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PURPOSE. This study aimed to develop a method for automated artery-vein classification in
optical coherence tomography angiography (OCTA), and to verify that differential artery-vein
analysis can improve the sensitivity of OCTA detection and staging of diabetic retinopathy
(DR).

METHODS. For each patient, the color fundus image was used to guide the artery-vein
differentiation in the OCTA image. Traditional mean blood vessel caliber (m-BVC) and mean
blood vessel tortuosity (m-BVT) in OCTA images were quantified for control and DR groups.
Artery BVC (a-BVC), vein BVC (v-BVC), artery BVT (a-BVT), and vein BVT (a-BVT) were
calculated, and then the artery-vein ratio (AVR) of BVC (AVR-BVC) and AVR of BVT (AVR-BVT)
were quantified for comparative analysis. Sensitivity, specificity, and accuracy were used as
performance metrics of artery-vein classification. One-way, multilabel ANOVA with
Bonferroni’s test and Student’s t-test were employed for statistical analysis.

RESULTS. Forty eyes of 20 control subjects and 80 eyes of 48 NPDR patients (18 mild, 16
moderate, and 14 severe NPDR) were evaluated in this study. The color fundus image–guided
artery-vein differentiation reliably identified individual arteries and veins in OCTA. AVR-BVC
and AVR-BVT provided significant (P < 0.001) and moderate (P < 0.05) improvements,
respectively, in detecting and classifying NPDR stages, compared with traditional m-BVC
analysis.

CONCLUSIONS. Color fundus image–guided artery-vein classification provides a feasible method
to differentiate arteries and veins in OCTA. Differential artery-vein analysis can improve the
sensitivity of OCTA detection and classification of DR. AVR-BVC is the most-sensitive feature,
which can classify control and mild NPDR, providing a quantitative biomarker for objective
detection of early DR.
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Diabetic retinopathy (DR)1–5 is a leading cause of prevent-
able blindness worldwide. It is estimated that 40% to 45%

diabetic patients can be affected by DR6 (~180 million people).
Early detection and prompt treatment are essential to prevent
DR-associated vision loss. DR is characterized by retinal
vascular abnormalities, such as microaneurysms, exudates,
arterial narrowing, venous beading, cotton wool spots, and so
on.7 Quantitative imaging of retinal vasculature is important for
DR diagnosis and treatment evaluation. Fundus photography
has been traditionally used for quantitative assessment of retinal
vasculature. However, fundus images cannot provide necessary
sensitivity to reveal microvascular abnormality, which can be
affected at early stage of DR.8 Especially the vasculature,
including small capillaries and their associated distortions in the
parafoveal region of the retina cannot be captured with fundus
photography.9–11 Fluorescein angiography (FA) can be used to
improve imaging sensitivity of retinal vascular distortions in
DR.12,13 However, FA requires intravenous dye injections,
which may produce side effects and require careful manage-
ment professionally.

Optical coherence tomography (OCT) can be used to
identify morphologic changes at individual functional layers

of the retina and has increasing applications in eye disease
detection and treatment evaluation.14 OCT angiography
(OCTA) provides additional power to enable noninvasive
observation of retinal vascular changes with spatial resolution
at the individual capillary level.15 It allows depth-resolved
visualization of multiple layers of the retina with high
resolution, and can be more sensitive than traditional FA in
detecting microvascular changes in retinal diseases.16 OCTA
has been extensively used to conduct quantitative assessment
of retinal vasculature in disease conditions.16–21 Multiple
OCTA features, such as blood vessel caliber (BVC), blood
vessel tortuosity (BVT), vessel perimeter index (VPI), foveal
avascular zone (FAZ) area, FAZ contour irregularity, and
retinal vascular density, have also been developed for
quantitative OCTA analysis and computer-aided classification
of age-related macular degeneration (AMD),22 DR,23 glauco-
ma,24 and sickle cell retinopathy (SCR).15,25 However,
differential artery-vein analysis, which may provide improved
sensitivity of DR detection and treatment assessment, in
OCTA is challenging.

