated. In studies
using long-lasting human pain models, slow PAF and low CME
are associated with high pain severity and longer pain dura-
tion.13,34,35 Consistent with this, low CME in the acute stage of
clinical pain is associatedwith high pain severity and the presence
of pain at 6-month follow-up.3 These data suggest the
combination of slow PAF and low CME may be a plausible
predictive biomarker for the development of chronic TMD.

Here, we outline the experimental protocol and statistical
analysis plan to undertake analytical validation of the PAF/CME
biomarker signature using a standardized human model of the
transition to sustained myofascial temporomandibular pain
(masseter intramuscular injection of nerve growth factor [NGF]).
We hypothesise that the PAF/CME biomarker signature will
predict pain sensitivity (primary) and pain severity and duration
(secondary) with at least 75% accuracy in a human transitional
pain model of TMD. In addition, we aim to (1) determine the
sensitivity, specificity, and accuracy of the PAF/CMEbiomarker at
predicting pain sensitivity, severity, and duration, (2) determine
the reportable range of test results and reference intervals for fast
vs slow PAF and high vs low CME, and (3) establish optimization
of the model and automation and simplification of methods for
biomarker detection.

2. Methods

2.1. Design

A multisite longitudinal, experimental study will be used to follow
healthy individuals for a period of 30 days as they progressively
develop and experience complete resolution of NGF-induced
muscle pain. All data collection will be performed at the Australian
site (Neuroscience Research Australia; NeuRA), and blinded data
processing and analyses will be performed at the U.S. site (the
University of Maryland Baltimore; UMB). The UMB site will also be
responsible for standardization and automation of analytical
methods. A data and safety monitoring plan has been established,
and an independent monitoring committee will conduct annual
reviews of study progress and safety. Ethical approval has been
obtained from the University of New SouthWales (HC190206) and
the University of Maryland Baltimore (HP-00085371). All proce-
dures will be conducted in accordance with the Declaration of
Helsinki. Written informed consent will be obtained and partici-
pants will be free to withdraw from the study at any time. The study
is prospectively registered on ClinicalTrials.gov (NCT04241562).

2.2. Participants

2.2.1. Inclusion and exclusion criteria

Healthymen andwomen with nomedical complaints, no history of
chronic pain, and no current acute pain between the ages of 18

and 44 years will be included. These inclusion criteria are justified
based on data from the OPPERA prospective cohort study that
demonstrates only marginally greater TMD incidence in females
than males and an incidence rate of first-onset TMD of 2.5% per
annum among 18–24-year-olds and 4.5% per annum among
35–44-year-olds.36 Exclusion criteria are: (1) inability or refusal to
provide written consent, (2) presence of an acute pain disorder, (3)
history or presence of any chronic pain disorder includingmigraine,
(4) history or presence of any other medical or psychiatric
complaint, (5) use of opioids or illicit drugs in the past 3 months,
(6) current smoker or using nicotine replacements, (7) pregnant or
lactating women, and (8) contraindicated for TMS (metal implants,
epilepsy).16 Participants will be recruited through notices placed on
community notice boards at UNSW and NeuRA, flyers, mailings,
and social media platforms (such as Facebook) as well as the use
of a volunteer healthy participant database held by NeuRA.

2.2.2. Sample size

One hundred fifty healthy subjects will be included. Our pre-
liminary data13,34,35 indicate consistent associations between
PAF and future pain severity, as well as strong relationships
between CME and pain severity. The design of the current
discovery-based study is not amenable to traditional power
calculations because the outcomes are not P-value-based
inference but rather predictive. Larger sample sizes in the training
set give better classification, whereas larger sample sizes in the
testing set give higher accuracy. We have chosen a sample size
that provides good classification and accuracy. Allowing for a
10% dropout rate, we will enrol 165 subjects.

2.3. Data collection procedures

2.3.1. Overview

Participants will first complete a phone screen and if eligible, a
time will be made for the day 0 visit. At the day 0 visit, after
reviewing eligibility criteria, participants will complete informed
consent (considered enrolment in the study) and questionnaires.
Participants will complete twice daily electronic pain dairies from
day 0 to day 30 and attend 3 laboratory visits of;2 hours duration
on days 0, 2, and 5. Each laboratory visit will include assessment
of pressure pain thresholds (PPTs), and recording of PAF and
CME. Intramuscular injection of NGF will be given into the right
masseter muscle at the end of each test session on days 0 and 2
(Fig. 1). These procedures are detailed below.

