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Hydatigera taeniaeformis is one of the most common intestinal tapeworms that has a

worldwide distribution. In this study, we sequenced the complete mitochondrial (mt)

genome of H. taeniaeformis from the leopard cat (designated HTLC) and compared it

with those of H. taeniaeformis from the cat in China (designated HTCC) and Germany

(designated HTCG). The complete mt genome sequence of HTLC is 13,814 bp in size,

which is 167 bp longer than that of HTCC and is 74 bp longer than that of HTCG.

Across the entire mt genome (except for the two non-coding regions), the sequence

difference was 3.3% between HTLC and HTCC, 12.0% between HTLC and HTCG, and

12.1% between HTCC and HTCG. The difference across both nucleotide and amino acid

sequences of the 12 protein-coding genes was 4.1 and 2.3% between the HTLC and

HTCC, 13.3 and 10.0% between the HTLC and HTCG, and 13.8 and 10.6% between

the HTCC and HTCG, respectively. Phylogenetic analysis based on concatenated amino

acid sequences of 12 protein-coding genes showed the separation of H. taeniaeformis

from different hosts and geographical regions into two distinct clades. Our analysis

showed that the cat tapewormH. taeniaeformis represents a species complex. The novel

mt genomic datasets provide useful markers for further studies of the taxonomy and

systematics of cat tapeworm H. taeniaeformis.

Keywords: cat tapeworm, Hydatigera taeniaeformis, species complex, mitochondrial genome, comparative

analaysis

HIGHLIGHTS

- The complete mitochondrial (mt) genome of Hydatigera taeniaeformis from the leopard cat in
China is 13,814 bp in size.

- Phylogenetic analysis showed the separation of H. taeniaeformis from different hosts and
geographical regions into two distinct clades.

- The molecular evidence presented here supports the hypothesis thatH. taeniaeformis represents
a species complex.
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INTRODUCTION

Tapeworms (Platyhelminthes: Cestoda) are one of the major
groups of parasitic flatworms that are passively transmitted
between hosts and parasitize virtually every vertebrate species (1).
The adults of tapeworms live in the digestive tract of all groups
of vertebrates, whereas larvae occur in different organs and body
cavities of invertebrates and vertebrates (2). Tapeworms cause
neglected diseases that can be fatal and are a major impediment
to socioeconomic development (3, 4). Cestoda is a large animal
class that is currently classified into 19 orders with ∼5,000 valid
species (5).

The family Taeniidae is a medically important group of
tapeworms that generally consists of four valid genera, Taenia,
Echinococcus,Hydatigera, and Versteria. Based on morphological
features, some authors have recognized that the genusHydatigera
is valid, whereas others have treated this genus as a junior
synonym of the genus Taenia. In a recent revision, the
resurrection of the genus Hydatigera was proposed based on
molecular evidence (6). The cat tapeworm H. taeniaeformis
(formerly referred to as T. taeniaeformis), the type species of the
genus Hydatigera, is the most common tapeworm of cats and
rats (7). Although the zoonotic significance of this tapeworm
remains unclear, it has also been recorded in humans in unusual
circumstances (8). The correct identification and differentiation
of cat tapewormH. taeniaeformis have important implications for
studying its epidemiology, systematics, and population genetics.
Many studies have shown that several criteria (e.g., infectivity,
development, morphology, and biochemistry) differ between H.
taeniaeformis from different geographical origins (9–12). Based
on morphological analysis, H. taeniaeformis was considered a
complex of three cryptic species (13). Phylogenetic analyses of
theH. taeniaeformis based on sequences of nuclear 18S rRNA and
mitochondrial (mt) cox1 DNA also strongly support the presence
of three distinct clades (13).