It is known that different systematic diseases and their
progressing stages could affect arteries and veins differently.
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Focal arterial narrowing26–28 and venous beading29–32 have
been reported in patients with hypertension, diabetes, and
other eye diseases. Artery-vein ratio (AVR) of calibers, for
example, has been demonstrated as a predictor of these
diseases,33–37 but only with fundus photo images. Currently,
there are no established methods to differentiate arteries and
veins in OCTA. Differential analysis of arteries and veins holds
promise to improve the sensitivity of quantitative OCTA
detection and classification of eye diseases. This project was
designed to develop a method for quantitative analysis of
arteries and veins in OCTA, and to verify that differential artery-
vein analysis can improve the sensitivity of OCTA detection
and classification of DR. We report here color fundus image–
guided artery-vein differentiation as a feasible strategy to
classify arteries and veins in OCTA. We also introduce AVR-BVC
and AVR-BVT as two objective metrics for DR detection and
classification.

METHODS

This section describes the methodology for quantitative
analysis of OCTAs. Figure 1 illustrates the core steps of the
OCTA data processing. The first step was fundus image–guided
artery-vein classification of OCTA images and the second step
was to measure and compare quantitative features for control
and NPDR OCTA images.

Data Acquisition

This study was approved by the institutional review board of
the University of Illinois at Chicago and followed the tenets of
the Declaration of Helsinki. The DR patients were recruited
from University of Illinois at Chicago retinal clinic. A
retrospective study was conducted with 48 type II diabetic
patients (18 mild, 16 moderate, and 14 severe NPDR) who
underwent DR evaluation and fundus, OCT and OCTA imaging
at retina clinic of University of Illinois at Chicago. All patients
underwent a complete anterior and dilated posterior segment
examination (JIL). The patients were classified by severity of

DR (mild, moderate, severe) according to the Early Treatment
Diabetic Retinopathy Study (ETDRS) staging system by retina
specialists using seven-fields fundus photographs. Control data
were obtained from healthy volunteers who gave informed
consent for fundus photography and OCTA imaging. We did
not include subjects with history of other eye diseases, prior
intravitreal injections, or previous vitreous surgery. The eyes
with significant pathologic features, such as macular edema,
vein occlusions, or epiretinal membranes, were excluded.
Images of both eyes of every patient were acquired. All the
images were qualitatively examined; fundus images with severe
light saturation or uneven illumination in the parafoveal area
were excluded. OCTA images with severe motion artifact were
also excluded.

Color fundus images were captured using fundus cameras
(Cirrus-800; Zeiss, Oberkochen, Germany; and Pictor by Volk
nonmydriatic retinal camera; Volk Optical Inc., Mentor, OH,
USA with a 308 to 458 field-of-view (FOV) and an image
resolution of 2392 3 2048 pixels. Among the three channels of
the fundus image (red, green, and blue), we used the green
channel for blood vessel segmentation as it demonstrates the
best contrast of the blood vessels.38–41 Several preprocessing
steps, such as intensity, contrast adjustments, and normaliza-
tion along with median filtering to remove noises, were
performed before blood vessel segmentation in the fundus
images.

Spectral-domain (SD)-OCT and OCTA images were acquired
using an Angiovue SD-OCT angiography system (Optovue,
Fremont, CA, USA), consisting of a 70-KHz A-scan rate, and
axial and lateral resolutions of approximately 5 and 15 lm,
respectively. All analyzed OCTA images were 6 3 6-mm scans.
We only used OCTA images from superficial layer, which
includes 80% of ganglion cell complex, containing all
structures of inner plexiform layer up to the border with the
inner nuclear layer. The issue with projection artifact was not
significant in the superficial layer. The segmentation of the
superficial layer was conducted in the commercially available
software interface of Angiovue SD-OCT system (ReVue,
Fremont, CA, USA).

FIGURE 1. Flow diagram of the whole process.
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We exported the fundus and OCTA images, and used
custom-developed MATLAB (Mathworks, Natick, MA, USA)
procedures with graphic user interface for further image
analysis, feature extraction, and image classification as de-
scribed below.

Artery-Vein Classification in Fundus Images

We combined optical density ratio (ODR) analysis and blood
vessel tracking algorithm to identify artery-vein in color fundus
images (Fig. 2A). Technical details of the fully automated artery-
vein classification algorithm have been reported in our recent
publication.42 For this procedure, we used a matched-filtering
method-based blood vessel–enhancing technique42,43 (Fig. 2B)
on the green channel image and segmented the blood vessel
map (Fig. 2C) and skeleton map (Fig. 2D). The segmented
blood vessel map and ODR analysis around the optic disc are
used to determine the blood vessel source nodes. The whole
vessel map is then tracked beginning from the source nodes
using vessel curvature-angle information and classified as vein
(venule) or artery (arteriole; Figs. 2E, 2F).