2.3.2. Electronic diaries

Diaries will be completed using a computer, tablet, or phone at 10
AM and 7 PM each day from day 0 to day 30. Electronic diary
completion will take 2 minutes. Participants will rate their pain
intensity on an 11-point numerical rating scale anchored with “no
pain” at zero and “worst pain imaginable” at 10 at rest, and during
activities of daily living such as chewing, swallowing, drinking,
talking, yawning, and smiling.9 Participants will be prompted to
complete the pain diary twice per day (10 AM and 7 PM) each day. If
the diary is not completed for 2 consecutive days, participants will
be followed-up by phone.

2.3.3. Questionnaires

At Day 0 only, participants complete a health history form
assessing medical history. We will use the following National
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Institutes of Health common data elements (CDE) for pain
biomarkers including: Pain Catastrophizing Scale43; Brief Pain
Inventory Pain Severity and 7-item Interference subscales17,45;
SF-8 to assess general health50; Sleep Scale; PHQ-2 to assess
depression19; GAD-2 to assess anxiety20; and Tobacco, Alcohol,
Prescription medications, and other Substances. Participants will
also complete the Perceived Stress Scale46 and the Pennebaker
Inventory of Limbic Languidness questionnaire.29 These ques-
tionnaires assess factors that have been associated with first-
onset and/or chronic TMD1 and often worsen as TMD pro-
gresses.10 These questionnaires will be completed on day 0.
(1) On days 0, 2, and 5, participants will be examined according to

the Diagnostic Criteria for TMD (DC-TMD)33 andwill complete 2
numerical rating scales asking the following questions:

(2) On a scale of 1 to 10 where 1 is “poor sleep quality” and 10 is
“excellent sleepquality,” howwould you rate your sleep last night?

(3) On a scale of 1 to 10 where 1 is “not at all stressed” and 10 is
“very stressed,” how would you rate your level of stress over
the last 24 hours?

2.3.4. Pressure pain thresholds

Because NGF injection is known to sensitize mechanosensitive
afferents,23,44 andbecause lower PPTs at cranial sites are associated
with increased risk of developing TMD14 and fluctuatewith the clinical
disease course,39 we will assess PPTs at 5 sites—overlying the

masseter muscle, temporalis muscle, the temporomandibular joint,
the trapeziusmuscle, and the lateral epicondyle. Threemeasures will
be made at each site, with 1-minute rest between measurements at
the same site, in pseudorandomized order using a commercially
available algometer.

2.3.5. Peak alpha frequency

Scalp EEG will be collected using Brain Vision actiCAP with at
least 32 channels, following the extended international 10 to 20
system,28 a BrainAmp DC amplifier, and Brain Vision Recorder
version 1.22.0101 software (all Brain Products GmbH, Munich,
Germany). Auxiliary recordings will include skin conductance,
respiration, and electrocardiogram (ECG). Participants will be
asked to make facial muscle contractions such as clenching their
teeth, blinking, and saccades, while EEG is recorded. This will
take about 2minutes andwill be used to aid in automated artefact
removal. Participants will then be told to relax their muscles and
resting-state eyes-closed EEG will be recorded for 5 minutes and
used for PAF calculation.

2.3.6. Corticomotor excitability

Rapid TMS will be used to map the primary motor cortical
representation of the right masseter muscle and right extensor carpi
radialis brevis (ECRB) muscle. Mapping of the right ECRB muscle is
included to determine whether any changes in corticomotor
excitability are restricted to the affected muscle. Single-pulse,
biphasic stimuli will be delivered to the left hemisphere using a
Magstim Super Rapid2 Plus and a 70-mm figure-of-eight coil. Bipolar
surface electrodes will be used to record electromyographic (EMG)
activity.8 EMG signals will be amplified (x2000), filtered (20–1000 Hz),
and digitally sampled at 5 kHz. The scalp site that evokes the largest
EMG response (motor-evoked potential, MEP) at a given TMS
intensitywill be determined for eachmuscle in each individual (termed
the “hotspot”) and the active (aMT—masseter muscle) or resting
(rMT—ECRBmuscle)motor threshold calculated. A6 x 6-cmgridwill
be generated in the neuronavigation software for each muscle,
centred to each participant’s hotspot. 110 stimuli will be delivered at
2-sec intervals to pseudorandom locations over the grid at 120% of
aMT for themassetermuscle and120%of rMT for theECRBmuscle.

2.3.7. Intramuscular injection of nerve growth factor

After cleaning the skin with alcohol, a sterile solution of
recombinant human NGF (dose of 5 mg [0.2 mL]) will be given
as a bolus injection into the rightmasseter on days 0 and 2 using a
1-mL syringe with a disposable needle (27 G). Following the
procedure of Costa et al.,4 the needle will be inserted
perpendicular to the masseter body until bony contact. The
needle will then be retracted ;2 mm, aspiration performed, and
NGF injected. Any individual who does not develop sensitivity to
the NGF model, assessed by diary pain ratings and PPTs of the
injected muscle, will be considered a nonresponder and
excluded from analyses. Because NGF acts by sensitising
mechanosensitive afferents, no change in PPTs after injection
would argue in favour of model failure.

