
International  Journal  of

Environmental Research

and Public Health

Article

Heat Wave Vulnerability Mapping for India

Gulrez Azhar 1,2,*, Shubhayu Saha 3, Partha Ganguly 4,5, Dileep Mavalankar 4,5 and
Jaime Madrigano 1

1 The RAND Corporation, 1776 Main Street, Santa Monica, CA 90401, USA; jmadriga@rand.org
2 Pardee RAND Graduate School, 1776 Main Street, Santa Monica, CA 90401, USA
3 Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA; shubhayu@gmail.com
4 Indian Institute of Public Health, Gandhinagar, Gujarat 382042, India; psganguly@iiphg.org (P.G.);

dmavalankar@iiphg.org (D.M.)
5 Public Health Foundation of India, New Delhi 110070, India
* Correspondence: gazhar@rand.org; Tel.: +1-301-393-0411 (ext. 6056)

Academic Editor: Peng Bi
Received: 7 January 2017; Accepted: 28 March 2017; Published: 30 March 2017

Abstract: Assessing geographic variability in heat wave vulnerability forms the basis for planning
appropriate targeted adaptation strategies. Given several recent deadly heatwaves in India, heat is
increasingly being recognized as a public health problem. However, to date there has not been a
country-wide assessment of heat vulnerability in India. We evaluated demographic, socioeconomic,
and environmental vulnerability factors and combined district level data from several sources
including the most recent census, health reports, and satellite remote sensing data. We then applied
principal component analysis (PCA) on 17 normalized variables for each of the 640 districts to create
a composite Heat Vulnerability Index (HVI) for India. Of the total 640 districts, our analysis identified
10 and 97 districts in the very high and high risk categories (> 2SD and 2-1SD HVI) respectively.
Mapping showed that the districts with higher heat vulnerability are located in the central parts
of the country. On examination, these are less urbanized and have low rates of literacy, access to
water and sanitation, and presence of household amenities. Therefore, we concluded that creating
and mapping a heat vulnerability index is a useful first step in protecting the public from the health
burden of heat. Future work should incorporate heat exposure and health outcome data to validate
the index, as well as examine sub-district levels of vulnerability.

Keywords: heatwave; vulnerability; heat vulnerability index; vulnerability assessment;
mapping; India

1. Introduction

The Intergovernmental Panel on Climate Change (IPCC) report [1] highlights the projected
increases in heatwave frequency, intensity and duration, and resulting deaths both globally and
in India. Heatwave events have caused massive deaths in the past; the most famous among them
are the European 2003 and Russian 2010 heatwaves, where tens of thousands died [2–4]. India has
experienced several heatwaves, and most recently, just in the past two years, thousands have reportedly
died [5]. Research has documented an increase in cardiovascular [6], respiratory [7], and all-cause [6]
mortality along with increases in ambulance calls and admissions [8,9] resulting from heatwave
exposure. While most of the evidence is from North America and Europe, there is an emerging body
of evidence from developing countries, including India [10], where heat wave deaths may currently be
underestimated [11].

At the same time, heat-related deaths are preventable and prevention programs have been shown
to be extremely cost effective [12]. Population adaptation [13] along with preparedness measures have
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reduced mortality. Indeed, several cities and countries around the world have adopted heatwave
preparedness plans [13]. However, in India, this effort is limited to only a few cities [14]. A broader
preparedness strategy is particularly important given the large population, difficult local conditions,
and limited adaptive capacity.

Health vulnerability can be conceptualized as complex and multidimensional [15].
Vulnerability encompasses individual biophysical characteristics, as well as population-level
socio-economic-environmental characteristics. These population measures have typically included
measures of age, income, discrimination, social isolation, vegetation, and health characteristics [16].
Incorporating multidimensional data can present a more comprehensive characterization of
vulnerability. Given the considerable intra-country variations in these measures that exist, it is
prudent to use this characterized vulnerability to identify communities in need of prioritized and
focused interventions. Heat Vulnerability Indices (HVI) have been found to be a useful screening tool
for targeting heat risk interventions [16].