Themitochondrial genome (containing 36–37 genes) has been
considered a useful marker for the species identification and
differentiation of many tapeworms (14–16). The complete mt
genomes of H. taeniaeformis from cats in China and Germany
have been sequenced and supported that they represent different
species (17), but it is yet unknown whether H. taeniaeformis
from leopard cats represents third cryptic species. Therefore, in
this study, we (i) sequenced the full mt genome sequence of
H. taeniaeformis from the leopard cat (HTLC), (ii) compared
it with that of H. taeniaeformis from the cat in China (HTCC)
and Germany (HTCG), and (iii) tested the hypothesis that
three isolates of H. taeniaeformis are genetically distinct via
phylogenetic analyses of amino acid sequence datasets.

MATERIALS AND METHODS

Parasites and DNA Isolation
An adult tapeworm representing H. taeniaeformis (designated
HTLC) was collected from the small intestine of a leopard cat
(Prionailurus bengalensis) in Beijing Zoo, China. The tapeworm
was washed in physiological saline, identified primarily based
on morphological characters using existing keys to species (18),

fixed in 70% (v/v) ethanol, and stored at −20◦C until use. Total
genomic DNA was isolated from this tapeworm using sodium
dodecyl sulfate/proteinase K treatment, followed by spin-column
purification (Wizard R© SV Genomic DNA Purification System,
Promega). Furthermore, the specimen was also identified as H.
taeniaeformis by PCR-based sequencing of 28S rDNA gene and
mt cox1 gene and had 99.2 and 100% nucleotide homology with
those of H. taeniaeformis from Norway rat in India and brown
rat in China deposited in GenBank (GenBank accession nos.
JN020350 and MF380378), respectively.

Sequencing, Assembling, and Verification
A genomic DNA library (350 bp inserts) was prepared and
sequenced by Novogene Bioinformatics Technology Co. Ltd.
(Tianjin, China) using the Illumina HiSeq 2500 (250 bp paired-
end reads). The clean reads were obtained from raw reads
by removing adaptor sequences, highly redundant sequences,
and “N”-rich reads, then were assembled into contigs with
Geneious v 11.1.5 (19). Preliminary cox1 sequences of H.
taeniaeformis were used as initial references for assembly with
the suitable parameters (minimum overlap identity = 99%,
minimum overlap = 150 bp, and maximal gap size = 5 bp) (19).
The assembly generated a large contig ending with overlapping
fragments. As this structure allowed a single circular organization
of the mt genome, we assumed that the complete mt genome
had been assembled completely. The completeness of the mt
genome assembly was further verified by a long PCR experiment
using four pairs of primers (Supplementary Figure S1 and
Supplementary Table S1), which were designed in the conserved
regions. When the additive sizes of amplicons are identical to
the length of the assembled contig, it proves that the assembly
is correct. The long PCR reaction system consisted of 25 µl:
10.5 µl ddH2O, 0.5 µl upstream primer, 0.5 µl downstream
primer, 12.5 µl Premix TaqTM (Takara, LA TaqTM V 2.0 plus
dye), and 1 µl genomic DNA. Samples were tested in the C1000
TouchTM Thermal Cycler (BioRad, USA) under the following
conditions: 94◦C for 1min (initial denaturation), then 98◦C for
10 s (denaturation), 54–59◦C for 40 s (annealing), and 68◦C for
4min for 35 cycles, with a final extension at 72◦C for 8 min.

Annotation, Visualization, and Sequence
Analysis
Protein-coding and rRNA genes were identified by alignment to
homologous genes of the previously sequenced mt genome of H.
taeniaeformis (17) using the MAFFT v7.122 software (20). tRNA
genes were identified using ARWEN (21) and tRNAscan-SE (22).
MEGA v6.0 (23) was utilized to analyze the amino acid sequences
of each protein-coding gene. The map of the mt genome of theH.
taeniaeformis was figured on the proksee online server (https://
proksee.ca/). Pairwise comparisons of the complete mt genomes
were made among China isolates (designated HTCC, GenBank
accession number: FJ597547), Germany isolates (designated
HTCG, GenBank accession number: JQ663994), and China
isolates in the present study, such as lengths, identities, A +

T content, and codons. The A + T content was computed
using DNAStar (v. 5.0). Sequence identities were calculated by
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ClustalW in Geneious v 11.1.5 (19): cost matrix IUB, gap open
cost of 15, and gap extend cost of 6.66.

