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Abstract: Background: Acute heart failure (HF) represents an increasingly common and challeng-
ing presentation in the emergency room, also inducing a great socio-economic burden. Extensive
research was conducted toward finding an ideal biomarker of acute HF, both in terms of sensitivity and
specificity, but today practicians’ interest has shifted towards a more realistic multimarker approach.
Natriuretic peptides (NPs) currently represent the gold standard for diagnosing HF in routine clinical
practice, but novel molecules, such as sST2, emerge as potentially useful biomarkers, providing ad-
ditional diagnostic and prognostic value. Methods: We conducted a prospective, single-center study
that included 120 patients with acute HF and 53 controls with chronic HF. Of these, 13 patients (eight
with acute HF, five from the control group) associated the coronavirus-19 disease (COVID-19). The
diagnosis of HF was confirmed by a complete clinical, biological and echocardiographic approach.
Results: The serum levels of all studied biomarkers (sST2, NT-proBNP, cardiac troponin) were sig-
nificantly higher in the group with acute HF. By area under the curve (AUC) analysis, we noticed
that NT-proBNP (AUC: 0.976) still had the best diagnostic performance, closely followed by sST2
(AUC: 0.889). However, sST2 was a significantly better predictor of fatal events, showing positive
correlations for both in-hospital and at 1-month mortality rates. Moreover, sST2 was also associated
with other markers of poor prognosis, such as the use of inotropes or high lactate levels, but not with
left ventricle ejection fraction, age, body mass index or mean arterial pressure. sST2 levels were higher
in patients with a positive history of COVID-19 as compared with non-COVID-19 patients, but the
differences were statistically significant only within the control group. Bivariate regression showed a
positive and linear relationship between NT-proBNP and sST2 (r(120) = 0.20, p < 0.002). Conclusions:
we consider that sST2 has certain qualities worth integrating in a future multimarker test kit alongside
traditional biomarkers, as it provides similar diagnostic value as NT-proBNP, but is emerging as a more
valuable prognostic factor, with a better predictive value of fatal events in patients with acute HF.
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1. Introduction

Acute heart failure (HF) represents the most severe display of the pathophysiological
continuum that alters normal heart functioning, with a clinical presentation dominated
by severe and rapidly progressive signs and symptoms. Acute HF, either de novo or
as a decompensation of a previously diagnosed chronic HF, is one of the most common
causes of hospitalization in developed countries, being characterized by unacceptably high
mortality rates, frequent readmissions and significant socio-economic burden [1,2].

As a polymorphic syndrome, acute HF may present as a constellation of clinical
phenotypes, such as acute pulmonary edema, cardiogenic shock or hypertensive HF [3].
Consequently, early identification, selection and hospitalization of patients with acute
HF become of paramount importance for an appropriate therapeutic approach. Several
biomarkers have been studied so far, but only the natriuretic peptides (NPs) have been rou-
tinely implemented in clinical practice. Traditionally, the B-type natriuretic peptide (BNP)
and its amino-terminal prohormone (NT-proBNP) were extensively analyzed in multiple
studies that included dyspneic patients with acute HF, their serum levels being correlated
with symptoms’ severity, as measured by New York Heart Association (NYHA) functional
class [4,5]. However, despite presenting high sensitivities and negative predictive values
for the diagnosis of acute HF, the specificity of NPs is rather low, their concentrations being
also influenced by several other cardiac and non-cardiac conditions, such as acute coronary
syndromes, myocarditis, cardioversion, age, anemia, obesity and renal failure [6,7].

Therefore, additional imaging techniques or the use of improved biomarkers are
required for a diagnostic certainty, as the evaluation of NPs alone is more useful in ruling
out HF rather than establishing it, especially in cases without clinical aspects suggestive of
HF. In this regard, echocardiography can detect an impaired left ventricular (LV) systolic
function, but this may not necessarily represent the etiology of dyspnea since an impor-
tant share of the population with reduced LV ejection fraction (LVEF) is asymptomatic.
Similarly, dyspnea can coexist with a quasi-normal systolic function in patients with un-
derlying pulmonary comorbidities and concomitant HF with preserved or mildly reduced
LVEF [6,8].

Under these circumstances, we can outline the profile of an ideal biomarker: a high
degree of sensitivity, specificity and reproducibility, reasonable cost and a simple assess-
ment method—these aspects being required to initiate a prompt diagnostic and therapeutic
approach. Such an alternative may be represented by sST2, which is the soluble isoform
of the interleukin-1 receptor family member ST2. Several studies have highlighted the
potential use of sST2 in patients with acute HF, based on its enhanced release by cardiac
fibroblasts and cardiomyocytes in response to myocardial stretch. Moreover, sST2 may be a
reliable marker of fibrosis, its release being directly related to some fibrogenetic conditions
commonly found in HF, such as biomechanical strain and elevated Angiotensin II [9,10].

In order to emphasize the potential importance of serum sST2 assessment in patient
with acute HF, we need to describe some morphofunctional particularities of this molecule.
ST2 protein is expressed either as a soluble isoform (sST2) or a transmembrane receptor
(ST2L); the ligand for both isoforms is represented by interleukin-33 (IL-33), but only
by binding ST2L the IL-33 activates a cardioprotective signalling axis. However, under
myocardial stress conditions (e.g., mechanical strain due to volume or pressure overload),
sST2 is excessively released by cardiac fibroblasts and will competitively bind the IL-33,
thus preventing it to attach the ST2L and subsequently inhibiting the cardioprotective
effects [11,12].

