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The diverse and dynamic microbial community of the human gastrointestinal tract plays a
vital role in health, with gut microbiota supporting the development and function of the gut
immune barrier. Crosstalk between microbiota-gut epithelium and the gut immune system
determine the individual health status, and any crosstalk disturbance may lead to chronic
intestinal conditions, such as inflammatory bowel diseases (IBD) and celiac disease.
Microbiota-derived metabolites are crucial mediators of host-microbial interactions. Some
beneficially affect host physiology such as short-chain fatty acids (SCFAs) and secondary
bile acids. Also, tryptophan catabolites determine immune responses, such as through
binding to the aryl hydrocarbon receptor (AhR). AhR is abundantly present at mucosal
surfaces and when activated enhances intestinal epithelial barrier function as well as
regulatory immune responses. Exogenous diet-derived indoles (tryptophan) are a major
source of endogenous AhR ligand precursors and together with SCFAs and secondary
bile acids regulate inflammation by lowering stress in epithelium and gut immunity, and in
IBD, AhR expression is downregulated together with tryptophan metabolites. Here, we
present an overview of host microbiota-epithelium- gut immunity crosstalk and review
how microbial-derived metabolites contribute to host immune homeostasis. Also, we
discuss the therapeutic potential of bacterial catabolites for IBD and celiac disease and
how essential dietary components such as dietary fibers and bacterial tryptophan
catabolites may contribute to intestinal and systemic homeostasis.
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INTRODUCTION

Awide range of inflammatory conditions has increased steeply in
Western and developing countries, attributed to changes in the
mucosal immune system, specifically the gastrointestinal tract.
The mucosal immune system acts as a guardian, preventing
invasions and preserving a healthy gut microbiota (GM).
Additionally, GM is a determining factor in general health,
releasing metabolites with anti-inflammatory properties that
use intestinal homeostasis. Immune responses against
microbial and dietary antigens can cause inflammatory
disorders such as inflammatory bowel disease (IBD) and celiac
disease (1).

Particularly, IBD is a recurrent, chronic and non-specific
inflammatory bowel condition that includes ulcerative colitis
(UC) and Crohn’s disease (CD), disorders characterized by
intermittent periods of activity (mild, moderate, or severe) or
inactivity (remission). IBDs are considered as an abnormal
immune response and chronic intestinal inflammation caused
by genetic and environmental factors, in addition to complex
interactions between the GM and the host’s immune system,
with development of specific treatments a challenging task (2).
Alternatively, celiac disease is an autoimmune destruction of the
villi of the small intestine triggered by gluten in genetically
susceptible individuals, causing nutrient malabsorption, leading
to intestinal and extra-intestinal symptoms, and a gluten-free
diet (GFD) for life the only treatment. The pathogenesis is
multifactorial, and although genetic predisposition occurs in
30% - 40% of the general population, only a small proportion
of these individuals will develop the disease, suggesting the
importance of environmental factors, with recent evidence
supporting the participation of GM (3).

Therefore, this dynamic triad in the gut (mucosal immunity,
GM, and diet) can be jointly explored, modulated, and enhanced
for the prevention and treatment of many inflammatory diseases.

Here, we present an overview of current knowledge on host
microbiota-epithelium-gut immunity crosstalk, focusing on how
microbial-derived metabolites contribute to host immune
homeostasis. Also, we discuss the therapeutic potential of
bacterial catabolites for some inflammatory conditions, such as
IBD and celiac disease and how essential dietary components,
such as dietary fibers and bacterial tryptophan catabolites aid
intestinal and systemic homeostasis.
A BRIEF DESCRIPTION OF GUT
MICROBIOTA AND HOST IMMUNITY

GM corresponds to microorganisms (bacteria, archaea, fungi,
viruses and phages) inhabiting the human gastrointestinal tract
(4). The phylum Bacteroidetes and Firmicutes represent more
than 90% of the GM bacterial component, including sub-
dominant phyla such as Proteobacteria, Actinobacteria and
Verrucomicrobia (5, 6). Complex GM interaction with the host
immune system begins at birth, where microorganisms initiate
immune development and the immune system subsequently
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orchestrates the GM composition (7, 8). This is a vulnerable
period as the intestine is a critical site for multiple host-microbe
interactions during life. Commensal microorganisms establish a
relationship with the host, essential for immune system
development and function through production of several types
of metabolites. Next to producing metabolites the GM interacts
with intestinal cells in the local environment which subsequently
also impacts immune homeostasis (9).This interaction with
epithelium also initiates production of numerous microbial
metabolites (10) and stimulate signaling pathways, profoundly
impacting gut health and also that of more distal organs (11).

Gut health is highly influenced by diet. Molecular structures
in diet provide substrates for the host and GM, regulating GM
composition and therewith gut-immune barrier function.
However, how diet influence this also depends on other factors
such as genetics and lifestyle (6). Via GM and diet-derived
microbial metabolites diet can influence intestinal homeostasis
(12), with emerging evidence showing diet and nutrients impact
GM composition, production of microbial metabolites, and
immune function; and that disturbances in nutrition may
result in development of intestinal diseases such as IBD (13, 14).

The realization that GM and its metabolites have a strong
influence on disease development also led to the realization that
GM is an attractive target to prevent disease. The microbiome
constitutes a collection of aggregated genomes and genes present
in GM, modulating the host’s metabolism, influencing immune
system performance, and thus altering our concepts of health,
disease risk, and effect of western lifestyle (4). The host-GM
interactions aim to establish immune tolerance while at the same
time initiating strong defense responses toward dangerous
microorganisms (15). The epithelium separates the intestinal
lumen from underlying tissues, with a dense layer of mucus (16).
This mucosal barrier organizes around hyperglycosylated mucin
MUC2, protecting and limiting the immunogenicity of intestinal
antigens, determining an anti-inflammatory state in mucosa
embedded dendritic cells (17). Critical for transepithelial
permeability are tight junctions (TJs) that restrict passage into
the host of pathogens, microbes or toxins (18). GM metabolic
signals, such as indole metabolites and short chain fatty acids
(SCFAs) can strengthen the epithelial barrier by increasing
expression of TJs and cytoskeleton-associated proteins (19).
The importance of GM for epithelial integrity is illustrated in
studies showing that GM alterations (dysbiosis) and intestinal
barrier function disruption trigger a wide range of pathologies,
including autoimmune, neurodegenerative and inflammatory
disorders (13).