Phylogenetic Analyses
A total of 33 mt genome sequences of tapeworms within the
family Taeniidae were used for phylogenetic analysis (Table S2),
using Paruterina candelabraria (GenBank accession number
NC039533) as an outgroup (24). Amino acid sequences were
single aligned using MAFFT 7.122. The aligned sequences were
then concatenated to form a single contig. The poor blocks were
excluded from the contig using Gblocks 0.91b (http://phylogeny.
lirmm.fr/phylo_cgi/one_task.cgi?task_type=gblocks) using
default parameters (25). Phylogenetic analyses were conducted
using two methods: Bayesian inference (BI) and maximum
likelihood (ML). BI analysis was performed in MrBayes 3.1.1 as
described previously (26, 27). ML analysis was performed with
PhyML 3.1 as described previously (27, 28). The JTT + I + G
+ F [lnL = −57,363.05, gamma distribution parameter (G) =
0.857, proportion of invariable sites (I) = 0.304] model selected
by ProtTest 3.4.2 (29) was used based on the Akaike information
criterion (AIC). Phylograms were drawn using the program
FigTree v.1.4.

Analysis of Cox1 Gene Sequence
The newly generated sequences in the present study and
previously published cox1 sequences of H. taeniaeformis (n
= 84) from different hosts and regions (13), were aligned
using the software MAFFT 7.122. The nucleotide sequence of
these sequences was included in the present analysis, using
H. krepkogorski (GenBank accession number NC021142) as an
outgroup (6). The phylogenetic tree was constructed with Mega v
6.0 (23) using the Neighbor–Joining (NJ) method. The Kimura 2-
parameter (K2P) model was the most suitable model, with 1,000
bootstrap replicates.

RESULTS

Original data of this study including nucleotide sequence
alignments (cox1 complete haplotypes dataset) are available at
Mendeley Data (http://dx.doi.org/10.17632/b3knx84j6n.1).

Genome Content and Organization
We sequenced theH. taeniaeformis genome and produced over 3
Gb of Illumina short-read sequence datasets. A total of 20,634,954
× 2 raw reads were generated and 19,826,948 × 2 clean reads
were obtained for assembly of the mt genome. The complete mt
genome sequence of HTLC (GenBank accession no. ON055368)
was 13,814 bp in size (Figure 1) and have a high A + T content
(73.2%). It contains 12 protein-coding genes (cox1–3, nad1–6,
nad4L, atp6, and cytb), 22 tRNA genes, two rRNA genes (rrnS and
rrnL), and two non-coding (control or AT-rich) regions (NCR),
but lacks an atp8 gene (Figure 1). Themt genome arrangement of
this tapeworm is the same as that of Spirometra erinaceieuropaei
and Raillietina tetragona (27, 30).

Annotation
All of the 12 protein-coding genes begin with ATG (cytb, atp6,
nad4L, nad1–3, cox1, cox2, and nad5), ATT (cox3), or GTG (nad4
and nad6) as their start codons. Six of the 12 genes appear to
use TAA (nad1, nad2, nad5, nad6, cox3, and cytb) or TAG (atp6,
nad4, and nad4L) as the stop codons. Three genes (cox1, cox2,
and nad3) end with incomplete stop codon T (Table 1). The 22
tRNA genes varied from 59 to 68 bp in size (Table 1). Secondary
structures predicted for the 22 tRNA genes of HTLC (not shown)
are similar to those of other tapeworms T. solium and T. asiatica
(31). The rrnL gene of this mt genome is located between tRNA-
Thr and tRNA-Cys, and rrnS gene is located between tRNA-Cys
and cox2. The length of rrnL and rrnS genes is 953 and 724 bp,
respectively. The A + T content of rrnL and rrnS is 72.8 and
71.9%, respectively. Two NCRs in the mt genome were inferred.
The NCR1 (172 bp) is located between the tRNA-LeuCUN (L1)
and tRNA-SerUCN (S2), and has an A+T content of 79.7%. The
NCR2 (418 bp) is located between the nad5 and tRNA-Gly and
has an A+T content of 79.5%.