Several international studies have explored vulnerabilities at the national, county, and city
levels [17–20], but none have comprehensively examined India. Additionally, most of this work
has been performed in the context of urban settings, while the majority of the Indian population
resides in rural areas. To our knowledge only one Indian study looked at agricultural vulnerability
using census data from 2001 [21]. In fact, a recent review of heat vulnerability indices points out that
that the majority of studies have been performed in Europe and the United States and recommends
further study in other countries and regions to account for local context [16]. We, therefore, aim to
create and map an integrated district level heat vulnerability index for India that can be used to identify
the most heat-vulnerable districts in the country.

2. Materials and Methods

2.1. Data Sources

Data was extracted from the Census of India 2011, District Level Household Survey (DLHS)-3
data [22], and from the Indian Space Research Organization ISRO server Bhuvan. District level census
data was downloaded through the census of India portal. We chose districts as the unit for our analysis.
While states are too heterogenous, districts are appropriate for planning purposes, and are the smallest
unit for which we could get reliable data from multiple sources. We downloaded data for household
amenities and the primary census abstract (PCA). Some DLHS variables were extracted from the
Annual health survey report from the ministry of health and family welfare website. Satellite data was
extracted from the ISRO server’s “Bhuvan” tool where the average vegetation fraction and Normalized
Difference Vegetation Index (NDVI) images were layered with a district level India shapefile and these
variables (mean, median, maximum, minimum, range, and standard deviation) were calculated for
each of the district polygons using GIS software.

2.2. Choice of Variables

Our initial dataset had 140 variables for 640 districts. Based on the existing literature [17] and
removal of duplicative variables that represented similar constructs, we shortlisted variables across
the demographic, social, economic, health, and environmental domains. Researchers independently
considered variables for inclusion based on knowledge from prior literature. Final variables were then
compared and conflicts were resolved through discussion. We were left with 17 variables to be entered
for PCA analysis. We did not assign weights to individual variables.

The shortlisted variables plausibly (and have been documented to) affect the heat-health
relationship. The final list of variables employed in analysis along with their respective sources
are listed in Table 1.

Demographic variables included those based on age and gender. For age extremes, we used
the percentage of elderly and under five and for gender we used the sex ratio. While studies have
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documented elderly age to be a risk factor [3,9,23–32], there is an argument that children [32,33] could
also be at a higher risk, given their higher metabolic rate.

Table 1. Heat-health vulnerability data for 640 districts of India.

Category Source Variable Mean Standard
Deviation Minimum Maximum

1 Demographic Census 2011 Elderly (%) 6.941611 1.85144 1.911948 16.31032

2 Demographic Census 2011 Under five (%) 11.77559 2.430698 6.39814 19.94178

3 Demographic Census 2011 Sex ratio 945.4773 60.60111 533.5676 1184.402

4 Social Class Census 2011 Scheduled castes (%) 14.85952 9.127914 0 50.17002

5 Social Class Census 2011 Scheduled tribes (%) 17.70213 26.97455 0 98.57509

6 Socio-economic Census 2011 Literacy (%) 62.4771 10.52398 28.77288 88.73746

7 Socio-economic Census 2011 Workers (%) 41.19976 7.02642 25.83138 66.8953

8 Socio-economic DLHS 3 Lowest wealth quintile (%) 18.69547 17.8634 0 85

9 Household
Amenities Census 2011 Drinking water inside

premises (%) 42.35347 22.93822 2.426598 93.86555

10 Household
Amenities Census 2011 Living in a good house (%) 51.01322 14.27142 13.01783 88.05314

11 Household
Amenities Census 2011 Having only mobiles (%) 51.21369 14.46154 7.97389 79.62046

12 Household
Amenities Census 2011 Owning radios (%) 20.44393 11.38917 2.827992 77.2401

13 Household
Amenities Census 2011 Owning TVs (%) 43.6372 24.04314 5.787766 95.40281

14 Population
Health DLHS 3 Children (12–23 months)

fully immunized (%) 56.89797 21.96324 3.8 100

15 Population
Health DLHS 3 Villages having Sub-Center

within 3 km (%) 69.91922 18.23694 0 100

16 Land Cover ISRO Vegetation Fraction 73.24128 38.98999 10.60944 255

17 Land Cover ISRO Normalized Difference
Vegetation Index 84.19634 32.20057 35.78857 255

Social class was represented through the percentage of people belonging to the scheduled castes
(Dalits) and scheduled tribes (Adivasis). These groups are recognized by the Indian constitution
as depressed classes and are a target for development and affirmative action programs. We used
these as substitutes for race in the Indian context. Though there are no studies which highlight their
vulnerability to extreme heat, this is perhaps from an absence of such literature. Studies between
ethnic groups and heat-related deaths show equivocal effects [27,34,35]. This may be due to differential
ownership of household amenities, chiefly air conditioning.