Additionally, the combination of genetic, environmental and
dysbiosis factors favor the development of immune response
alterations, promoting inflammatory diseases (20, 21). As
described, immune signals generated by GM modulate
commensal microorganisms (22, 23), protecting the host
against opportunistic pathogens (23). Essentially, the host-GM
interactions are mediated by certain endogenous, dietary
compounds and dietary-derived bacterial metabolites, mainly
stimulating B cells differentiation in order to produce
immunoglobulin A (IgA), initiating formation of regulatory T
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cells (Tregs), T helper 1 (Th1), T helper 17 (Th17), as well as group
3 innate lymphoid cells (ILC3s), among others, potentially
preventing or developing inflammatory diseases (Figure 1).
DIRECT OR INDIRECT MECHANISMS OF
DIETARY FIBERS AND BACTERIAL
CATABOLITES AND THEIR ROLE IN
HEALTH AND DISEASE

SCFAs and Health Effects
Dietary Fiber Catabolism
Dietary fiber (DF) are edible parts of plants or carbohydrates
resisting digestion in the human small intestine, being partially or
completely fermented by GM in the large intestine. The Codex
Alimentarius defines DF as polymers of edible carbohydrates from
natural sources such as cereals, fruits and vegetables, and those from
raw materials by physical, enzymatic and chemical mechanisms or
synthetic carbohydrate polymers with physiological benefits (24).
Moreover, fermentation is influenced by many structural and
physicochemical parameters. DF fermentation is associated with
lower colonic pH, increased large intestinal bacterial mass,
reduction of pathogens, stimulation of antioxidant compound and
vitamin production, as well as regulation of epithelial barrier and
immune system stimulation, among others.

One main DF classification refers to its solubility, with
secondary physiological benefits on viscosity and fermentability,
contributing to gel formation in the intestinal tract, and DF
metabolized by GM, respectively (25). Insoluble DFs, such as
lignin and cellulose, are poorly fermentable by GM, due to their
inability to retain water. Soluble DFs, such as pectin, inulin, b-
glucans, oligosaccharides, and guar gum are fermentable and
constitute the main energy source for GM, and generally, are
more fermentable with higher viscosity (26). Fermentation is
possible in the presence of keystone species and strains
possessing the enzymatic capacity to metabolize specific DF (24).

Interestingly, DF fermentation changes GM diversity,
depending on the DF nature (27, 28), allowing production of
SCFAs, amines, ammonium, gases, and phenols. Also it stimulates
growth and diversity of GM and induces release of energy and
water (29). A rich saturated fat and simple carbohydrate diet, but
low in DF, is associated with increased risk for obesity, diabetes,
cardiovascular disease, and colorectal cancer, conditions having
low-grade systemic inflammation (30, 31). Concordantly, high DF
intake correlates with reduced incidence of disease and mortality
(32–35). DF preserves the gastrointestinal immune barrier (36,
37), with dysfunction triggering autoimmune disease and IBD
development (13, 35, 38). These beneficial effects are attributed to
fermentation products, mainly SCFAs, interacting with small
intestinal immune cells before its degradation by microbial
enzymes (39).

The GM and the mucosal immune system is a complex
ecosystem, involving mutualistic GM-host relationship, where
microorganisms convert diet carbohydrates, proteins, and fats
into metabolites, having positive or negative health effects (40).
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The human digestive system lacks enzymes to digest complex
polysaccharides, such as pectins, xylan or celluloses,
consequently reaching the colon with their intact structure,
and subsequently fermented by GM bacteria (41, 42).

GM has numerous enzymes, 16 families being carbohydrate
esterases, 22 polysaccharide lyase, with 130 glycoside hydrolases
standing out, allowing DF fermentation, giving GM flexibility to
adapt to many substrates (24). Firmicutes and Actinobacteria
phyla are the main bacteria responding to DF, although few
enzymes initiate substrate degradation (43). The main substrates
for bacterial fermentation and SCFA production are inulin,
wheat and oat bran, cellulose, guar gum, pectin, and resistant
starch; the latter an important source for butyrate production (2).
Phylum Bacteroidetes members are major acetate and
propionate producers, while phylum Firmicutes produce
mostly butyrate (44, 45).

The main human intestinal butyrate-producing bacteria are
Faecalibacterium prausnitzii and Clostridium leptum, Ruminococcaceae
family members, and Eubacterium rectale and Roseburia spp from the
Lachnospiraceaefamily(44,45).Additionally,sugarand/or lactateutilizing
bacteria suchasEubacteriumhalliiandAnaerostipes spp.producebutyrate
from lactate and acetate in a cross-feeding process (44). However,
members of the phyla Fusobacteria, Proteobacteria, Actinobacteria,
Spirochaetes and Thermotogae are potential butyrate producers,
expressing genes encoding butyrate synthesis enzymes, such as butyryl-
CoAdehydrogenase, butyryl-CoAtransferase and/orbutyratekinase (46).

Production of other SCFAs is determined by Actinobacteria,
such as the Bifidobacterium species, producing lactate during DF
fermentation (47). Bifidobacteria metabolizes low molecular
weight carbohydrates; Bifidobacterium longum subsp. infantis
prefers short-chain fructo-oligosaccharides (48), additionally, a
relevant phylum Verrucomicrobia member, the mucin degrader,
Akkermansia muciniphila, produces acetate and propionate
(45, 49).

Although metabolite production depends on the bacterial
species capable of fermenting DF, their consumption is a good
way to stimulate metabolite production through modulation of
the GM composition.