Comparative Mt Genomic Analyses of
HTLC With HTCC and HTCG
The mt genome sequence of HTLC was 13,814 bp in length, 167
bp longer than that of HTCC, and 74 bp longer than that of
HTCG. The arrangement of the mt genes (i.e., 12 protein-coding
genes, 22 tRNA genes, and two rRNA genes) and two NCRs was
the same. Across the entire mt genome (except for the NCR),
the sequence difference was 3.3% between HTLC and HTCC,
12.0% between HTLC and HTCG, and 12.1% between HTCC
and HTCG. The greatest nucleotide variation among the three
isolates of H. taeniaeformis was in the nad3 gene, whereas the
least difference was detected in the cox3 (Table 2). Amino acid
sequences inferred from individual mt protein genes of HTLC
were compared with those of HTCC and HTCG. The difference
across amino acid sequences of the 12 protein genes between
the HTLC and HTCC was 2.3%, 10.0% between HTLC and
HTCG, and 10.6% between HTCC and HTCG. The amino acid
sequence differences among three isolates of H. taeniaeformis
ranged from 0.4 to 18.3%, with COX2 being the most conserved
and NAD3 the least conserved protein. For the 22 tRNAs, the
sequence difference was 3.6% between HTLC and HTCC, was
5.7% between HTLC and HTCG, and was 7.5% between HTCC
and HTCG. For the rrnL and rrnS genes, the sequence difference
was 3.1 and 6.1% between HTLC and HTCC, 11.5 and 13.9%
between HTLC and HTCG, and 10.0 and 9.4% between HTCC
and HTCG, respectively (Table 2).

Phylogenetic Analyses
The topologies of the trees using BI and ML were identical
(Figure 2). In the tree, four major clades were recovered within
the family Taeniidae: [(Hydatigera + Taenia) + Echinococcus]
and Versteria from the monophyletic groups. Within the
Hydatigera, all Hydatigera isolates clustered together with high
statistical support (Bpp= 1; Bf= 100), supporting that the genus
Hydatigera is valid (32). In the present study, the separation
of H. taeniaeformis isolates from different hosts and countries
was shown to be into two distinct clades with strong support
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FIGURE 1 | The organization of mitochondrial genome of Hydatigera taeniaeformis China isolate. Gene scaling is only approximate. “NCR1” refers to a short

non-coding region and “NCR2” refers to a long non-coding region.

(Bpp = 1; Bf = 100; Figure 2). The H. taeniaeformis isolates
from cats in Japan, and China and leopard cat in China were
clustered in the same clade, while H. taeniaeformis isolates
from cats in Finland and Germany were clustered in the
other clade, which was sister taxa with the former (Figure 2).
The differences between the two distinct clades are slightly
longer (looking at branch lengths) than between T. asiatica
and T. saginata (6) and similar to Echinococcus spp. (33–35)
(Figure 2). In addition, phylogenetic analyses based on the
mt cox1 sequences among H. taeniaeformis (n = 84) from
different hosts and geographical regions revealed three distinct
clades (Supplementary Figure S2), which are consistent with a
previous study (13).