Multiple literature data already confirmed that sST2 is presenting a high prognostic
value in patients with acute HF, strongly predicting rehospitalizations and mortality rates,
either alone or acting synergistically with NPs [10,12]. A very recent study even emphasized
the superiority of sST2 compared with both NPs and cardiac troponins in predicting in-
hospital fatal events [13].

Considering all these aspects and the increasing focus on the vast area of cardiac
biomarkers, the goal of this research was to investigate the circulating levels of sST2 in
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patients with acute HF and the relationship between sST2 and other relevant parameters,
thus aiming to potentially include this relatively new biomarker in a multimarker panel for
an improved approach of acute HF in emergency room.

2. Materials and Methods
2.1. Study Design and Population

We conducted a prospective case-control study that evaluated consecutively enrolled
patients with acute or chronic decompensated HF admitted in Cardiology Clinic of the
St. Spiridon Emergency County Hospital (Iasi, Romania) between January 2021 and June
2021. The control group consisted of ambulatory patients, with stable, compensated HF. The
diagnosis of acute HF was established in patients who presented in emergency with acute-
onset dyspnea and/or other aspects suggestive for HF, as defined by Framingham criteria-
consisting of major (paroxysmal nocturnal dyspnea, orthopnea, jugular venous distension,
S3 gallop, cardiothoracic ratio > 0.5 on X-ray, aspect of pulmonary edema on X-ray, and
pulmonary crackling rales) and minor (peripheral edema, nocturnal paroxysmal dyspnea,
exertional dyspnea, hepatomegaly, pleural effusion and heart rate ≥100 bpm) criteria. The
presence of two major or one major + two minor criteria is required to fulfill the criteria
for HF. In all patients, the diagnosis of HF was further ascertained by echocardiography;
an EF < 50% was considered abnormal and defined the so-called HF with reduced EF
(HFrEF), while an EF > 50% doubled by diastolic dysfunction and/or increased LV filling
pressures defines the HF with preserved EF (HFpEF).

The exclusion criteria were the inability to fully perform an adequate physical and/or
echocardiographic examination (e.g., recent thoracic surgery, extreme obesity, severe tho-
racic malformations or hyperesthesia), the presence of late-stage cancer, severe ongoing
infections, recent major surgery, untreated neuropsychiatric disorders or a value of NT-
proBNP < 300 pg/mL. All patients aged < 18 years were also excluded.

The patients’ medical histories were obtained by performing detailed anamneses and
from patients’ personal files or the hospital’s archives. Certain sociodemographic aspects
(including age, gender, place of residence), particular behavioral conditions (tobacco use,
toxic exposure, alcohol abuse-defined as >2 daily standard drinks for men and >1 for
women), underlying diseases or current medication were thoroughly assessed. The associ-
ated pathologies (e.g., infectious diseases, pre-existing cardiovascular pathologies, diabetes
mellitus) were either previously documented or diagnosed during current hospitalization.
For statistical purposes we used only anthropometric indices (weight, height, body mass
index) and office blood pressure values that were measured at admission. Diabetes mellitus
was defined as a fasting blood glucose level ≥ 126 mg/dL, a HbA1c ≥ 6.5%, or current an-
tidiabetic medication. Obesity was established in all patients presenting a body mass index
(BMI) ≥ 30 kg/m2, while overweight was defined by a BMI between 25 and 29.9 kg/m2.
At admission, all patients were screened for severe acute respiratory syndrome coronavirus
type 2 (SARS-CoV-2), using polymerase chain reaction available tests.

A fasting venous blood sample was collected after admission, then centrifuged in order
to separate the plasma/serum. Subsequently, the resulted samples were either immediately
tested for routine investigations, or stored at −80 ◦C for up to six months, until the final
analysis of the sST2. The sST2 was assessed using the enzyme-linked immunosorbent
assay (ELISA) based kits (Abcam, Cambridge, UK). Dilutions were performed in order to
adequately assess the large spectrum of concentrations met in our study group relative to
the sensibility level of the commercial kit.

The echocardiograms were performed using a GE VividTM V7 ultrasound device
(General Electric, Boston, CA, USA).

The following cut-off values were used for defining the normal range: ST2 < 35 ng/mL,
NT-proBNP < 300 pg/mL, high-sensitive cardiac troponin < 14 ng/L.

The study protocol was approved by the Ethics Committee of the Grigore T. Popa Uni-
versity of Medicine and Pharmacy and by the Ethics Committee of the Emergency Clinical
Hospital St. Spiridon. All research was conducted according to the ethical guidelines of
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the Declaration of Helsinki Principles, revised in 2013. All patients have signed a standard
written informed consent in order to participate in this study.

2.2. Statistical Analysis

We used Kolmogorov–Smirnov test for the assessment of the normal distribution
of continuous variables in the study population. Normally distributed parameters are
presented as medians plus standard deviation; to compare the mean values (in the case of
continuous variables) we used the Student’s t-test and one-way ANOVA. Concerning those
variables not normally distributed, to characterize the dispersion of the patients we used
the median, the upper quartile (75th percentile correspondent) and the lower quartile (25th
percentile correspondent), respectively, between which 50% of the values are included.
Categorical variables were presented as frequencies and percentages. Differences between
the acute HF group and the controls were assessed using parametric (independent sample
t-test) or non-parametric (Mann–Whitney U) tests, as appropriate. The chosen level of
statistical significance was 5% (p < 0.05).