Socio economic variables were those of literacy, defined as an ability to read and write in any
language; and occupational status of a worker, defined as producing goods and services. Education
has been seen to be associated with heat mortality [6,30] perhaps from increased awareness and also as
a proxy for socio economic status. Similarly, being in a worker status would increase the environmental
exposure to heat since the majority of workers work in the agricultural sector as cultivators and
agricultural laborers. Income was assessed through the percentage of people in the lowest wealth
quintile. Several studies including those from Asia and India have documented the effects of poverty
on heat-related deaths [6,25,29,32].

Household amenities were assessed through the presence of household amenities such as the
presence of drinking water inside premises, living in a good house, having a mobile phone, radio and
TV [32]. While much research has gone into analyzing the effects of air-conditioning [34,36], we did
not include this variable because its prevalence is quite low, electricity supply is irregular across the
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country, and approximately 300 million people have no power connection. However, many of the
household amenities assessed require electricity and can serve as a proxy for electricity supply.

Land cover was assessed through Vegetation Fraction (VF) and Normalized Difference Vegetation
Index (NDVI). Studies have documented the protective influence of green cover from heat island
effects and heat deaths [37] and these have been included in other indices [17].

Population health was assessed through the immunization status children (12–23 months) fully
immunized (BCG, 3 doses each of DPT, and Polio and Measles) (%) and presence of a health facility
(sub-center) within 3 km. Preexisting illnesses have been documented to affect heat mortalities [32].
Because we were unable to obtain prevalence of chronic disease that may be most closely linked to
heat vulnerability (e.g., diabetes, cardiovascular diseases) at the district level, we used these factors as
a proxy for overall underlying population health status.

2.3. Data Analysis

The data were merged using the census district numbers as unique identifiers. They were then
manually checked for any discrepancies such as those between district names and were resolved
through crosschecking. Where district level data were missing, we substituted state-wide averages for
the districts.

Data were analyzed with STATA ver. 13, 2016 (StataCorp LP, College Station, TX, USA) and qGIS
2.10.1 (Open Source Geospatial Foundation Project). The map was created with R v. 3.3.2 (R Foundation
for Statistical Computing, Vienna, Austria). All data used in this study were publicly available data
and did not contain any individually identifiable information.

We calculated Spearman’s correlation coefficients between the vulnerability variables. We then
employed the PCA technique to reduce the dimensionality of these variables. In order to perform
PCA variables need to be on the same scale, we normalized all our variables by calculating their
Z scores. All variables were in the same direction i.e., increasing value implies an increasing
vulnerability. After application of PCA we tested for unexplained variation and adequacy of analysis
by Kaiser-Meyer-Olkin (KMO) test. We retained four factors based on these criteria—Kaiser’s criteria
of eigenvalues > 1, break in values in the scree plot test, and the variance explained by the factors.
We tried factor rotations to increase the variability among factors. Individual factor scores were
predicted for each district. In absence of any information with regards to the shape or interaction of
factors, we assumed a linear relationship and calculated the heat vulnerability index by summing up
these district level factor scores.

3. Results

Table 1 demonstrates the sources and descriptive characteristics of the 17 raw variables included.
Some of these variables showed interesting variations, for example, on average only 42.3% of
households had drinking water inside their premises but it ranged from 2.4% to 93.8% across districts.
Similarly TV ownership, immunization status, having nearby health sub-centers and vegetation also
showed such marked variations.

Variable correlations showed many of the variables highly correlated with each other at the
0.001 significant level. (not shown here).

Table 2 shows the PCA results with Varimax rotation. The factors have been reduced to
four dimensions. These correspond to demographic, socio-economic, vegetation, and health
systems. The PCA led to four factors with primary loadings, these appeared to be (1) demographic;
(2) socio-economic; (3) environmental; and (4) health factors. Demographic loadings were constituted
of extremes of age, socio-economic loadings were driven by household amenities, environmental
loadings were contributed by the VF and NDVI scores and health was driven by availability of health
facilities nearby.
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Table 2. Factor loadings from varimax rotation based on data from 640 districts.