2.4. Outcome measures

2.4.1. Primary outcome

The primary outcome is pain sensitivity: participants are di-
chotomized as high- or low-pain sensitive based on the peak pain

Figure 1. Experimental protocol. Questionnaires—Health history form, Pain
Catastrophising Scale, Brief Pain Inventory Pain Severity and 7-item
Interference subscales; SF-8 Health Survey; Sleep Scale; Patient Health
Questionnaire-2 item; Generalised Anxiety Disorder 2 item Questionnaire;
Tobacco, Alcohol, Prescription Medications, and other Substances Ques-
tionnaire; Perceived Stress Scale; and Pennebaker Inventory of Limbic
Languidness (PILL) questionnaire. DC-TMD, Diagnostic Criteria for Temporo-
mandibular Disorder; EEG, electroencephalography; NGF, nerve growth
factor; NRS, numerical rating scale; PPTs, pressure pain thresholds; TMS,
transcranial magnetic stimulation.
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severity from diary recordings.12,35 That is, based on pain severity
in the training set (n 5 100), participants will be classified as the
top 40% high- or bottom 40% low-pain sensitive. This
classification can be further weighted (eg, very high, very low)
as described in Aim 1.3.

2.4.2. Secondary outcomes

The secondary outcomes are pain severity (peak average daily
pain severity based on diaries on a 0–10 scale) and pain duration,
defined as the time between pain onset and complete resolution
of pain (0 on a 0–10 scale for 2 consecutive days).

2.4.3. Biomarker candidates

Biomarker candidates are PAF at Day 0 and CME at Day 5.
Because this is a discovery project, we will also examine PAF and
CME at every day it is tested (see Aim 1.3 below).

2.5. Data processing

2.5.1. Peak alpha frequency and other
electroencephalography metrics

All data processing will be performed using custom MATLAB
scripts implementing EEGLAB7 and FieldTrip toolboxes.27 Data
will be referenced to the average across all recording channels
and segmented into 5-second epochs. These epochs are
manually inspected and all epochs containing marked muscular
artifacts are rejected. Channels with poor recordings will be
rejected. Principal component analysis is then applied to identify
and remove components relating to eye blinks, saccades, and
ECG artifacts. Power spectral density will be derived in 0.20-Hz
bins and the 2 to 40 Hz range will be extracted. Power spectral
density will be extracted in sensor space around sensorimotor
cortices (C3, Cz, C4, and neighboring electrodes), as well as
sensorimotor ICA components demonstrating clear alpha
peaks.26,48,49 A Hanning taper will be applied to the data before
calculating the spectra to reduce any edge artifacts similar to the
approach taken in studies conducted by Mazaheri et al.24–26

Peak alpha frequency is calculated using the center of gravity
method, as we have done previously.12

2.5.2. Corticomotor excitability

All data processing is performed using a custom MATLAB script.
Triangular linear interpolation is used to create a full surface map
within a transformed 2D plane containing the stimulation
coordinates and their corresponding peak-to-peak MEP ampli-
tudes.5,47 The resultant map is divided into 2500 partitions (503
50), with each partition assigned an approximated value based on
the nearest acquired MEP data. Map area is determined as the
ratio of the number of approximated partitions where the MEP
exceeds 10% of the maximum MEP across all partitions. This
cutoff reduces data variability. Map volume is then calculated as
the sum of all MEPs (subtracted by the 10% level). This approach
is described in full detail (including relevant equations) here.47

2.6. Statistical analyses

2.6.1. Aim 1.1: predicting pain sensitivity and optimizing the
model

We will validate the PAF/CME biomarker signature and test the
predictive accuracy using a nested control-test scheme. The