The assessment of the correlation between two variables was performed using the
correlation coefficients (r) Pearson and Spearman. The Pearson test assumes that both
variables are continuous, while the Spearman test represents its non-parametric equivalent.
The level of significance was the same—5%. Furtherly, we used linear regression to evaluate
and illustrate the linear relationship between two correlated variables. It has predictive
value by calculating an equation: y = ax + b (where y is the variable considered dependent
and x is the independent variable), which allows the estimation of the behavior of the
independent variable when the dependent variable is known. The regression coefficient
is represented by the slope of the regression line. Moreover, to test the independent
association between ST2 serum levels and both the traditional biomarkers (NT-proBNP,
troponin), we performed a standard multiple regression, where ST2 was the dependent
variable, while NT-proBNP and troponin were the predictors.

The diagnostic performance of the biomarkers in acute HF was evaluated by receiver
operating characteristic (ROC) analysis, with the subsequent comparison of the areas
under the curve (AUC). The cut-off values for ST2 were also drawn from the ROC curve,
using Youden’s index or the point where sensitivity and specificity are equal (Se = Sp), as
appropriate. The correlation between biomarkers concentration and survival rates was
evaluated using Mantel–Cox (log-rank) test.

Data analysis was performed using IBM SPSS Statistics for Windows (version 23) and
Microsoft Excel for organizing data before statistical processing. All tests were two-tailed
and a p-value < 0.05 was considered statistically significant.

3. Results
3.1. Baseline Characteristics

The study included a total of 173 patients, divided in two groups: 120 patients diagnosed
with acute decompensated HF and 53 patients with chronic stable HF, representing the control
group. Overall mortality rate was 12.1%, all the 21 fatalities being recorded in patients with
acute HF.

In Table 1 we highlighted some relevant demographic, clinical and biological characteristics
of the included patients. Additionally, after performing comparisons between the baseline
characteristics of the patients with acute HF and those from control group, we found a signifi-
cantly higher prevalence of important cardiovascular risk factors among patients with acute
HF, such as age, obesity, alcohol abuse and a low level of HDL-cholesterol. Moreover, the
presence of ischemic heart disease was more common amongst patients with acute HF, as were
other relevant parameters, such as impaired LVEF, electrolyte imbalances or elevated serum
creatinine. Regarding other traditional cardiovascular risk factors, there were no significant
differences between the two groups concerning the gender, smoking status or the presence
of hypertension or diabetes mellitus. Being a study conducted during COVID-19 pandemic,
13 patients (8 with acute HF, 5 in control group) were associated with the coronavirus infection,
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either previously diagnosed or positively tested during hospitalization. With regard to medical
therapy, the administration of loop-diuretics and mineralocorticoid receptor antagonists was
significantly more common among patients with acute HF (p < 0.01), while beta-blockers and
inhibitors of the renin–angiotensin–aldosterone system were more prescribed in control patients,
as part of the standard therapy in clinically stable HF.

Table 1. Baseline characteristics of patients with acute HF and control group.

Characteristics
Total

(n = 173)
Acute HF
(n = 120)

Control Group
(n = 53) p-Value

Min Mean ± STD Max Min Mean ± STD Max Min Mean ± STD Max

Age (years) 18 65 ± 13.3 94 18 66.4 ± 15.3 94 30 64 ± 11.9 85 0.047

Mortality rate 21 (12.1%) 21 (17.5%) 0 (0%) <0.001

Gender 0.438

Male: N, (%) 104
(60%) 71(59.20%) 33(62.30%)

Female: N, (%) 69
(40%) 49(40.80%) 20(37.70%)

Area of residence 0.353

Urban: N, (%) Urban: 92
(53.2%)

Urban: 61
(50.8%)

Urban: 31
(58.5%)

Rural: N, (%) Rural: 81
(46.8%)

Rural: 59
(49.2%)

Rural: 22
(41.5%)

Smokers: N, (%) 67 (38.7%) 48 (40%) 19 (35.8%) 0.605

Alcohol abuse: N,
(%) 97 (56.1%) 75 (62.5%) 22 (41.5%) 0.012

Hypertension 94 (54.3%) 60 (50%) 34 (64.2%) 0.085

Ischemic heart
disease 76 (43.9%) 59 (49.2%) 17 (32%) 0.037

Diabetes mellitus 29 (16.8%) 22 (18.3%) 7 (13.2%) 0.406

Obesity (BMI > 30
kg/m2)

49 (28.3%) 42 (35%) 7 (13.2%) 0.003

COVID-19 13 (7.5%) 8 (6.7%) 5 (9.4%) 0.241

LV ejection fraction
(%) 10% 39.4 ± 14.4 72% 10% 33.8 ± 13.9% 61% 38% 52.2 ± 15.7 72% 0.017

Hemoglobin (g/dL) 7.20 13.27 ± 2.1 33.70 7.20 13.18 ± 2.4 33.70 9.60 13.48 ± 1.9 18.40 0.069

Hematocrit (%) 22.20 39.50 ± 9.7 56.30 22.20 39.54 ± 8.9 56.30 29.22 39.39 ± 11.2 52.70 0.909

Leukocytes
(×109/L)

1.20 9.52 ± 1.27 30.18 4.10 10.22 ± 1.34 25.20 1.19 7.93 ± 1.21 30.18 0.044

Platelets (×103/µL) 37 266 ± 43 2630 37 270 ± 45 2630 37 253 ± 42 595 0.245

Blood glucose
(mg/dL) 63 142.56 ± 37.1 582 63 149.21 ± 33.4 582 73 128.13 ± 41.8 388 0.111

Total bilirubin
(mg/dL) 0.09 0.98 ± 0.19 5.02 0.10 1.18 ± 0.21 5.02 0.09 0.54 ± 0.18 1.12 <0.001