Variable Factor 1 Factor 2 Factor 3 Factor 4

Elderly –0.41 0.11 0.13 –0.19
Under five 0.42 –0.03 –0.01 –0.05
Sex ratio –0.27 0.34 –0.10 –0.25
Scheduled castes –0.11 –0.03 0.38 –0.20
Scheduled tribes 0.11 0.24 –0.30 0.24
Literacy 0.35 0.10 0.10 –0.04
Workers –0.18 0.42 –0.01 0.33
Lowest wealth quintile 0.20 0.30 0.13 –0.18
Drinking water inside premises 0.07 0.41 0.01 0.07
Living in a good house 0.27 0.12 0.02 –0.39
Having only mobiles 0.05 0.43 –0.10 –0.07
Owning radios –0.07 0.33 0.30 0.09
Owning TVs 0.32 0.22 0.03 –0.15
Children (12–23 months) fully immunized 0.39 –0.06 0.02 0.10
Villages having sub-center within 3 km 0.07 0.03 0.08 0.66
Vegetation fraction 0.03 –0.01 0.55 0.10
Normalized difference vegetation index 0.03 –0.01 0.55 0.08

Of the 17 variables that we started with, these four groups of factors were able to account for
78% of the total variation. The scree plot of eigenvalues showed a clean break at four components
(Figure 1). This was also in agreement of the Kaiser criteria. The Kaiser–Meyer–Olkin (KMO) test
shows adequacy of our analysis (>0.50).
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The HVI calculated as a sum of the four individual factors for each district ranged from −11.8 to
9.4, it had a mean close to 0 and SD of 3.5. Figure 2 maps the vulnerability across the country. Spatial
clustering of these “hot spots” is observed in central India. These districts have poor socio-economic
and development indicators and appear to be high on the heat vulnerability index.

We classified these categories based on the SD scores as “very high” (>2SD), “high” (1–2SD),
“high normal” (0–1SD), “low normal” (−1–0SD), “low” (−2–1SD), and “very low” (<−2SD). We chose
this SD based classification instead of equal categorization to better represent the variation. Table 3
shows the number of districts according to HVI standard deviations.

Ten districts had an HVI score of “very high” (>2SD), most of them in central India in the states of
Madhya Pradesh and Chhattisgarh (Table 4). Twenty districts had an HVI score of “very low”; most of
them were in the relatively developed states of Kerala and Goa and union territories of Lakshadweep.Int. J. Environ. Res. Public Health 2017, 14, 357 6 of 10 
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Table 4. Districts with a “very high” HVI score.

District State

Dakshin Bastar Dantewada Chhattisgarh
Pakur Jharkhand

Alirajpur Madhya Pradesh
Sheopur Madhya Pradesh
Barwani Madhya Pradesh

Banswara Rajasthan
Jhabua Madhya Pradesh

Malkangiri Odisha
Dohad Gujarat
Bijapur Chhattisgarh

4. Discussion

This study provides a relative ranking of heat wave vulnerability for all districts in India. Although
much is known about factors that contribute to vulnerability from other settings [16–19], there has been
minimal research conducted within India on heat-related vulnerability. By coupling this knowledge
with local context and using methods previously applied in other settings [17], we created an index
that describes relative variation in heat-related vulnerability across all of India. This index can be used
by planners, policy makers, and disaster mitigation experts to target climate adaptation efforts.

Similar to the findings of other international studies [17], our index too identified demographic,
socio-economic, environmental, and health system factors. However, there are important differences in
the choice of initial variables making this index useful to the Indian and developing country settings.

The high and very high HVI districts were in the central part of the country. With a higher
tribal population, these states have been at the lower end of various health, education, economic and
population growth indicators. They are referred to as the Empowered Action Group (EAG) states
and often targeted for focused interventions. These land-locked, high HVI districts in the North and
Central Indian plains are classically known as the “heat belt”.

While the use of air conditioning has been observed to have the greatest impact in reducing heat
wave deaths in the US [36] it is unlikely to be a solution for India at least in the short term because of
lack of a reliable and continuous power supply, the high cost and low penetration of air conditioning.