SCFAs and Receptors
SCFAs are carboxylic acids produced by DF fermentation,
having 1-6 carbon aliphatic tails, with acetate (C2), propionate
(C3) and butyrate (C4) being the most abundant (2). Soluble DF
rich diets are associated with less inflammation due to higher
SCFAs production and stimulation with G-protein-coupled
receptors (GPCR), i.e., the primary receptor for SCFA. GPCR
inhibits NF-kB activation in immune cells and intestinal
epithelial cells (IEC) (50). SCFAs profoundly impacts human
health by being an energy for colonocytes, regulating glucose
metabolism, fatty acids and cholesterol hepatic biosynthesis,
inhibiting pathogen growth and reducing intestinal
inflammation (51) and enhancing barrier function both in
vitro and ex vivo (52–54) by altering TJs formation (Figure 1)
(53, 55). An colonocyte energy source, butyrate is the most
relevant SCFAs bacterial metabolite, regulating gene expression
and inflammatory (40). Studies evaluating butyrate effect on
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FIGURE 1 | Endogenous or dietary compounds and dietary-derived bacterial metabolites effects on the gut immune barrier. (1) Direct effect of dietary fiber. Some
dietary fibers have been shown to have direct effects on immune cells. E.g., low degree of methyl esterification (Low-DM) pectin binds to TLR2, inhibiting TLR2-1
heterodimer activation, thus reducing NF-kB activation. (2) Bacterial fermentation of dietary fiber by SCFAs-producing bacteria. SCFAs inhibit histone deacetylases
(HDACs) and thus NF-kB-induced pro-inflammatory mediators: (2A) induce neutrophil chemotaxis by binding to GPR43, (2B) promote IgA secretion (2C), stimulate
Tregs proliferation and differentiation by activating GPR43 and inhibiting HDACs (2D), influence NLRP3 by activating GPR43 or GPR109A facilitating IL-18
expression, thus promoting repair and maintaining barrier function (2E, 2F). (3) Bacterial tryptophan metabolism: Indole promotes epithelial barrier function through
the pregnane X receptor (PXR). Bacterial tryptophan metabolites are AhR ligands in ILCs, RORgt interacts with AhR stimulating IL-22 expression (3A, 3B), IL-22
promotes antimicrobial peptide expression and enhances goblet cell proliferation for mucin secretion (2E). (4) Bacterial bile acid metabolites: Gut metabolites-derived
from microbiota, endogenous or dietary compounds participate in microbiota-host interactions, exerting diverse effects on epithelial or immune cells through different
signaling pathways. Secondary bile acids regulate epithelial integrity by binding to the farnesoid X receptor (FXR) in epithelial cells (4A), regulate macrophages
differentiation into M2 profile via TGR5 and FXR activation, reversing inflammatory pathways producing IL-10 (4B), with further IL-10 production by Treg (2D).
Additionally, TGR5 signaling involves NF-kB inhibition, and FXR signaling repressing NF-kB-responsive elements (NRE) in macrophages and dendritic cells (4B, 4C).
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intestinal permeability, both in vitro and ex vivo, indicate low
concentrations of butyrate are beneficial, while excessive luminal
concentration could cause mucosal barrier disruption (52, 53). It
has been demonstrated that high concentrations of SCFAs
induces intestinal mucosa injury in newborn rats, but although
maturation dependent, this injury disappears in mature mucosal
defense (56). Additional studies (52) show that high butyrate
concentrations disrupt assembly of TJs to the intestinal barrier,
proposing that barrier function regulation by low butyrate
concentrations in Caco-2 cell monolayers facilitates TJs
assembly in a dynamic process mediated by AMP-activated
protein kinase (AMPK) activation (53).

Both DF and butyrate are important components and
metabolites involved in managing inflammatory diseases (57).
SCFAs suppress IL-8 secretion and expression (58–61), although,
high butyrate doses has the opposite effect (61). Understanding
butyrate action in reducing inflammation is important, especially
the histone acetylation mechanism (62), requiring more study as
butyrate metabolizes to Acetyl-CoA, activating histone
acetyltransferase (HAT), affecting cell turnover, structure and
function and tumoricity, although with paradoxical effects (63,
64). Butyrate permeate the cell membrane by passive diffusion or
is absorbed by apically proton-coupled monocarboxylate
transporter 1 (MCT1) and sodium-coupled monocarboxylate
transporter 1 (SMCT1) on IECs and/or immune cells (65).
MCT1 primarily transports butyrate and is induced by SCFAs,
inhibiting HDACs through MCT1 (66).

Cellularly, SCFAs activate signaling pathways through
GPCRs: GPR41, GPR43 and GPR109A (expressed in colonic
epithelium enteroendocrine cells, polymorphonuclear immune
cells and smooth muscle cells) with different affinities (Figure 1).
GPR41 and GPR43 have a role in the immune surveillance of the
colonic mucosa towards microbial activity (67), whilst GPR109A
inhibits NF-kB activation as a tumor suppressor (68). Active
absorption of butyrate is reduced in IBD with decreased MCT1
expression in inflamed mucosa of UC patients (69), possibly due
to high TNF-a levels (70) or reduced butyrate-producing
bacteria, causing faulty oxidization (71, 72), potentially
indicating that butyrate reduces IL-8 expression mediated
by GPR109A.

GPR41 and GPR43 activate the NLRP3 inflammasome (73),
triggering IL-1b and IL-18 secretion (74, 75), and GPR43 regulates
immune cells in experimental inflammation (36, 37), with sodium
butyrate increasing disease severity in DSS model of germ-free mice
(76). Butyrate modulates immune cells, such as macrophages (77),
dendritic cells (78) and lymphocytes (77), and inhibits cytokines, such
as IL-12p70 and IL-23, polarizing naïve CD4+ T cells towards the Th1
and Th17 subtypes (79). Butyrate affects the mucosal immune system
throughTreg expansion, and inhibitsHDACactivity in dendritic cells,
resulting in retinaldehyde dehydrogenase 1 (RALDH1) andGPR109A
expression (77). RALDH1 modulates naïve T cell differentiation
towards Treg producing IL-10 (77, 80, 81), with butyrate also
enhancing Foxp3+ expression and Treg differentiation, reducing
inflammation (80).

GM in IBD patients is characterized by loss of intraindividual
diversity, with higher abundance of Proteobacteria and lower of
Frontiers in Immunology | www.frontiersin.org 5
Firmicutes. Interestingly, butyrate-producing bacteria Faecalibacterium
prausnitzii, Ruminococcus torques, Roseburia inulinivorans, Blautia
faecis, and Clostridium lavalense are reduced in patients (82–85), with
lower luminal butyrate concentrations (86) and higher C-reactive
protein, reflecting increased inflammation (84). Furthermore, a
reduced butyrate-synthesis capacity has been described in IBD
patients, with butyryl-CoA:acetate CoA-transferase (BCoAT) gene
content inversely associated with disease activity and dysbiosis, being
more evident in CD, and may relate to reduced DF intake (87).
Alternatively, celiac disease associates with GM alterations, although
no SCFA quantity differences or composition exist between celiac
patients and healthy patients (88). Interestingly, prolonged
administration of oligofructose-enriched inulin in children with celiac
disease (under a gluten-free diet), has a moderate effect on GM
composition, while SCFA production is stimulated in celiac
children (89).