Artery Vein Mapping in OCTA

We used the artery-vein map derived from color fundus image
to classify arteries and veins in OCTA image. OCTA covers
parafoveal vascular structures; while color fundus image covers
a larger field of view covering the perifoveal area of the retina
and optic disc. Therefore, we can map the blood vessels of
parafoveal region of color fundus image on to OCTA images.
We employed an algorithm, which overlays the OCTA and
fundus image parafoveal regions, based on foveal center
coordinates, and then uses image registration to align the
blood vessels.

We selected a foveal candidate region that had the darkest
intensity values44 and was located temporal to the optic disc
and within the elliptical main vascular arches.45 Figure 3A
illustrate representative image with identified foveal location
and its center pixel is marked by a green window with a red
cross in the center of the fovea. Upon selecting the foveal
center coordinate, we chose a parafoveal region of interest
(PROI; green dashed square, Fig. 3A), which was used for
image registration and mapping of artery-vein vessels to OCTA.
For the OCTA image, the field of view was a square 6 3 6-mm
parafoveal region and the fovea center was identified at the
center coordinate of the image (Fig. 3B). For further image
registration, we used the binarized vessel map of the OCTA
(Fig. 3C). For the OCTA vessel map, we used a Hessian based
multiscale Frangi filter46 to enhance the vascular flow
information. Frangi filtering method uses the Eigen vectors of
the Hessian matrices and computes the likeliness of a OCTA
region to be vascular structures. Adaptive thresholding and
morphologic functions were further used for cleaning the
vessel map and removing small capillary mesh structures that
were not feasible for vessel tracking algorithm. The extracted
vessel maps from OCTA images had an average area of 17.80%
(SD: 3.4, range: 14%–22%).

After locating the fovea centers on both fundus and OCTA
images, the OCTA vessel map was overlaid on the PROI by
overlapping the center coordinates (Fig. 3D). At this point,
the images were overlaid but the vessel structures were not
properly registered. We used a geometric-affine image
registration method47 for recursive alignment of the binarized
PROI and OCTA vessel map, the example of a final result after
image registration is shown in Figure 3E. The image
registration method employed a geometric deformation
model, which was a global affine transformation combined

FIGURE 2. (A) Original fundus image. (B) Enhanced green channel image. Optic disc region located with yellow circle and artery-vein source nodes
identified with red and blue crosses, respectively. (C) Segmented vessel map. (D) Skeleton map. (E) Artery-vein identified in skeleton map. (F)
Artery-vein map.
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with isometric scaling method.47 The overall artery-vein
mapping process including overlapping of center coordinates
and image registration of the binary PROI and OCTA vessel
maps were automatically performed using MATLAB and
ImageJ software (http://imagej.nih.gov/ij/; provided in the
public domain by the National Institutes of Health, Bethesda,
MD, USA).

Upon registration, the artery-vein classification of fundus
image was mapped onto the OCTA image. If the OCTA had
additional vascular branches, they were tracked back to the
source nodes and classified as artery or vein accordingly.42

Skeleton vessel maps were used for the vessel tracking.
Before tracking, morphologic closing function and noise
filtering were used on the skeleton maps to remove any
remaining noises and spur pixels. Each of the endpoints and
branchpoints of the additional vessel branches in the
skeleton map were identified automatically using morpho-
logic functions in MATLAB. The endpoints were linked with
the already identified (artery or vein) source nodes using a
blood vessel tracking technique that employs ODR, textural,
and morphologic features. This vessel-tracking algorithm also
involves protocol for intersections (2-, 3-, or 4-way), gaps in
the tracking path and vessel overlapping. Further detail of
the tracking algorithm can be found in our recent publica-
tion.42 The performance of the automated artery-vein
classification in fundus and OCTA images were validated
with ground truths prepared by two independent graders (JIL
and DT). The ground truths only referred to vessel areas with
identical artery-vein assignments by these two independent
graders.

Quantitative Analysis of OCTA

Using the color fundus image–guided artery-vein classification of
all the OCTA images, we conducted the quantitative analysis for
control and NPDR stages. From the artery-vein OCTA map (Fig.
4A), we obtained skeletonized artery-vein maps (Fig. 4B) and
corresponding artery and vein maps (Figs. 4C, 4D). Traditional
m-BVC and m-BVT without artery-vein differentiation in OCTA
were first quantified for control and NPDR groups. Then, artery
BVC (a-BVC), vein BVC (v-BVC), artery BVT (a-BVT), and vein
BVT (a-BVT) were quantified for comparisons studies. AVR-BVC
and AVR-BVT were calculated based on corresponding a-BVC, a-
BVT and v-BVC, v-BVT, respectively.