Sodium (mmol/L) 121 138.26 ± 12.6 147 121 137.77 ± 14.1 147 122 141.13 ± 8.5 147 0.002

Potassium
(mmol/L) 2.90 4.50 ± 0.83 6.30 2.90 4.61 ± 0.88 6.30 3.20 4.27 ± 0.74 5.60 0.009

Creatinine (mg/dL) 0.60 1.15 ± 0.29 4.01 0.60 1.22 ± 0.31 4.01 0.68 0.99 ± 0.24 3.78 0.029

Total cholesterol
(mg/dL) 63 164.15 ± 51.2 331 63 161.10 ± 51.9 331 90 173.28 ± 49.3 285 0.109

LDL-cholesterol
(mg/dL) 33 109.23 ± 33.4 255 33 106.62 ± 35.6 255 53 124.60 ± 31.2 197 0.253

HDL-cholesterol
(mg/dL) 12 41.68 ± 16.5 111 12 39.98 ± 15.9 111 36 52.35 ± 17.7 76 <0.001

ACEI/ARBs/ARNi 121 (70%) 77 (64.2%) 44 (83.1%) 0.012

Beta-blockers 148 (85.6%) 99 (82.5%) 49 (92.5%) 0.087

MRA 92 (53.2%) 83 (69.2%) 9 (17%) <0.001

Loop-diuretics 119 (68.8%) 102 (85%) 17 (32.1%) <0.001

N—number, STD—standard deviation, LV—left ventricle, BMI—body mass index, COVID-19—coronavirus disease 2019, LDL—low
density lipoprotein, HDL—high density lipoprotein, ACEI—angiotensin-converting enzyme inhibitors, ARBs—angiotensin II receptor
blockers, ARNi—angiotensin receptor-neprilysin inhibitors, MRA—mineralocorticoid receptor antagonist.
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3.2. Profile of Biomarkers

As depicted in Table 2, the median values of sST2, troponin and NT-proBNP were
all significantly higher in patients with acute HF compared with controls (p < 0.001).
Consequently, the next step was to perform comparisons with various relevant clinical,
echocardiographic or biological data, thus aiming to assess the potential correlations
between these parameters and the analyzed biomarkers (Table 3).

Table 2. Biomarker profile in patients with acute HF as compared withwith the control group.

Biomarker Total (n = 173) Acute HF (n = 120) Control Group (n = 53) p-Value

sST2 (ng/mL) 81.26 (24.20–172.60) 107.20 (45.61–194.89) 29.27 (3.10–107.06) <0.001
NT-proBNP (pg/mL) 3757 (1827–9764) 5440 (2812–12791) 107.80 (41.30–325.25) <0.001

Troponin (ng/L) 31.01 (7.03–104.80) 38.25 (12.45–179.50) 2.26 (1.14–5.43) <0.001

sST2—soluble ST2, NT-proBNP—amino-terminal pro-brain natriuretic peptide. Values are expressed as medians (IQR—interquartile range).

Table 3. Correlations between biomarker levels and clinical, echocardiographic and biological variables in patients with
acute HF.

Parameters
sST2 NT-proBNP Troponin

p r p r p r

LVEF 0.85 −0.01 0.89 −0.13 0.12 −0.14
LAVI 0.66 −0.04 0.72 0.03 0.38 −0.08
E/e’ 0.05 0.23 0.06 0.21 0.22 0.18

C-reactive protein 0.421 0.07 0.01 0.23 0.919 0.01
Hemoglobin 0.728 −0.032 0.107 0.148 0.182 0.123
Leukocytes <0.001 0.317 −0.131 0.152 <0.001 0.36
Creatinine 0.03 0.381 0.531 0.06 0.076 0.173

BMI 0.918 0.003 0.781 −0.03 0.907 0.03
Age 0.065 0.48 0.221 −0.113 0.945 0.006

MAP 0.40 −0.07 0.09 −0.15 0.06 −0.17
Pulmonary crackles 0.01 0.29 0.191 0.120 0.42 −0.072
Peripheral edema 0.01 0.22 0.719 0.03 0.320 −0.091

Lactate level <0.001 0.49 0.296 0.09 <0.001 0.31
Inotropic support <0.001 0,34 0.1 0.105 0.214 0.114

In-hospital mortality <0.001 0.40 0.269 0.102 0.02 0.21
1-month mortality <0.001 0.42 0.371 0.082 0.03 0.13

LVEF—left ventricular ejection fraction, LAVI—left atrium indexed volume, E/e’—left ventricular transmittal early diastolic filling
velocity/left ventricular early diastolic myocardial velocity, BMI—body mass index, MAP—mean arterial pressure.

All biomarkers exhibited modest positive direct correlations with each other, in the
case of ST2 reaching the statistical significance when compared with both NT-proBNP
(p = 0.014) and troponin (p = 0.019) (Table 4).

Table 4. Correlation analysis concerning levels of biomarkers.

ST2 NT proBNP Troponin

Pearson Correlation
ST2 1.000 0.202 0.189

NT proBNP 0.202 1000 0.081
Troponin 0.189 0.081 1.000

Sig. (1-tailed)
ST2 . 0.014 0.019

NT proBNP 0.014 . 0.190
Troponin 0.019 0.190 .