Accordingly, activated NF-kB in UC patients colonic mucosa
is reduced by butyrate and SCFAs enemas (100 nM), directly
correlating with disease activity (90, 91), with no effect in patients
in remission (92). Depending on butyrate physiological
concentration, it can be beneficial, with fewer molecules
reaching colonocytes, as mucus layer prevents excessive
concentrations towards epithelial cells, and increasing MUC2
expression (93). Regarding the above, the fact that butyrate effect
is variable, is related to the physiological irrigation of this SCFA.
At these or other doses, it is likely that in an in vivo IBD model,
fewer butyrate molecules reach the colonocytes than in an in
vitro model, since the colonic epithelium is covered by a thick
mucus layer preventing passage of excessive concentrations of
butyrate into the cell. Consequently, as butyrate concentration
gradients run from the crypt-lumen axis and the luminal axis
proximal-distal, colonocytes at the crypt base are exposed to an
estimated µM concentration range, thus explaining its variable
effects on inflammation.

Dietary Fiber and TLRs Interaction: Direct Effects
Certain DF have a direct anti-inflammatory effect by directly
interacting with pattern recognition receptors (PRRs), mainly Toll-
like receptor (TLR) 2 and 4, or Galectin-3 in intestinal immune
barrier cells. Accordingly, low-grade methyl esterification pectins
(Low-DM) block innate immune receptors, with pectin directly
inhibiting pro-inflammatory TLR2-TLR1 pathway (without
affecting TLR2-TLR6 tolerogenic pathway in vitro) (Figure 1) and
preventing clinical symptoms in a TLR-2 dependent doxorubicin-
induced ileitismurinemodel (65).Additionally, low-DMcitric pectin
suppresses TLR-induced inflammatory cytokine expression in a
mouse model of endotoxin shock (94). Moreover, apple pectin
oligo-galactan exhibits a protective efficacy in a murine model of
dextran sulfate sodium (DSS)-induced colitis, decreasing LPS-
induced TNF-a, and is probably associated to a mechanism
comprising TLR4 internalization and redistribution (95). Similarly,
resistant starch (RS) also binds predominantly to TLR2 and/or TLR5
in dendritic cells, affecting PRR signaling (96).

Pectin directly interacts with TLR2, inhibiting the
proinflammatory signaling pathway, thereby contributing to
barrier function and preventing colorectal cancer development
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(97). Similarly, b2 fructans also regulate mucosal homeostasis
through activation of TLR2 (to a lesser degree TLR4, TLR5,
TLR7, TLR8 and Nucleotide Binding Oligomerization Domain
Containing 2; NOD2) producing IL-10/IL-12 in mononuclear
cells (in chain length-dependent manner) (98), and regulating
barrier function in T84 cells (99). Wheat bran and peanut fiber
also improve intestinal barrier function, changing GM
composition and TLR2 expression in pigs (100). Likewise,
chicory pectin and intact guar gum DF exhibit an anti-
inflammatory effect in a murine model of DSS-induced colitis
decreasing proinflammatory expression (101, 102). Additionally,
bengkoang DF binds to TLR4, favoring phagocytic activity in
J774.1 macrophages (103).

Soluble DF has immunomodulatory effects by influencing
human peripheral blood mononuclear cells (PBMCs) functions
(independent of SCFA production) (39), and has symbiotic
effects with certain Lactobacillus, synergistically stimulating IL-
6 and IL-8 production in immune cells (104). Inulin and short-
chain fructo-oligosaccharides (scFOS) directly promote, in a
GM-independent manner, specific intestinal barrier function in
a damage-induced model of Enterohemorrhagic E. coli (105).

All these fibers can be instrumental in prevention or lowering
symptoms of chronic inflammatory conditions where the
aforementioned gut epithelial processes are involved. Examples
are celiac disease which results from oral tolerance to gluten
breakdown in subjects carrying HLA-DQ2 or HLA-DQ8
variants (106). High maternal fiber intake during pregnancy is
associated with a lower risk for celiac disease in children, while
gluten intake associates with a high risk, suggesting that high
dietary fiber and low gluten intake during pregnancy is a
protective factor for celiac disease (107). The mechanisms are
not yet clear but might be associated to the aforementioned
protective effects of DF on gut epithelial immune barrier function.

Galectin-3, extracellularly or intracellularly expressed in immune
and epithelial cells, plays a fundamental role in health and disease
(108), interacting with carbohydrates and intracellular proteins.
Galectin-3, acts as a PRR inducing innate responses against
pathogens (109), enhanced by pectins (109), through galactose
residues or arabinose side chains with rhamnogalacturonan I
(RG-I) and rhamnogalacturonan II (RG- II) (110).

Secondary Bile Salts and Health Effects
Secondary Bile Salts Catabolism
Primary bile acids (BAs) synthesized in the liver from
cholesterol, conjugate to glycine or taurine before released and
concentrated into bile in the gallbladder, and eventually secretion
(111). Approximately 95% of BAs are reabsorbed in the ileum
and recirculate to the liver, while a smaller percentage reach the
colon, and are metabolized by GM or excreted; additionally, GM
regulates BAs synthesis and uptake (112). In healthy people, the
amount of daily secreted BAs depends on eating habits, with
levels fluctuating between 200-600 mg per day (113) BAs
metabolism by GM, and its effects on health and disease
recently begun to be considered (114, 115), with two BAs
being synthesized by the liver, colic and chenodeoxycholic
acid. GM-mediated BAs transformations include deconjugation
Frontiers in Immunology | www.frontiersin.org 6
via bile salt hydrolases (BSH) hydrolyzing the amide bond and
transforming deconjugated primary BAs to secondary BAs,
mainly by 7a-dehydroxylation reactions exerted by a limited
number of bacteria (116).

While deconjugation is performed by numerous bacteria, BSH
are encoded in different genus species: Lactobacillus,
Bifidobacterium, Bacteroides and Clostridium, being more diverse
in Firmicutes (117). Conversion of primary to secondary BAs by
7a-hydroxylation is a relevant microbial BAs transformations in
humans (118), as cholic acid is transformed to deoxycholic acid
(DCA) and chenodeoxycholic acid to lithocholic acid (LCA). 7a-
dehydroxylation, is a characteristic of Clostridium (Clostridium
hylemonae and C. scindens, the latter important in the production
of LCA), as well as Eubacterium (119, 120). Bacterial BAs
metabolism plays a fundamental role in systemic and intestinal
health, since imbalances in BA-GM crosstalk associates with
inflammatory and gastrointestinal disorders (121).