Suitable local adaptation strategies therefore need to be considered. These may include a range of
measures, some of which have been discussed in the literature, such as public messaging (Radio, TV),
mobile phone-based text messages, automated phone calls, and amber alerts; to others such as
traditional adaptation practices of staying indoors, wearing comfortable clothes, and diets. These are
often visible in terms of the housing design and construction material used. Simple design features
such as having shaded windows and underground water storage tanks can be helpful. Use of insulator
housing materials similarly can be an effective method of prevention. Having access to drinking water
within housing premises and indoor toilets could be important. We chose several household amenities
not just to proxy for income but also for their protective role.

For risk management, it would make sense to observe whether these identified areas of high
vulnerability are also the same as those with higher temperatures and humidity. Similarly, had district
level heat wave death data been available, we could have used it to validate this index. Our index does
show high (>0.70) and significant correlations with literacy rates, low income status, TV ownership,
having toilets and drinking water and open defecation practices. These could be seen as starting points
framing local adaptation strategies. These correlations highlight the importance of interventions against
other associated diseases such as gastrointestinal diseases in children and water-borne illnesses etc.
There is a moderate correlation of 0.42 between HVI and average summer land surface temperatures
(from satellite data) suggesting a relationship between higher temperatures and heat vulnerability.
The index also shows moderate negative correlation (–0.46, p < 0.001) with urbanization signifying a
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possible greater vulnerability threat in rural areas. Since the majority of Indians reside in rural areas,
this could have important implications. Outdoor workers have been identified as being at a greater
risk during heatwaves. In rural settings, agricultural practices in different regions of India may also
have diverse vulnerability patterns.

Some limitations of this study also arise from availability of data. Cardiovascular and/or
respiratory diseases are more closely related to heat vulnerability but prevalence of chronic diseases
at the district level was not available. Similarly, there was no pan India district level data on social
isolation or electricity. For the three DLHS variables, we had missing data for the state of Nagaland.
We used state averages instead. However, since Nagaland is a small state which has not reported
heatwave deaths, we believe this substitution is unlikely to have major effects. In calculating HVI,
we assumed a linear combination of factors with no weighting as a good first assumption. Inclusion
of temperature as an exposure variable could have been helpful but because temperatures vary at
country-wide levels in a thermally diverse India, it would serve to bias the index in favor of places
with higher normal temperatures. Our approach is in line with established methods [17] for large
areas. Also, district level temperature data is only collected for a small fraction of the total 640 districts.
In view of still building evidence base from Indian temperature-mortality studies we have cited
western literature and some Asian and Indian studies identifying vulnerability factors. This approach
has also been demonstrated previously in the air pollution literature [38].

In many prior heat vulnerability studies, rural areas have been overlooked, but may have high
vulnerability, and this may be especially important in India given the importance of poverty, and
agricultural livelihoods in mediating the temperature mortality relationship. However, since the
district level data includes both rural and urban areas; by aggregating them we may have missed the
differences between these patterns of vulnerability [39,40]. Also, since we only had district level data,
if such data was available at the finer block (Taluka) level, we would have a better identification of
vulnerable areas. Similarly, intra-city vulnerability patterns would have been interesting to observe
given availability of urban ward level data. Given data availability, future work could also identify
areas using the Koeppen climate classification assuming that the warm, dry, arid, and humid areas are
more vulnerable. As research continues, we may identify more complex relationships and therefore we
could conceive of other heat vulnerability indices with non-linear relationships and differential weights.

Despite the above discussed limitations there are several strengths to this work. This is the
first study to look at heat vulnerability across India. It provides a preliminary screening to target
heat-health and climate adaptation efforts. This methodology can be used to for further investigations
into vulnerability.

5. Conclusions

We developed a heat wave vulnerability index that aggregates indicators across several
dimensions for all districts in India. This index can be used in initial efforts to target resources
for adaptation efforts. Most heat preparedness plans are designed and implemented at a local
level, and this index can help identify metropolitan areas that are at highest risk. Since heat wave
vulnerability varies across spatial scales, our methods can be extended for sub-district level analysis and
modified to develop urban and rural indices. Further work within this context should include testing
the sensitivity of our linear combination assumption and validating this index to health outcomes.
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