We noticed that sST2 serum levels did not show statistically significant differences
between patients with HFrEF and those with HFpEF; a similar pattern was also valid
in the case of NT-proBNP or troponin. All three analyzed biomarkers had significant
positive and direct correlations with each other. Moreover, sST2 presented direct and
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highly significant correlations with some clinical manifestations typical for acute HF, such
as pulmonary crackles and peripheral edema. We also noticed a linear association between
high levels of sST2 and elevated serum lactate or increased need for inotropic support,
which represent well-established poor prognosis factors in HF. Compared with NT-proBNP,
sST2 was a better predictor of fatal events, with positive correlation for both in-hospital
and 1-month mortality rates. No significant association was found between sST2 and age,
BMI or inflammation (expressed as C-reactive protein).

In an acute setting of HF, in order to avoid further unnecessary and time-consuming
explorations, it is critical to have a biomarker able to ascertain the cardiac etiology of the
symptoms, whether the source is right, left or global HF. Thus, we compared the levels
of sST2, NT-proBNP and troponin in patients with isolated right ventricle dysfunction
(12 cases) to those presenting with LV dysfunction or even with global HF (108 cases),
with detailed data provided in Table 5. Unlike troponin, sST2 and NT-proBNP showed no
significant variations depending on the type of HF, confirming their utility in confirming
both right and left ventricular dysfunction, especially in cases with an equivocal clinical
presentation. Focusing on sST2, we observed that its serum levels in the two subgroups
were very similar (140.9 ± 119.5 versus 123.8 ± 135.1, p = 0.64).

Table 5. The variability of biomarkers’ serum level in in patients with isolated right RV dysfunction compared with those
with LV± RV dysfunction.

BIOMARKER HF Phenotype N Mean Standard
Deviation

Standard
Error Mean p Value

ST2
(ng/mL)

LV ± RV dysfunction 108 140.9 119.5 11.5
isolated RV dysfunction 12 123.8 135.1 39.0 0.64

NT-proBNP
(pg/mL)

LV ± RV dysfunction 108 9043.5 8476.4 815.6
isolated RV dysfunction 12 6866.1 8333.2 2405.5 0.40

Troponin
(ng/L)

LV ± RV dysfunction 108 1648.1 7172.6 690.1
isolated RV dysfunction 12 193.2 317.1 91.5 0.02

LV—left ventricle, RV—right ventricle, HF—heart failure.

3.3. Diagnostic Performance of Biomarkers

The assessment of diagnostic performance is an essential aspect when it comes to
biomarkers used in life-threatening pathologies, such as acute HF. ROC analysis revealed
that the curves show an adequate diagnostic performance for all three biomarkers (Figure 1),
with the AUCs for sST2, NT-proBNP and troponin being all higher than 0.8 and statistically
significant (p < 0.05) in diagnosing acute HF (Table 6). With an AUC of 0.889, sST2
exhibited significant potential in diagnosing acute HF, very similar to the well-established
NT-proBNP (AUC = 0.976). Although with a lower diagnostic performance (AUC = 0.838),
cardiac troponin continues to be an important biomarker, butit is rather addressed to the
diagnosis of HF due to acute myocardial ischemia.
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Table 6. Diagnostic test performance for cardiac biomarkers in acute HF.

Biomarker AUC Standard Error
95% Confidence Interval p Value

Lower Bound Upper Bound

NT-proBNP (pg/mL) 0.976 0.013 0.951 1.000 <0.05
sST2 (ng/mL) 0.889 0.031 0.829 0.949 <0.05

Troponin (ng/L) 0.838 0.055 0.731 0.946 <0.05

AUC—area under curve.

Further, we aimed to drawn from the ROC curve the optimal cut-off value for ST2,
which can adequately identify patients at risk. By using two validated methods, we found
that a cut-off value of 29 ng/mL has 80.7% sensitivity and 80.8% specificity in diagnosing
acute HF, while a 36 ng/mL cut-off (very similar to the internationally accepted cut-off
value of 35 ng/mL) had a significantly improved specificity of 90.1% at the expense of only
a slight decrease in sensitivity (78.2%) (Table 7). It is worth mentioning that exceeding any
of these cut-offs was not associated with significantly increased mortality. However, when
considering the already validated “high-risk” cut-off value of 70 ng/mL, characterized by
a 63.9% sensitivity and 95.2% specificity, we observed a significantly elevated risk of death
among patients having ST2 serum levels above this threshold (OR 3.9 [95% CI 2.2–12.2],
p = 0.01). Specifically for our study, we identified a lower concentration related to a
“high-risk” profile, a 60 ng/mL cut-off (68.8% sensitivity and 92.9% specificity) being also
significantly associated with increased mortality (OR 3.3 [95%CI 1.1–9.8, p = 0.04]).
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Table 7. Cut-off values for sST2.