Secondary Bile Salts and Receptors
Secondary BAs are potent nuclear receptor ligands, binding to
farnesoid X receptor (FXR), vitamin D receptor (VDR) and
pregnane X receptor (PXR), additionally acting as endogenous
agonists for the microbial G protein-coupled bile acid receptor
(TGR5). These receptors play an important role in BAs synthesis,
regulation and metabolism (122) and are relevant in different
pathological processes (Figure 1). BAs receptors are expressed in
IECs, hepatocytes, liver parenchyma, muscles, neurons, among
others (123), as well as in immune cells (124–127), responding to
endogenous and bacterial antigens. In BAs metabolism by FXR,
biliary acidosis inhibition by CYP7A1 inhibition is an important
step, occurring via the hepatic bile salt export pump, inducing
small heterodimer partner (SHP) expression. SHP inactivates the
hepatic homologous receptor-1 (LRH-1) inhibiting CYP7A1
expression (128). Alternatively, FXR activated by BAs induces
FGD15/19 to FGFR4 binding, inhibiting CYP7A1 (129).

During inflammation, FXR regulate intestinal immune
responses driven by GM, with low-grade chronic inflammatory
disorders associated to dysbiosis and altered BAs profiles in
humans (130). IBD patients exhibit a low content of bile salt
biotransformation genes (mostly from Firmicutes phylum) as
well as low secondary and high primary BAs levels compared to
healthy subjects (131, 132). Also FXR null mice are unable to
reduce intestinal inflammation, promoted by GM-LPS
stimulation of NF-kB and inflammatory cell recruitment (133).
Additionally, antibiotic-induced GM alterations allow C. difficile
spore germination and inhibit BAs-producing bacteria, depleting
BAs production (134) and, thus inhibit FXR activation.
Additionally, FXR deficiency in a ApcMin/+ and azoxymethane
(AOM)-DSS murine model of colon carcinogenesis (associated
with chronic colitis), resulted in premature death and increased
tumor progression through Wnt signaling pathway activation in
macrophages, neutrophils (135). Moreover, BAs deficiency (due
to bile duct obstruction) associates with bacterial overgrowth and
translocation, intestinal damage, reverted by BAs or GW4064
(FXR agonist) administration (136). Obeticholic acid (OCA) also
a FXR agonist, decreases severity, maintaining epithelial barrier
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integrity and decreasing inflammatory cytokine production in a
DSS or 2,4,6-Trinitrobenzene sulfonic acid (TNBS)-induced
colitis murine model (125, 137), whilst isoDCA (secondary
BA) induces peripheral Treg cells (138). Therefore, FXR
rationally becomes a therapeutic IBD target, although, clinical
trials using FXR agonists will be required.

GM activates TGR5 expression, affecting enteroendocrine cells,
exhibiting immunomodulatory and anti-inflammatory effects (139),
mainly in macrophages and monocytes (139). Importantly, TGR5
regulates energy metabolism and glucose homeostasis: inducing
GLP-1 secretion, glucose metabolism, intracellular cAMP levels,
transcription of type 2 iodothyronine deiodinase (Dio2) gene
(encoding type 2 deiodinase (D2) converting thyroid hormone T4
into triiodothyronine, T3). Through TGR5 activation, BAs inhibit
production of pro-inflammatory mediators IL-1, IL-6 and TNF-a,
induced by LPS (140). Likewise, BSH-containing bacteria alters
TGR5-mediated pro-inflammatory or anti-inflammatory activity,
dissociating taurine or glycine from BAs.

TGR5 agonist effect associates with intestinal IL-10 increase
(141). BAR501, a selective agonist of TGR5, protected mice from
colitis by polarizing intestinal macrophages from M1 to M2
phenotype and reducing intestinal and circulating monocytes/
macrophages (141, 142).

In celiac disease, immunologically mediated extraintestinal
manifestations in the liver can occur. Both gut and liver, share
lymphocyte recruitment and return routes, with gut T
lymphocytes contributing to liver and biliary inflammation
(143). The gut-liver axis describes a close metabolic and
immunological connection between the intestine and the liver,
and an imbalance or damage in this axis can trigger innate
immune responses that induce liver damage or contribute to its
progression (144). It should be noted that in celiac disease, the
intestinal permeability, together with chemokine CXCR3, increase
entry of food and bacterial antigens, as well as bacterial metabolites
via the portal vein, triggering immune responses by activation of
PPRs (CD14/TLR4 complex, inflammasome, etc.), generating liver
inflammation and metabolism alterations. Alternatively, dysbiosis
in this pathology produces an increase in intestinal permeability
and mediates inflammatory processes, enhancing celiac disease
immunopathology and altering BAs composition, impacting on
hepatic FXR and TGR5, inflammation and BA metabolism
(145, 146).

The above demonstrates a clear role of GM-BAs-FXR/TGR5
axis in Tregs, monocytes and macrophages regulation,
highlighting the potential use of secondary BAs or other natural
or synthetic ligands as new therapies in inflammatory pathologies.
TRYPTOPHAN METABOLISM
AND HEALTH EFFECT