DISCUSSION

The broad consensus on the presence of cryptic species within
cat tapeworm H. taeniaeformis (6, 13, 17, 36), but their

taxonomic status remains unknown. As described previously,
in the morphological features, the variations were embodied
in the number of proglottids, the mean number of rostellar
hooks, the small hooks of adult worms and metacestodes, the
direction of the small hooks, the length of the cirrus sac, and the
mean number and location of testes (10). Moreover, in terms of
molecular evidence, a previous study reported that the level of
nucleotide variation in the cox1 gene within the genusHydatigera
(formerly referred to as Taenia) is about 6.3–15.6% (37). Another
study showed the cox1 gene sequence of a new cryptic species
H. taeniaeformis was distinct from those of other isolates (9.0–
9.5%) (12). In the present study, the sequence variations (12.0
and 12.1%) detected in the whole mt genome were consistent
with previous results mentioned above in part of themt cox1 gene
amongH. taeniaeformis from different regions and hosts (12, 13).
These findings indicate that in terms of classification, our results
support our proposal that the H. taeniaeformis species complex
consists of at least two cryptic species. In addition, prior studies
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TABLE 1 | The organization of the mitochondrial (mt) genome of Hydatigera taeniaeformis.

Gene/region Positions Size (bp) Number of aaa Ini/Ter codonsb Anticodons Inc

tRNA-Gly (G) 1–65 65 TCC 0

cox3 66–713 648 216 ATT/TAA +3

tRNA-His (H) 717–784 68 GTG +2

cytb 787–1,860 1,074 358 ATG/TAA +4

nad4L 1,865–2,125 261 87 ATG/TAG −34

nad4 2,092–3,342 1,251 417 GTG/TAG +0

tRNA-Gln (Q) 3,343–3,406 64 TTG −3

tRNA-Phe (F) 3,404–3,467 64 GAA −5

tRNA-Met (M) 3,463–3,528 66 CAT +9

atp6 3,538–4,056 519 173 ATG/TAG +6

nad2 4,063–4,950 888 296 ATG/TAA +1

tRNA-Val (V) 4,952–5,012 61 TAC +11

tRNA-Ala (A) 5,024–5,089 66 TGC +5

tRNA-Asp (D) 5,095–5,160 66 GTC +6

nad1 5,167–6,060 894 298 ATG/TAA 0

tRNA-Asn (N) 6,061–6,128 68 GTT +7

tRNA-Pro (P) 6,136–6,196 61 TGG −1

tRNA-Ile (I) 6,196–6,259 64 GAT +2

tRNA-Lys (K) 6,262–6,322 61 CTT +4

nad3 6,327–6,666 340 113 ATG/T 0

tRNA-SerAGN (S1) 6,667–6,725 59 GCT +1

tRNA-Trp (W) 6,727–6,788 62 TCA 0

cox1 6,789–8,400 1,612 537 ATG/T +8

tRNA-Thr (T) 8,409–8,470 62 TGT 0

rrnL 8,471–9,423 953 +8

tRNA-Cys (C) 9,432–9,491 60 GCA −21

rrnS 9,471–10,194 724 +23

cox2 10,218–10,800 583 194 ATG/T +0

tRNA-Glu (E) 10,801–10,867 67 TTC +3

nad6 10,871–11,320 450 150 GTG/TAA +3

tRNA-Tyr (Y) 11,324–11,385 62 GTA +6

tRNA-LeuCUN (L1) 11,392–11,454 63 TAG 0

Non-coding region (NCR1) 11,455–11,626 172 0

tRNA-SerUCN (S2) 11,627–11,688 62 TCA +17

tRNA-LeuUUR (L2) 11,706–11,767 62 TAA −1

tRNA-Arg (R) 11,767–11,825 59 ACG +2

nad5 11,828–13,396 1,569 523 ATG/TAA 0

Non-coding region (NCR2) 13,397–13,814 418 0

aThe inferred length of amino acid (aa) sequence of 12 protein-coding genes.
b Ini/Ter codons, initiation and termination codons; c In, intergenic nucleotides.

have indicated that mtDNA sequence variation between closely-
related nematode species was typically in the range of 10–20%
(12, 38).