For measuring the BVC (artery or vein), we used both the
vessel and skeleton map. The average BVC (m-BVC) can be
defined as the ratio of the vascular area (calculated from vessel
map) and vascular length (calculated from the skeleton map).15

For a-BVC and v-BVC, we used corresponding artery and vein
vessel and skeleton maps. AVR-BVC was calculated from a-BVC
and v-BVC, defined as,

AVR-BVC ¼ Mean arterial BVC

Mean venous BVC
ð1Þ

In case of BVT, each branch of vessel capillaries was
identified with two endpoints (one example is illustrated in
Fig. 4C, X and Y denote two such endpoints) in the skeleton
map. BVT of a single vessel branch can be calculated using the
distance metric,15,48,49 which is a ratio of geodesic distance and
Euclidian distance between two endpoints of a vessel branch.
Geodesic distance represents the curve length (real length)
while Euclidian distance represents the imaginary straight

FIGURE 3. (A) Optic disc and fovea identified in original fundus image; the center pixels are identified with red crosses. (B) Corresponding OCTA
image with fovea and its center identified. (C) Segmented vessel map from OCTA. (D) Vessel map from fundus and OCTA images mapped based on
center coordinate of the fovea. (E) OCTA mapped into fundus after image registration. (F) Artery-vein mapped on OCTA image.
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length between two endpoints. We calculate the BVT for each
separate vessel branches and measure the average BVT for a
single OCTA image (m-BVT).15 Corresponding a-BVT and v-BVT
were measured from artery and vein skeleton maps. AVR-BVT
was measured then as,

AVR-BVT ¼ Mean arterial BVT

Mean venous BVT
ð2Þ

Statistical Analyses

We conducted all the statistical analyses using MATLAB and
OriginPro (OriginLab Corporation, Northampton, MA, USA).
We employed a one-way, multilabel ANOVA with Bonferroni’s
test to compare difference of the mean values of these vascular
parameters among multiple groups. One versus one compar-
isons of these parameters between the control and NPDR
(mild/moderate/severe) stages were performed by the two-
sample paired Student’s t-test. We used v2 test was used to
compare the distribution of sex and hypertension among
different groups, age distribution was compared using ANOVA.
The repeatability of AVR-BVC and AVR-BVT features were
tested using intraclass correlation coefficients (ICC) from two-
repeat measurements. For all measurements, statistical signif-
icance was defined as P < 0.05.

RESULTS

Images from 40 eyes of 20 control subjects and 80 eyes of 48
NPDR patients (18 mild, 16 moderate, and 14 severe NPDR)

were used for this study. The database consisted of 40 control,
30 mild NPDR, 27 moderate NPDR, and 23 severe NPDR
images. The detailed patient demographic data are shown in
the Table. There were no statistically significant differences
between control and NPDR groups with respect to age, sex, or
hypertension distribution (ANOVA, P ¼ 0.19; v2 test, P ¼ 0.24
and P ¼ 0.22, respectively).

The automated artery-vein classification in both fundus and
OCTA images were validated using ground truths manually
labeled by two retina specialists (JIL and DT). There were
96.21% and 93.97% agreements between the two observers on
the identified artery-vein vessel maps for the fundus and OCTA
images, respectively. This indicates that these 96.21% and
93.97% vessel areas can be used as the ground truths to
validate the performance of automated artery-vein classifica-
tion in fundus and OCTA images, respectively. As the artery-
vein classification was performed on the extracted binarized
vessel maps in fundus and OCTA images, the manual labeling
was also prepared using the vessel maps so that there was
consistency in the prepared ground truths and identified
artery-vein maps. The smallest parafoveal capillaries in the
OCTA images were not included in the vessel map and were
also excluded from the manual labeling. For the fundus images,
we used a matched filtering–based robust vessel-enhancing
technique, which enabled robust segmentation of the vessel
map with intricate details. We observed an average of 21%
increase in the vasculature map in fundus images compared
with the original one without vessel enhancement. For each of
the ground truth images (both fundus and OCTA), the
observers manually traced the whole binary vessel map with
blue (for veins) and red (for arteries) markings and identified