Tryptophan Catabolism
Dietary proteins and peptides are normally digested in the small
intestine, resulting in free amino acids actively absorbed from the
intestinal lumen into the systemic circulation. Next to serving as
nutritional source, proteins can serve as GM fermentable substrates
Frontiers in Immunology | www.frontiersin.org 7
when escaping from digestion in the small intestine and reaching
the large intestine. Tryptophan (Trp) is an essential amino acid
composed of a b-carbon, connected at position 3 of an indole group,
naturally provided by poultry, milk, tuna, fish, cheese, bread, oats,
prunes, chocolate, and peanuts. Of the 20 amino acids, Trp has the
highest molecular weight and is a biosynthetic precursor of a large
number of metabolites (147). Alternatively, it can be metabolized by
the host in the kyneurine pathways or be utilized for serotine
synthesis in the brain and intestine; or by the GM, which can
directly use Trp, partially limiting its availability, metabolizing
approximately 4-6% indole, skatole, tryptamine and indole acid
derivatives (148). Intestinal bacterial species convert Trp to
tryptamine and indole-3-pyruvic acid (IPyA), additionally
converting it to indole, indole-3-acetaldehyde (IAAId), and
indole-lactic-acid (ILA). Furthermore, IAAId converts to indole-
3-acetic acid (IAA) and tryptophol, and IAA indirectly converts to
skatole through decarboxylation (148, 149). Lastly, ILA can convert
to indole-acrylic acid (IA) and subsequently to indole propionic acid
(IPA) (150). Different bacterial species possess different catalytic
enzymes, some cooperating with each other to generate a Trp
metabolite (Table 1); for example, indole is produced by Firmicutes
phylum members such as Enterobacter aerogenes, Clostridium
limosum, C. tetani, C. lentoputrescens, C. bifermentans, C.
melanomenatum, as well as some members of the Bacteroidetes,
Fusobacteria and Proteobacteria phylums; alternatively, IAID is
produced in a reduced number of species belonging to Firmicutes
phyla, such as Lactobacillus johnsonii, L. reuteri, L. murinus and L.
acidophillus (Table 1). The Trp bacterial metabolism is a complex
process, with many bacterial strains having catalytic capacity against
Trp, but many of them remain to be identified. Accordingly,
understanding which bacterial consortia produce Trp metabolites
is necessary, and considering the GM intervariability (151) will
allow the design of targeted strategies to steer Trp metabolite
production modulating GM composition through the diet.

As will be outlined in next sections of this review, Trp
metabolites have many beneficial effects for gut epithelial
barrier function.

A main Trp metabolite is indole (conserved molecule between
kingdoms and species). It is produced by bacteria for biofilm
formation, regulating bacterial motility and resistance against
non-indole producing species such as Pseudomonas aeruginosa
jhonsonii and Salmonella enterica (164). Using the enzyme
tryptophanase, bacteria converts Trp to indole and numerous
indole-derived metabolites such as IAID, IAA, ILA, and IA
(Table 1) (165).

The endogenous and microbial Trp pathway (the kyneurine
pathway), and the indole microbial pathway converge on the
xenobiotic receptor, AhR, (located in the cytosol of resting cells)
and when bound to its ligand, translocates into the nucleus
heterodimerizing with AhR nuclear translocator (ARNT),
binding to dioxin-responding elements within enhancer and
target gene promoter.

Bacterial Trp metabolites are low-affinity ligands for AhR, the
most effective being indole, skatole, tryptamine, IPyA, IA and
Indole-3-acetamide (IAM); whilst IAA, IPA, ILA and IAID the
least active (166). Additionally, methyl-indoles and methoxy-
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indoles have synergistic effects in vitro (167), with different
bacterial metabolites, such as SCFAs and secondary BAs.

Trp is an important regulator of inflammatory responses in
mammals (Figure 1) (168), such as mice and pigs, with a low Trp
diet making mice more susceptible to chemically induced
inflammation (169). Also, it regulates bone remodeling,
carcinogenesis, organ development, neurophysiology, metabolic
diseases and, xenoprotection (170–174). As a mucosal protection
against inflammation, Lactobacillus reuteri uses Trp to expand
and generate an AhR ligand: IAID, contributing to IL-22
transcription in innate lymphoid cells and T cells, allowing a
balanced GM.

Indoles and Receptors
Bacterial indoles, such as IPyA, increase intestinal barrier function
through PXR, decreasing TNF-a expression in enterocytes, whilst
promoting goblet cell differentiation in female C57BL/6J mice
(156). PXR-/- mice show increased intestinal permeability and
enhanced TLR4 expression, demonstrating direct chemical
communication between gastrointestinal symbionts and PXR
pathway in mucosal homeostasis (174). Interestingly, IPyA
reduces intestinal permeability in high-fat diet mice, indicating
Frontiers in Immunology | www.frontiersin.org 8
that obese subjects with low IPyA levels have an imbalanced
intestinal barrier function (175). Additional to intestinal barrier
function and inflammatory response regulation, IPyA promotes
goblet cell differentiation in mice (156).

Absence of Trp metabolizing bacteria impact on IL-22 immune
regulation, with reduced IL-22 production seen in IBD.
Additionally, GWAS studies in IBD patients have identified
mutations impacting IL-22 pathways, especially in the Card9
gene sensing type-C lectins, as also witnessed in Card9 deficient
mice, prone to DSS-induced colitis (176, 177). Furthermore, IBD
patient´s carrying CARD9 polymorphism have reduced faecal
AhR activity, Trp levels and GM production of AhR ligands,
making GM an attractive target for modulation (176, 177).
Concurrently, reduced serum Trp levels in patients negatively
correlates with disease activity or C-reactive protein levels (178),
although, determining if GM modification or indole-producing
bacterial populations affect IBD severity is unknown.

AhR defective signaling contributes to pathogenic responses,
witnessed in celiac disease patients, with AhR transcript
decreased in IECs and peripheral mononuclear cells, although,
an AhR agonist (6-Formylindolo(3,2-b)carbazole; Ficz), reduced
pro-inflammatory cytokine, granzyme B and perforin expression
TABLE 1 | Gut bacterial species and enzymes involved in bacterial Tryptophan metabolism.

Trp Metabolite Phylum Bacterial species Enzymes Model Refs.

Indole Firmicutes Enterobacter aerogenes, Clostridium limosum, C. tetani, C.
lentoputrescens, C. bifermentans, C. melanomenatum

Tryptophanase Human gut content (150)
Bacterial culture (152)

(150,
152–
154)Bacteroidetes Bacteroides ovatus, B. thetaiotaomicron

Fusobacteria Fusobacterium nucleatum
Proteobacteria Escherichia coli, E. albertii

Indole-3-acetic
acid (IAA)

Firmicutes Lactobacillus reuteri, C. difficile, C. paraputrificum, C. lituseburense, C.
paraputrificum, E. cloacae, Peptostreptococcus asscharolyticus

Indolepyrubate
decarboxylase

Human gut content (150)
Bacterial culture (155)

(150,
155)

Bacteroides Parabacteroides distasonis, B. fragilis. B thetaiotaomicron, B.
eggerthii, B ovatus.

Proteobacteria E. coli
Actinobacteria Bifidobacterium pseudolongum, B. adolescentis, B. longum subsp.