Criterion Cut-Off Value ST2
(ng/mL) Se Sp

Se = Sp 29 0.807 0.808
Maximum Youden’s

index (Se + Sp) 36 0.782 0.901

“High-risk” cut-offs 70
60

0.639
0.688

0.952
0.929

The next step was to perform a bivariate regression to examine how the NT-proBNP levels
can predict the sST2 levels. A scatterplot showed that the relationship between NT-proBNP
levels and sST2 was positive and linear and did not reveal any bivariate outliers. The correlation
between these two parameters was statistically significant, r(120) = 0.20, p < 0.002. The regression
equation for predicting sST2 from NT-proBNP was y = 113.85 + 0.003x. The r2 for this equation
was 0.041; that is, 4.1% of the variance in sST2 was predictable from the level of NT-proBNP.
The bootstrapped 95% confidence interval for the slope to predict sST2 from NT-proBNP range
from 0.001 to 0.005; thus, for each unit of increase in NT-proBNP, the sST2 increases with 0.003
(Figure 2).
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Similarly, the correlation between sST2 and troponin was statistically significant,
r(120) = 0.18, p < 0.003. The regression equation for predicting sST2 from troponin was
y = 134.22 + 0.003x, while the r2 for this equation was 0.036. The bootstrapped 95%
confidence interval for the slope to predict the sST2 from troponin range from 0.001 to
0.007; basically, for each unit of increase in troponin, the sST2 increases by 0.003 (Figure 3).
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Further, a standard multiple regression was performed to assess the ability of NT-
proBNP and troponin levels to predict the ST2 levels in our study population. Preliminary
analyses were performed to ensure there was no violation of the assumption of normality,
linearity and multicollinearity. A significant regression equation was found (F = 4.445,
p = 0.01), with an r2 of 0.071 and adjusted r-square of 0.055. The predicted ST2′s value
was equal to 110.99 + 0.003x (NT-proBNP or troponin). Basically, for every increase in
one unit of NT-proBNP, ST2 levels increase by 0.003 and, similarly, for every increase
in one unit of troponin, ST2 levels increase by 0.003. The bootstrapped 95% confidence
interval for the slope to predict ST2 from NT-proBNP ranged from 0.001 to 0.005, while, for
troponin, it ranged from 0.001 to 0.004. In conclusion, both NT-proBNP and troponin were
significant predictors of ST2 concentrations in our multimarker model comprising patients
with acute HF.

Finally, given the pandemic situation and the vastly incriminated role of COVID-19
in cardiovascular pathology, we considered it appropriate to assess the serum levels of
sST2 in both groups (acute HF and controls), depending on their COVID-19 status. We
found that sST2 was significantly increased in control group with COVID-19 compared
with non-COVID control patients [79.3 ng/mL (IQR: 18.9–151.8) versus 3.3 ng/mL (IQR:
0.05–27.4), p < 0.01]. On the other hand, in patients with acute HF, even if we noticed
a slightly increased sST2 among COVID-19 patients compared with non-COVID ones,
the difference did not reach the threshold of statistical significance (112.3 ng/mL [IQR:
48.7–199.1] versus 107.2 ng/mL [46.3–196.9], p = 0.301).

4. Discussion

Despite the growing awareness among clinicians, researchers and even patients, HF
still remains one of the main sources of morbidity, mortality and significant healthcare
costs, in both developing and developed countries [14,15]. In the context of a globally
rising incidence and prevalence of HF [16] and due to its polymorphic clinical presentation
that lead to high rates of misdiagnosis, the need for rapid and accurate diagnostic tools
is becoming of utmost importance. Therefore, cardiac biomarkers lately represented a
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fertile research area concerning the diagnostic approach of HF and, particularly, acute HF.
Even if there is a plethora of new HF biomarkers [17], in our study we focused on sST2- a
relatively novel biomarker with promising results- aiming to a head-to-head comparison
with NT-proBNP and high-sensitive troponin, respectively.

When designing the study, we tried to reproduce a model similar to the routine clinical
practice of an emergency hospital. In this regard, we enrolled patients with confirmed acute
HF, while the control group comprised stable patients with chronic HF. We would like to
stress that both groups were presenting various associated pathologies, such as diabetes,
obesity, hypertension, ischemic heart disease or even COVID-19. These aspects may reflect
not only the multifactorial etiology of HF, but may also represent additional triggers for
acute HF and, therefore, possible therapeutic targets in order to avoid further decompensa-
tion episodes [1]. The results from our study confirmed the important etiopathogenic role
of the comorbidities, as the patients with acute HF had presented a significantly higher
incidence of ischemic heart disease and obesity. Moreover, the presence of a significantly
reduced LVEF compared with control group basically reflects the pathophysiological con-
tinuum between obesity, atherosclerosis, myocardial ischemia and systolic dysfunction due
to ischemic HF.

With regard to the levels of sST2, we noticed a significant elevation among patients
with acute HF, compared with controls with chronic HF. Contrasting to other studies [10,17],
we did not find a significant difference in sST2 levels between those with HFpEF and HFrEF.
This may be explained by the fibrogenesis stimulus induced by the sST2 in the context of
an increased LV filling pressures—patients with HFpEF are generally hypertensive and
obese, with elevated Angiotensin II circulating levels, an aspect that is furtherly inducing
myocardial hypertrophy, increased collagen synthesis and subsequent fibrosis [11]. On the
other hand, in patients with HFrEF, the impaired systolic function is directly related to an
increased myocardial strain, that will subsequently induce additional sST2 release, thus
preventing the cardioprotective ST2L-IL-33 interaction and, ultimately, closing a vicious
pathophysiological circle [18].

Diastolic dysfunction and left atrial (LA) enlargement are common echocardiographic
features among patients with HF. Our results showed that sST2 is associated with increased
LV filling pressures (expressed as E/e’), but not with an increased LA volume, a finding
similar to those from other studies [19,20], but opposed to the results obtained by Najjar
et al. who found a correlation between sST2 and LA indexed volume, but not with E/e’ [10].
However, LA strain—as a possible source for sST2 release—is independent of LA volume,
as the LA fibrosis and the subsequent atrial cardiomyopathy are rather related to different
pathophysiological pathways (e.g., inflammation, oxidative stress, electrical alterations),
as shown in PARAMOUNT trial and other literature data [21,22]. We did not notice
any association between sST2 and LVEF, a finding that is consistent with some previous
literature data [10,23], but discordant to studies that highlighted an association between
increased sST2 and reduced LVEF following an acute myocardial infarction [24] or in
patients with acute onset dyspnea [25,26]. In this context, we observed that sST2 was
also associated with increased need for inotropic agents, a relationship linked to a poor
prognosis, as also previously suggested by Dolapoglu et al. [27].