FIGURE 4. (A) Artery-vein map in OCTA. (B) Artery-vein skeleton map in OCTA. (C) Artery-skeleton map. (D) Vein-skeleton map.
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the branchpoints with yellow markings. Each of the manually
identified nodes and artery-vein branches were matched pixel-
wise with the classification results to measure the performance
metrics. If the two graders had disagreement on specific areas
of the vessel map, that area was labeled as unclassified and
excluded from the ground truth. For evaluating the classifica-
tion performance on all fundus and OCTA images (control and
NPDR patients), sensitivity, specificity, and accuracy metrics
were measured. The algorithm demonstrated 98.51% and
98.26% accuracies in identifying blood vessels as artery and
vein, respectively, in the fundus images (ICC 0.98 and 0.96 for
two-repeat measurement, 95% CI 0.91–1). There was 98.64%
sensitivity and 96.13% specificity for artery identification and
98.36% sensitivity and 95.97% specificity for vein identifica-
tion. For OCTA images, we observed 97.29% sensitivity and
96.57% specificity for artery identification and 97.38% sensi-
tivity and 96.14% specificity for vein identification. The
accuracies were 97.03% and 97.24%, respectively, for identify-
ing blood vessels as artery and vein in the OCTA images (ICC
0.95 and 0.94 for two-repeat measurement, 95% CI 0.88–0.97).
These performance metrics indicate that the automated
classification performs really well for robust identification of
arteries and veins, compared with manually labeled ground
truths.

Quantitative analysis of control and NPDR OCTAs is
summarized in Figures 5A and 5B. The AVR-BVC and AVR-

BVT features demonstrated excellent repeatability with two-
repeat measurement. The corresponding ICC and 95% CIs for
AVR-BVC and AVR-BVT are 0.97 (CI: 0.96–10) and 0.94 (CI:
0.89–0.94), respectively. We compare the sensitivity of AVR-
BVC and AVR-BVT with m-BVC and m-BVT, respectively. We
also verified if AVR-BVC and AVR-BVT improved the feature
sensitivity for control versus NPDR OCTAs compared with a-
BVC, a-BVT or v-BVC, v-BVT. For BVC analysis, although m-BVC
increased slightly as NPDR stage progressed, it was not
statistically significant. We observed 0.72%, 2.54%, and 4.04%
increase for mild, moderate, and severe NPDR, compared with
control data. For a-BVC and v-BVC analyses, 9.44%, 16.39%, and
24.59% decreases and 10.63%, 20.9%, and 31.95% increases
were observed for control versus mild, control versus
moderate, and control versus severe NPDR OCTAs, respective-
ly. Because of the opposite polarity of a-BVC and v-BVC, the m-
BVC change was not statistically significant. However, in case
of AVR-BVC, the opposite polarities of a-BVC and v-BVC result
in enhanced sensitivity in different NPDR stages. Compared
with control OCTA data 18.14%, 30.9%, and 42.85% decreases
were observed for mild, moderate, and severe NPDR OCTAs
(Student’s t-test, P < 0.001 for all three cases). The AVR-BVC
change was also significant among the four groups (control and
three NPDR groups; ANOVA, P¼ 0.004). In contrast, a-BVC, v-
BVC, or mean BVC differences were not significant among the
four groups. AVR-BVC was the best feature to differentiate

TABLE. Demographics of Control and DR Subjects

Control

Diabetic Retinopathy

Mild NPDR Moderate NPDR Severe NPDR

Number of subjects 20 18 16 14

Number of images 40 30 27 23

Sex (male/female) 12/8 11/7 10/6 6/8

Age (mean 6 SD), y 42 6 9.8 52.2 6 10.24 48.5 6 7.29 53.33 6 5.71

Age, range, y 25–71 24–73 36–68 45–73

Duration of diabetes, (mean 6 SD), y – 14.75 6 9.48 12.56 6 9.48 17.80 6 10.43

HTN prevalence, % 10 72.22 68.75 85.71

HTN, hypertension.

FIGURE 5. (A) BVC changes between control and NPDR patients. The unit (y axis on right) for a-BVC, v-BVC, m-BVC is micrometers; AVR-BVC is a
ratio of a-BVC and v-BVC (y axis in left). (B) BVT changes between control and NPDR patients. BVT (y axis on right) is a ratio of geodesic and
Euclidian distance. AVR-BVT is a ratio of a-BVT and v-BVT (y axis on left).
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control from mild NPDR using OCTA (Student’s t-test, P <
0.001), promising a unique biomarker for detecting early onset
of NPDR in diabetes patients.