Longum,
Indole propionic
acid (IPA)

Firmicutes C. botulinum, C. caloritolerans, C. paraputrificum, C. sporogenes. C.
cadaveris, Rauschbrand bacillus.

Pyruvate:
ferredoxin
oxidoreductase

Human stool samples, DSS-
induced colitis mice, cell
culture (156)

(154–
156)

Bacteroidetes P. anaerobius, P. russelli, P. stomatis Phenyllactate
dehidratase

Human gut content (150)
Bacterial culture (152, 157)

(150,
152,
157)

Indole-acrylic
acid (IA)

Bacteroidetes P. anaerobius, P. russelli Phenyllactate
dehydratase

Human gut content (150)
Bacterial culture (152, 157)

(150,
152,
157)

Indole-3-
aldehyde (IAID)

Firmicutes L. johnsonii, L. reuteri, L. murinus, L. acidophillus. Aminotransferase Murine model (158, 159) (158–
160)

Indole-lactic-
acid (ILA)

Firmicutes C. saccharolyticum, Eubacterium cylindroides, P. asaccharolyticus. Human gut content (150)
Bacterial culture (155, 161)

(150,
155,
161)

Bacteroidetes B. ovatus, B. thetaiotaomicron
Proteobacteria E. coli
Actinobacteria B. pseudolongum, B. adolescentis

Indole-3-
acetamide (IAM)

Proteobacteria Burkholderia pyrrocinia Tryptophan-2-
monooxygenase

Bacterial culture (162) (162)

3-Metyl-indole
(skatole)

Bacteroidetes B. thetaiotaomicron Human gut content (150)
Bacterial culture (152, 157)

(150,
152,
155)

Firmicutes E. rectale, Butyrivibrio fibrisolvens

Tryptamine Firmicutes Ruminococcus gnavus, C. sporogenes Tryptophan
decarboxylase

Bacterial culture (152, 163) (152,
163)

Indole-3-pyruvic
acid (IPyA)

Firmicutes C. bartlettii, C. sporogenes Tryptophan
aminotransferase

Bacterial culture (152) (152)
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in vitro, and reverted intestinal injury in a poly I:C-induced-
celiac disease murine model (179). AhR ligands production by
GM decreases gluten immunopathology in non-obese diabetic
(NOD) mice expressing DQ8 (a susceptible gene to celiac
disease; NOD/DQ8), as seen with high-Trp diet, L. reuteri or
Ficz administration. Reduced AhR ligands production by fecal
microbiota and low AhR activation in active celiac disease
patients, highlights the role of GM modulating AhR pathway,
becoming a new therapeutic strategy for treatment (180).

BACTERIAL CATABOLITES AS ARYL
HYDROCARBON RECEPTOR (AHR)
LIGANDS: KEY ROLE IN GUT
MICROBIOTA AND IMMUNITY

AhR is a ligand-dependent transcriptional factor widely expressed
in immune, epithelial, endothelial, and stromal cells in barrier
tissues, and extensively studied in response to chemical
contaminants. AhR senses a wide range of intestine signals,
maintaining homeostasis between GM and host (181–183),
activating proliferation of colonic stem cells, epithelial barrier
functions, and regulating immune cells, such as RORgt+

intraepithelial innate lymphoid cells (ILC3), T helper
lymphocytes (Th 17/22), gdT lymphocytes, antigen presenting
cells and Foxp3+ Treg lymphocytes (151, 184–187). AhR response
tophysiological ligandshas become an interesting focus of research,
and the next section reviews current evidence on its molecular
interaction and function in the immune system in steady state and
intestinal inflammation, and its relationship with GM.

In addition, independent of GPCRs or MCT1 pathways,
butyrate activates the AhR, modulating the interaction between
diet, GM and host (151, 184, 185) therefore is reduced in IBD Thus,
butyrate, by inhibiting HDACs, increases CYP1A1 expression in a
AhR-dependent manner in Caco-2 and HT-29 cells (188).

Role of AhR in Intestinal Barrier Function
and Intestinal Immune Cells
Canonical (181), and non-canonical AhR signaling pathway have
been described, either at the genomic or non-genomic level
through association with other transcription factors, such as
NF-kB, or Src kinase. Inactive AhR joins to Src kinase in the
cytosol, when an agonist interacts with AhR, a conformational
change occurs allowing (170, 189–191). Non-genomic AhR
signaling is responsible for at least two anti-inflammatory
outcomes, LPS exposure induced suppressive effects mediated
by AhR-associated Src kinase phosphorylation of indolamine
2,3-dioxygenase IDO1, inducing TGF-b transcription in
dendritic cells (151), or IL-10 production (192). Interestingly,
after AhR activation by Ficz exposure, CD8aa+ TCRab+

intraepithelial lymphocytes (IELs) resist apoptosis with AhR,
IL-15 and IL-10 up-regulation, and IFN-g reduction in a colitis
model (193). In IBD, immune cells express low levels and altered
activity of AhR, maintained by decreased GM-derived AhR
ligand production, mainly bacterial Trp metabolites and
butyrate (151). Accordingly, depleted dietary AhR ligands alter
GM composition and function (194), with Trp metabolites
Frontiers in Immunology | www.frontiersin.org 9
present in murine cecal content and human feces, activating
AhR, and are considered intestinal activity biomarkers (182).

A novel AhR activator is 1,4-dihydroxy-2-naphthoic acid (DHNA),
a precursor of vitamin B12 produced by Propionibacterium
freudenreichii ET-3, inducing intestinal anti-microbial protein
synthesis, altering GM composition and inhibiting murine DSS-
induced colitis (196). Similarly, indole-3-ethanol, indole-3-pyruvate
and indole-3-ethanol protect against increased gut permeability in a
murine DSS-induced colitis model (195). AhR maintain intestinal
permeability, with Ficz promoting goblet cell differentiation through
AhR-pErk1/2 signaling pathway, and ameliorating DSS-induced colitis
(197). Furthermore, after intestinal reperfusion ischemia and hypoxia,
AhR activation increases Notch1 signaling, thus reducing epithelial
barrier dysfunction in vivo and in vitro (198). The epithelial barrier
function is regulated by direct (AhR activation by Ficz inhibited Par-6
expression through theAp-2gpathway) (199) and indirectmechanisms
(AhR activation by Ficz prevented TNF-a/IFN-g-induced decrease in
TJ disruption) (200), with AhRs increasing TJ protein expression in
response to IL-22 produced by CD4+ T cells (201). Finally, AhR
expression in IELs is abrogated bymiR-124 in active CDpatients (202),
therefore, AhR inhibits pro-inflammatory pathways in IECs preserving
intestinal permeability.