Given sST2′s already documented quality in identifying myocardial dysfunction in
patients with HFpEF [9,10,28], we aimed to assess sST2′s potential to be a so-called ’dual’
biomarker, for both right and left ventricular dysfunction. For this purpose, we compared
a group of patients with acute HF due to isolated RV dysfunction to the rest of the patients,
who presented only LV dysfunction or even a global HF (LV± RV dysfunction). The results
revealed indiscriminately increased levels of sST2 in both groups, without statistically
significant differences. Basically, this confirms the utility of sST2 in detecting even isolated
RV dysfunction, in the absence of echocardiographic aspects suggestive for LV systolic
or diastolic dysfunction. Correspondingly, the involvement of sST2 in the functioning of
the RV was also observed by Shah et al., who identified a correlation between high serum
sST2 and an impaired RV systolic function expressed as diminished RV fractional area
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change [25], while another study highlighted the increased sST2 in patients with chronic
thromboembolic or idiopathic pulmonary hypertension [29].

A very actual issue in clinical practice refers to the mutual interdependence between
COVID-19 and HF; the viral infection acts as a trigger for the decompensation of a chronic
HF, while a preexisting cardiovascular disease increases the risk for severe clinical manifes-
tations during the infection [30,31]. COVID-19 may even cause a de novo HF, especially
acute RV failure due to pulmonary embolism [32] or in the context of acute respiratory
distress syndrome due to severe viral pneumonia. COVID-19 determines an increase in the
pulmonary vascular resistance via multiple mechanisms: it enhances the release of vasocon-
trictive mediators, causes a hypoxia-mediated pulmonary vasoconstriction and promotes a
hypercoagulable status that leads to capillary microthrombosis and even creates the condi-
tions for extrinsic vascular compression due to interstitial edema or pleural effusion [11,33].
This wide range of incriminated mechanisms induces an important mechanical strain on
the rather thin walls of the RV, thereby increasing sST2 release and accelerating fibrogenetic
processes. Our results showed a significant increase in sST2 levels in control patients with
COVID-19 compared with their non-infected counterparts, an aspect that may suggest an
ongoing subclinical myocardial injury with a subsequent sST2 release. Concerning the
patients with phenomena of acute HF, we observed that the serum concentrations of sST2
were higher among COVID-19 confirmed cases, but without reaching a statistical signifi-
cance. However, due to the variable timespan between the initial diagnosis of COVID-19
and the actual admission for HF, doubled by the lack of repeated sST2 determinations, a
clear conclusion cannot be draw concerning the dynamic change of sST2 levels in patients
with HF and COVID-19.

Unlike NT-proBNP, in our study sST2 was significantly associated with several clinical
aspects suggestive for congestive HF, such as pulmonary crackles and peripheral edema.
The molecular substrate of this finding was recently explained by Pascual-Figal et al., who
observed high concentrations of ST2 in bronchial aspirates of patients with cardiogenic
pulmonary edema due to an increased myocardial strain. Very interesting, sST2 concen-
trations in bronchial aspirates presented direct correlations not only with serum levels
of sST2, but also with NT-proBNP and cardiac troponin [34]. The same study also drew
attention towards the extracardiac (especially pulmonary) sites of ST2 production, which
are similarly activated by significant myocardial stress, such as acute HF after an induced
acute myocardial infarction [34]. The increased secretion of sST2 was immunohistochem-
ically detected in the epithelial alveolar pneumocytes of rats with ischemic HF, with a
positive correlation between alveolar wall thickness and sST2 expression. This finding was
further confirmed on cultures of type II human pneumocytes subjected to biomechanical
strain, with the consequent induction of an increased secretion of sST2. Moreover, the
same authors indicated leukocytes as possible sites for sST2 production, thus bridging the
active role of IL-33 in inflammation to the systemic inflammatory status commonly found
in HF [34,35]. The results from our study support the above-mentioned findings: patients
with acute HF were presenting leukocytosis (>10000 cells/mm3) that was significantly
associated with sST2 levels.

Similar to the results from the PRIDE study [26], we found that sST2 concentrations
at admission correlated with NT-proBNP, creatinine clearance and lactate level, but not
with age, gender or BMI. This may be regarded as an advantage of sST2 compared with
NPs, whose values are allegedly influenced by these latter aspects in many studies [36–38],
but not in ours. Although we observed an association between increased serum sST2 and
elevated creatinine, the crude levels of sST2 are not directly influenced by the renal function,
as opposed to NPs, where a significant decrease in their urinary excretion contributes to
a high serum concentration [39]. The relative independence of sST2 of renal function
is based on the rather small size of the ST2 molecule of ~50 kDa, which is very similar
to the molecular weight cut-off for glomerular filtration (20–50 kDa) [40,41]. Thereby, a
reasonable assumption is to consider that elevated sST2 levels in patients with acute HF are
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not caused by decreased renal clearance, but are rather a consequence of increased cardiac
or pulmonary secretion, as previously stated [34]

Concerning the association between ST2, NT-proBNP and troponin, we observed
direct (albeit modest) correlations between the three analyzed biomarkers, suggesting
that, to a certain point, these biomarkers assess different pathophysiological mechanisms
involved in HF syndrome. The cross-influence between ST2 and NT-proBNP (expressed
as a significant direct correlation) can be partly explained by the fact that both biomark-
ers are sensitive to myocardial stretch, exhibiting dynamic serum level fluctuations and
greatly depending on the ventricular load or the effectiveness of the administered therapy
(e.g., loop-diuretics) [42]. The differences lie in sST2′s ability to reflect a plethora of HF
mechanisms, such as fibrosis, myocardial inflammation or collagen deposition with subse-
quent cardiac remodeling, aspects that finally lead to impaired ventricular geometry and
symptomatic HF [42,43]. Furthermore, despite the common final pathway representing the
expression of myocardial strain, differences may be induced by the multiple confounding
factors that are traditionally cited in literature for erratically altering NT-proBNP’s levels,
such as age, obesity or renal dysfunction [12,34,44].