For BVT analysis, AVR-BVT improved the sensitivity,
compared with m-BVT, but was not as significant as AVR-
BVC. The a-BVT demonstrated minute changes between
control and NPDR groups, but v-BVT increased as NPDR stage
progressed. For v-BVT, 1.19%, 2.5%, and 5.1% increases were
observed for control versus mild NPDR (not significant),
control versus moderate NPDR (moderately significant, P <
0.05), and control versus severe NPDR (moderately significant,
P < 0.05) OCTA. Intergroup change in v-BVT was also not
statistically significant (ANOVA, P ¼ 0.75). The m-BVT
demonstrated limited change in control and NPDR groups
(0.38%, 1.03%, and 2.39% increases in mild, moderate, and
severe NPDR groups compared with control). For AVR-BVT,
1.6%, 3%, and 5.4% decreases were observed for control versus
mild, control versus moderate, and control versus severe NPDR
(moderately significant, P < 0.05 for all cases) eyes. It could
distinguish between mild and severe NPDR (Student’s t-test, P

¼ 0.038). However, AVR-BVT could not differentiate mild and
moderate NPDR groups with statistical significance (Student’s
t-test, P ¼ 0.28). Intergroup change in AVR-BVT was also not
statistical significant (ANOVA, P ¼ 0.092).

DISCUSSION

This study demonstrated that automated artery-vein differen-
tiation in OCTA is possible using blood vessel tracking from
color fundus images. The algorithm facilitated a feasible
method to differentiate individual arteries or veins in OCTA
images (97.03% and 97.24% accuracies, respectively). In
addition, the algorithm provided a means to differentiate and
quantify changes in artery and vein, between control eyes and
DR eyes. As artery and vein diameter and tortuosity can be
affected in different way by DR, the differential artery-vein
analysis improved the performance of quantitative OCTA
features. Due to opposite polarities of a-BVC and v-BVC (i.e.,
arterial narrowing and venous widening) in DR patients, m-
BVC did not reveal significant differences among control and
DR groups. In contrast, the AVR-BVC provided excellent
sensitivity to differentiate the control and NPDR stages. AVR-
BVT also enhanced the sensitivity, but was not comparable to
AVR-BVC performance. AVR-BVC was the most sensitive
feature to reliably differentiate control and mild NPDR OCTAs
promising a unique biomarker for early detection of mild
NPDR.

There has been a widespread interest in artery-vein
classification among researchers, which can be directly linked
to its potential applications in clinical assessments. With robust
and accurate identification of arteries and vein, subtle
microvascular distortions in retina could be analyzed for
different systematic and ocular diseases. However, most studies
have used fundus images to attempt artery-vein classification
vein50–56 as it provides color, intensity, and contrast informa-
tion that is often crucial to differentiate arteries and veins. Most
of the algorithms based on fundus images rely on the intensity
and color information of artery and vein.50–56 Researchers have
also explored semiautomatic algorithms57–59 using supervised
classification and incorporated functional features like ODR to
identify artery and vein in fundus images.60–62 We recently
demonstrated an artery-vein classification algorithm incorpo-
rating ODR and vessel tracking that showed excellent
performance in identifying artery-vein in fundus images42

compared with recent artery-vein classification algorithms63–65

(97.06% accuracy using 50 fundus images compared to 92%,
90.08%, and 88.28%, respectively). Employing a robust vessel

enhancing technique improved the overall extracted blood
vessel map and enabled swift vessel tracking. The blood vessel
tracking algorithm also had protocols for intersections, four-
way crossovers, and gaps in the skeleton map, further details
can be found in our published article.42