Macrophages as Potential Target in
Intestinal Inflammatory Disorders
Intestinal macrophages are central in establishing and maintaining
mucosal homeostasis, with its dysregulation generating loss of
tolerance towards dietary antigens and GM, underlying IBD
chronic inflammation. Together with SCFAs, bacterial Trp
metabolites control susceptibility to intestinal inflammation
through AhR activation pathways in macrophages. AhR deletion
in intestinal mucosa CD11c+dendritic cells and certain macrophage
subsets increases the stem cells in the ileal epithelium and
differentiates epithelial precursors, causing greater susceptibility to
murine DSS-induced colitis (203). Furthermore, a recent study
observed that I3C treatment in C57BL/6 mice reduced
macrophages expressing F4/80, demonstrating a diminished
infiltration of innate immune cells into the colon. This effect was
not observed in Ahr-/- mice, suggesting that the therapeutic effects
of I3C was AhR-dependent (204). Alternatively, a synthetic
pelargonidin (water soluble anthocyanidin) can be transactivated
by the AhR, attenuating pro-inflammatory activities of Raw264.7
macrophages in an AhR-dependent manner. The administration of
this compound resulted in a dose-dependent attenuation of TNBS-
induced colitis in Balb/c mice and promoted M2 macrophage
expansion (205).

AhR negatively regulates LPS-mediated inflammatory responses
in macrophages, inducing IL-6 and TNF-a production in AhR-
deficient macrophages compared to WT cells. Furthermore, AhR-/-

mice are more sensitive to LPS-induced lethal shock, similarly seen
in STAT1 deficient animals, indicating that AhR complexes with
STAT1 and NFkB in LPS-stimulated macrophages (206).

Accumulation of anti- inflammatory profi le (M2)
macrophages in the intestinal microenvironment appears to be
crucial in restoring tissue homeostasis (207). Diet-derived
bacterial ligands capable of modulating macrophages towards
an M2 phenotype, AhR agonist-producing probiotics, or
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synthetic AhR agonist analogs (designed to optimize their anti-
inflammatory activities) administration, could provide future
anti-inflammatory therapeutic approaches.
FUTURE DIRECTIONS

GM profoundly influences the inflammatory state via production
of immunomodulating metabolites, making it an attractive target
for therapeutic manipulation, using well-founded microbe- and/
or metabolite-based therapies. Evidence discussed in the
previous sections proposes various challenges and future
directions to follow, for example:

- DF exhibit diverse effects on epithelial integrity, macrophages
and dendritic cells (DCs) responses and is instrumental in
enhancing the intestinal immune barrier through stimulating
GM interaction with epithelium. However, to better
understand DF impact, human studies controlling factors,
such as diet, DF functional or nutraceutical-based foods to
limit disease development are needed.

- Both IBD and celiac disease are characterized by alterations in
the GM composition, SCFAs production, energy supply to
colonocytes and local mucosal inflammation. Thus, GM
empirical modulation can increase SCFAs-producing
bacteria in vitro and in vivo, enriching its diversity,
demonstrating clinical and histological improvement.

- Modulation of GM and secondary BAs profile represent novel
therapeutic approaches tomanage intestinal diseases such as IBD
and colorectal cancer. Future research could elucidate secondary
BAs effects on their receptors revealing opportunities for
prevention and control of inflammatory diseases.

- The connections between Trp catabolites and human health are
promising but needs further studies. By understanding their
dynamics and functional implications for stimulating anti-
inflammatory pathways mediated by PXR and AhR,
maintaining intestinal barrier integrity, novel opportunities
for therapeutic strategies might be developed.

- The mechanisms responsible for intestinal inflammation
resolution needs further clarification. M2 macrophages
accumulation in the intestinal microenvironment appears
crucial. Identifying and studying environmental signals
regulating phenotypes and functions of intestinal
macrophages, such as AhR ligands, is essential in homeostasis
and inflammation. Modulating monocytes to mature M2
macrophages transition through new identified molecules and
pathways could promote remission of chronic states.
CONCLUSIONS

GM has positioned itself as an element that greatly impacts both
intestinal and systemic immunity. A better understanding of GM
importance, its metabolites, interacting receptors, the transcriptional
regulation metabolites exert, and eventual interactions between
various metabolites, provide countless possibilities in the
Frontiers in Immunology | www.frontiersin.org 10
prevention and treatment of inflammatory pathologies in western
societies (obesity, diabetes, hypertension, neurodegenerative
disorders, among others). Intriguingly, there is an overlap with
respect to the molecules regulating both intestinal and immune
homeostasis and how the deletion of either one of these
metabolites or its receptors is capable of affecting the proper
functioning of the host. Alternatively, the crosstalk between
bacterial metabolites and possible convergences on pathways of
interest in the modulation of local and/or systemic immune
responses, becomes an attractive area that could be exploited to
maintain intestinal and systemic homeostasis.

Many questions need solving and many challenges remain,
however, is clear that the manipulation of intestinal health and
immunity through receptors, enzymes and transcription factors
is a reality. Furthermore, the identification of important
commensals in GM-host interactions and the production of
bioactive molecules could open up a greater number of
possibilities that will determine the importance of GM and its
metabolites in the susceptibility and progression of inflammatory
pathologies of the gastrointestinal tract.

Challenges exist in selecting and delivering the correct bacteria
strains and/or bacteria clusters to promote bacteria abundance and
metabolite loss in the patients. Faecal microbiota transplantation
has been proposed as a new treatment, mainly for Clostridium
difficile infection and Crohn’s disease. However, despite being
effective in alleviating symptoms, this procedure has drawbacks
associated with safety of the transplanted inoculum and the
difficulty of standardizing their bacterial content. Therefore,
rational design of standardized consortia of intestinal bacteria for
the efficient and safe treatment of these pathologies represent an
alternative to faecal microbiota transplantation; associated to
production of different bacterial metabolites inhibiting
inflammatory signaling, thus reducing inflammation.
Alternatively, the promotion of healthy food consumption, rich in
essential substrates in the synthesis of bacterial metabolites, as well
as foods or food stuffs capable ofmodulatingGM, could limit awide
range of inflammatory diseases prevalent nowadays.
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