Phylogenetic analyses of H. taeniaeformis provided additional
evidence that H. taeniaeformis represents closely but distinct
taxa. Taken together, the molecular evidence presented here
supports the hypothesis thatH. taeniaeformis represents a species
complex (13, 17). The taxonomy of H. taeniaeformis is often
insufficient based on morphological features and their hosts
or geographical origins; therefore, accurate identification and

differentiation of H. taeniaeformis can sometimes be challenging
(7, 13, 36). In the present study, the characterization of the
mt genome of HTLC in China also stimulates a reassessment
of the phylogenetic relationships of H. taeniaeformis using mt
genomic/proteomic datasets. Mt genomic sequences are useful
molecular markers to study the species identification, genetic
structure, and phylogenetic analyses of many worms, especially
for searching potential cryptic species (17, 38). Therefore, in the
present study, the analyses of mt genomic sequences provided
insight into the phylogenetic relationships of H. taeniaeformis;
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TABLE 2 | Nucleotide (nt) and/or predicted amino acid (aa) sequence differences in mt genes H. taeniaeformis from the leopard cat (HTLC) (A) and H. taeniaeformis from

the cat in China (HTCC) (B); HTLC (A) and H. taeniaeformis from the cat in Germany (HTCG) (C); HTCC (B) and HTCG (C) upon pairwise comparison.

Gene/region Nt sequence length Nt difference (%) Number of aa aa difference (%)

A B C A/B A/C B/C A B C A/B A/C B/C

atp6 519 519 519 3.9 12.7 13.1 172 172 172 2.3 11.1 11.1

cox1 1,612 1,612 1,635 3.1 10.7 10.8 537 537 544 0.4 2.2 2.8

cox2 583 582 583 3.8 6.4 7.0 194 193 194 1.0 1.6 1.56

cox3 648 645 645 2.9 11.0 11.2 216 214 214 1.4 6.9 6.5

cytb 1,074 1,047 1,068 5.9 14.1 16.7 358 348 355 5.0 10.9 13.5

nad1 894 894 894 3.5 12.5 13.3 298 297 297 2.7 12.1 12.5

nad2 888 891 888 4.6 14.5 14.3 296 296 295 3.0 12.1 10.8

nad3 340 340 348 5.6 17.8 17.8 113 113 115 7.1 17.4 18.3

nad4 1,251 1,251 1,251 4.2 15.0 15.4 416 416 416 2.6 14.7 14.2

nad4L 261 261 261 3.8 14.6 14.9 86 86 86 2.3 11.6 11.6

nad5 1,569 1,569 1,569 4.3 15.9 15.6 523 522 522 3.8 14.5 14.2

nad6 450 448 453 4.2 15.5 16.3 150 149 150 4.7 12.6 16.0

rrnS 724 717 725 6.1 13.9 9.4 – – – – – –

rrnL 953 959 959 3.1 11.5 10.0 – – – – – –

All 22tRNA 1,392 1,410 1,399 3.6 5.7 7.5 – – – – – –

FIGURE 2 | Inferred phylogenetic relationship among species from the family Taeniidae. The concatenated amino acid sequences of 12 mitochondrial protein-coding

genes were analyzed utilizing Maximum likelihood (ML) and Bayesian analysis (BI), using Paruterina candelabraria as an outgroup. Hydatigera taeniaeformis in the red

font is China isolate from the leopard cat in the present study.

however, some H. taeniaeformis isolates from cats in Italy (clade
C) (36, 39) are either not represented or underrepresented (13).

Therefore, further studies are required to resolve the taxonomic
classification of H. taeniaeformis species complex by sequencing
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the mt genomic sequences of additional H. taeniaeformis from
different countries and hosts.

CONCLUSIONS

The present study sequenced the complete mt genome sequence
of the cat tapeworm HTLC in China. The comparative mt
genomic analysis provided robust genetic evidence that H.
taeniaeformis represents a species complex. The novel mt
genomic datasets provide useful markers for further studies of
the taxonomy and systematics of cat tapeworm H. taeniaeformis.
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