Robust artery-vein classification in fundus image has been
well established. However, to the best of our knowledge, there
has been no reported attempt for artery-vein identification in
OCTA images. As OCTA provides high-resolution flow infor-
mation near fovea and excellent spatial resolution at individual
capillary plexuses, it has been recently explored as an
excellent quantitative imaging platform. Several features have
showed effectiveness in quantifying microvascular distortions
caused by DR,23 AMD,22 DR,23 glaucoma,24 SCR.15,25 and so on
in OCTA images. Quantifying these features differentially in
artery and vein hold potential of increased sensitivity,
especially for early detection of the retinal diseases. We report
a feasible strategy in this pilot study to differentiate artery and
vein in OCTA. This algorithm employs a fundus image–guided
artery-vein classification strategy and maps the artery-vein
information from fundus image to the corresponding OCTA
image. This is done by locating the fovea in both fundus and
OCTA images and then using a geometric-affine image
registration method for recursive alignment of binarized OCTA
vessel map and fundus image parafoveal region. The image
registration was crucial to enable transfer of the artery-vein
information from fundus image vessel map to OCTA vessel
map. It was a global affine transformation model combined
with isometric scaling method and was robust for binarized
input images. Each of the fundus image PROI-OCTA map
overlay was qualitatively examined by two trained ophthal-
mologists and the identified artery-vein maps in OCTA images
were further validated with the labeled ground truths prepared
by them. The automated artery-vein classification was applied
to the full retinal area for differential artery-vein analysis.
However, only the blood vessels on which the two graders had
an agreement on artery-vein assignment were selected to verify
the performance of the automated artery-vein classification.

Another major part of the artery-vein classification process
is the blood vessel tracking algorithm that is largely dependent
on the extracted vessel map from both fundus and OCTA
images. Generally, there should be alternative positioning of
artery and vein around optic nerve head (ONH). However, the
presence of cilioretinal artery and multiple branches coming
out of the central retinal artery may increase the number of
arteries in the temporal area. In a smaller radius around ONH,
the artery-vein ratio is close to 1:1. Imaging related issues like
this vary with different subjects and corresponding fundus
image quality. To reduce the effect on the overall performance,
we maintained a general standard for all the included fundus
images in our study. The images that did not clearly show the
optic disk and foveal area in the retina were excluded.
Approximately 11% images from the total database had to be
excluded for various quality control issues (120 from 136 were
used). The matched-filtering technique for vessel enhance-
ment–enabled vessel map extraction even from blurred fundus
images. However, severely blurred images with significantly
low contrast to noise ratio (CNR) were excluded. The artery-
vein classification in fundus images failed if the vascular
structures in the parafoveal area could not be extracted
properly. However, the vessel-tracking algorithm was robust
and worked even in case of gaps in vessel skeleton. The
tracking adaptively increased its pixel-searching window if it
came upon a gap in vessel skeleton. For OCTAs, similar
qualitative inclusion criteria were maintained and images with
severe motion artifact were excluded. The Frangi filtering
enabled decent segmentation of vessel maps but some images
needed intensity normalization and contrast adjustment prior
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to vessel segmentation. As we only used superficial layer for
OCTA imaging, the projection artifact was not a significant
issue as they mainly occur in OCTAs from deeper retinal layers.
However, the tracking failed in the smallest capillary mesh
structures in the parafoveal area, so we excluded them from
the extracted vessel maps. The 3 3 3-mm OCTA scans provide
higher resolution in the parafoveal area. In our future study, we
plan to use the higher resolution 3-mm FOV OCTAs for vessel
tracking and classify the small capillary structures into artery
and veins.

Our preliminary study confirms the importance of differen-
tial artery-vein analysis in OCTA. Further investigation with a
much larger population could yield in better performance for
DR detection and classification. In addition, the database only
used OCTAs from single device in a single-academic center.
Future studies would include larger datasets, combined OCTAs
taken from different OCT manufacturers, and use a validation
OCTA dataset from other institutions. For the artery-vein
classification, it can be interesting to further implement
multifeature techniques with functional and structural fea-
tures, such as ODR, vessel dimension, shape, curvature,
intensity-contrast information, and so on. Employing deep-
convolutional networks for unsupervised classification might
also yield better artery-vein classification performance in both
fundus and OCTA images. Alternative to fundus imaging,
Doppler OCT can also be useful in guided artery-vein
identification in OCTA images.

In conclusion, color fundus image–guided artery-vein
classification provides a feasible method to differentiate
arteries and veins in OCTA. Two objective OCTA features
(i.e., AVR-BVC and AVR-BVT) enabled objective and differential
analysis of arteries and veins to improve the sensitivity of OCTA
detection and classification of DR. AVR-BVC is the most
sensitive feature, which can reliably classify control and mild
NPDR OCTAs. These findings will be useful in the development
of automated machine-guided screening for detection of DR.
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classification of retinal vessels into arteries and veins. Med

Imaging. 2009;72601:72601F.
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