The important prognostic role of sST2 has already been established in several previous
studies [10,12,27,29,45] and our results just further ascertained that sST2 is an important
predictor of mortality, both in-hospital and at 1-month follow-up. Beside the fact that
sST2 was significantly associated with short-term adverse outcomes in patients with acute
HF enrolled in our study, we can also consider it as a useful tool for patients’ follow-up,
whether they are presenting stable or decompensated HF.

A promising scenario assumes a dynamic assessment of sST2: starting with a baseline
value at admission, then followed by seriated measurements during hospitalization in
order to initiate additional drugs or to augment the doses of the preexisting ones [12].
One study showed that patients with persistently elevated values of sST2 in whom the
beta-blockers were titrated to high doses presented a more favorable outcome as compared
with those maintained on low-to-medium doses [46]. The central pillar of these dynamic
measurements is represented by the internationally recognized sST2 cut-off value of >35
ng/mL, which was associated with worse prognosis in patients with HF [47]. Moreover,
some authors observed that the period of time spent with sST2 above the cut-off level is
associated with poor outcome and high mortality rates, whereas a rapid decrease below
the cut-off point was suggestive for a better survival rate [48,49]. In our study, the median
sST2 concentration in patients with acute HF (107.2 ng/mL) was well above the generally
accepted cut-off value, and was associated with increased severity of symptoms and the
need for immediate hospitalization and therapeutic approach. This finding is in line with
the relatively new concept of a ’high-risk’ cut-off of >70 ng/mL, which was proposed
to better distinguish dyspeic patients with high risk of acute HF. In these patients, the
admission to the cardiology ward and the initiation of aggressive medications, such as loop
diuretics and different antiremodeling drugs, are highly recommended [50]. In our study,
the classical cut-off of 35 ng/mL presented good sensitivity and specificity in diagnosing
acute HF but was not associated with a worse short-term outcome. Switching to the more
specific but less sensitive 70 ng/mL cut-off, the predictive value of ST2 greatly improved,
the patients with serum levels above this threshold having a four-fold increase in the risk
of mortality, compared with those whose ST2 was below 70 ng/mL. Given that the cut-off
value of 35 ng/mL in predicting adverse events is based on long periods of follow-up and
serial measurements, our results and multiple evidence from literature [49–51] suggest that,
in patients with suspected acute HF, a cut-off value of 70 ng/mL may be more useful in
predicting short-term negative outcome.

With regard to our findings, it is important to highlight that the majority of the above-
mentioned studies underlined the important prognostic value of sST2, that was cumulative
or even superior to that of NT-proBNP. Given the certain particularities of each biomarker,
their different pathophysiologic pathways, expression or even clearance, we consider that
the development of a multimarker test kit comprising sST2 and the classical biomarkers
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will provide incremental diagnosis and prognosis information concerning patients with
acute HF.

5. Conclusions

We focused our research on depicting the potential use of sST2 in clinical practice as a
diagnostic and prognostic biomarker in patients presenting with phenomena suggestive
of HF. In this regard, our results demonstrated the strong diagnosis value exhibited by
sST2 in patients with acute HF, very similar to the gold-standard NT-proBNP. Moreover,
it even presented a superior prognosis value compared with NT-proBNP, an increased
serum sST2 at admission being significantly associated with a negative outcome and high
mortality rates.

The sST2′s potential use in emergency room is further based on its preserved ability to
confirm the diagnosis of HF whether it is caused by a right, left, or biventricular dysfunction,
and regardless of LVEF. We also noticed that sST2, as opposed to NT-proBNP, is not
influenced by certain confounding parameters that could alter its serum levels, such as
non-modifiable constitutional aspects (e.g., age, gender), or commonly found conditions in
patients with HF (e.g., obesity, renal dysfunction).

These aspects turn the spotlight on a new paradigm: the increasing interest in using
a multimarker approach in patients with acute HF. In addition to the classical, routinely
used biomarkers, the additive value provided by the novel biomarkers, namely sST2,
may significantly enhance the diagnosis and prognosis accuracy in HF, thus leading to
a more adequate therapeutic approach and a better risk stratification of these patients.
Of course, performing dynamic assessments of sST2 would certainly represent a more
valuable diagnosis and prognosis tool, but also a limitation in the wide-scale use of this
emerging biomarker. Nevertheless, given the various pathophysiological mechanisms
expressed at the myocardial level even in a subclinical manner, we consider that a scenario
of associating multiple biomarkers in a standardized test kit might be a realistic future
direction in the approach of patients with HF.

6. Limitations

The relatively small sample size and the unicentric design of the study were the most
important limitations. Additionally, the biomarkers were measured only at admission,
as only a single sST2 ELISA kit was available for each patient. A dynamic assessment
by performing repeated measurements could potentially reflect the progression of HF,
hence improving the prognosis value of sST2. However, it must be taken into account
that the study was conducted in a pandemic period, with difficult enrollment procedures
and limited options for the on-site follow-up visits and subsequent blood-sampling of the
discharged patients.
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