sample of 150 subjects will first be randomly divided into an outer-
training set (n5 100) and an outer-testing set (n5 50). The ratios
of high- vs low-pain sensitive individuals will bematched between
the 2 cohorts where “high pain sensitive” subjects are defined as
the 40% of all subjects with the highest pain sensitivity, and “low
pain sensitive” subjects are the 40%of all subjects with the lowest
pain sensitivity. Next, the outer-training cohort will be split into 5-
folds (20 subjects for each fold) for cross validation. Each fold of
20 subjects will be tested as an inner testing cohort based on the
remaining 4 folds as the inner training cohorts. The research team
at UMB will be blinded to the outcomes of pain sensitivity,
severity, and duration in the outer-testing cohort. We expect the
5-fold cross validation will provide sound performance assess-
ment with balanced variance-bias trade-off (see details in Ref.
15). We will consider multiple classifiers including logistic
regression, support vector machine, gradient boosting, random
forest, and neural networks. These predictive models along with
the tuning parameters will be compared based on the perfor-
mance of the 5-fold cross validation. The biomarkers may predict
outcomes in a nonlinear fashion, and thus most machine learning
models (eg, support vector machine and gradient boosting 1
random forest) will detect nonlinear functions. The predictive
model with the highest performance (ie, the final model) based on
the ability to classify the 40% most pain sensitive and the 40%
least pain sensitive participants will be referred to as the “winning
classifier.” The parameters of the winning classifier will be fixed
and used to predict the outcomes of the outer-testing set. After
finalizing the predicted outcomes, the outcomeswill be unblinded
to the UMB team. We will compare the predicted outcomes with
the true outcomes and assess the accuracy, sensitivity,
specificity, as well as positive and negative predictive values.
The predictive accuracy based on binary outcome prediction is
used because it is more robust than mean squared error of a
predictive model for continuous variables and is more commonly
used in the field. Our target is to achieve an area under the curve
of the receiver operating characteristic greater than or equal to
75% when applying the fixed classifier to the testing data set.

2.6.2. Aim 1.2: reportable ranges

The sensitivity, specificity, and accuracy of the PAF/CME
biomarker will be based on the blinded prediction of the outer-
training 50 samples. Reference intervals will be reported for the
whole sample, including intervals for fast vs slow PAF and high vs
low CME. These will be reported as tables, standardized by age,
sex, and other factors. We will further report on the stability of
these measures over time (Days 0, 2, and 5).

2.6.3. Aim 1.3: optimization

Wewill explore how the inclusion of other combinations of factors
in the model affects performance characteristics. The auxiliary
factors considered in the model will include questionnaire and
diary data, PPTs, and other EEG data (theta, alpha, beta, low
gamma power) using a model/variable selection procedure to
further boost the performance of the model. The nested training-
testing scheme will be used to determine the optimal pain
sensitivity prediction model using the biomarkers.

2.6.3.1. Weighted accuracy

Because the low- and high-pain sensitive categories are de-
termined based on a continuous pain scale, subjects with pain
intensities near themedian should be weighted less. Therefore, in
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addition to the simple accuracy, the weighted accuracy will be
calculated. The weight will be determined by the distance of pain
levels to the high–low cut-off.

2.7. Automation and simplification of methods

In order for the biomarker signature to have application to large
populations and settings, users must be able to rapidly collect
and analyze data with minimal training. We will develop methods
that automatically produce biomarker readouts with minimal
human input, thus reducing bias associated with data input. Our
goal will be to develop a method for automated signature
calculation that achieves an intraclass coefficient of at least 80%
compared to output from non-automated data processing and
no significant difference betweenautomated and nonautomated
based on bootstrap inference.

3. Discussion

Biomarkers with clinically meaningful predictive power are yet to
be uncovered in musculoskeletal pain disorders. A predictive
biomarker would have many important applications including the
ability to detect those who are likely to transition to chronic pain
before or soon after the onset of pain, facilitate early intervention
of high-risk individuals, allow stratification of individuals in clinical
trials, and promote the discovery and development of new
therapeutics and preventatives. The PREDICT study will un-
dertake analytical validation of a novel PAF and CME biomarker
signature using a human model of the transition to sustained
myofascial temporomandibular pain. The study will determine the
sensitivity, specificity, and accuracy of this biomarker signature at
predicting pain sensitivity and establish the reportable range of
test results for biomarker detection. If successful, the studywould
deliver a candidate biomarker signature ready for advanced
clinical validation in future studies.

The study design has a number of strengths. First, the use of
the NGF pain model provides a highly standardized and clinically
relevant model in which to undertake analytical validation of the
PAF and CME biomarker signature. Second, the multisite nature
of the study ensures blinded analyses of all data. Third, detection
methods for the PAF and CME biomarker signature are entirely
feasible for use in Phase II and III clinical trials and could be easily
refined for broad implementation in healthcare settings. Finally,
the methods and statistical analysis plan are prespecified to
ensure reporting transparency.

In summary, preliminary evidence suggests combined resting-
state peak alpha frequency and corticomotor excitability may
have utility as a biomarker signature to predict pain sensitivity. The
PREDICT study will provide valuable information on the perfor-
mance characteristics of this biomarker signature, that if
successful, would support validation in clinical populations.
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