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The development of stem-cell-based and regenerative therapies for cardiovascular
and other diseases has faced an unexpected roadblock in clinical translation [1]. Emerging
knowledge from clinical research points in the direction of bone marrow stem cell/immune
progenitor cell senescence by epigenetic and somatic mutations being the potential cause [2].
Moreover, not only is the modification of tissue repair mechanisms the consequence of
stem cell mutations and DNA-pathology, but these may also form the cause of disease
mechanisms and progression [1,3].

To identify responsible pathways, genotype/phenotype patterns and establish proof
by modeling, a close interdisciplinary approach is needed crossing medical and nonmedical
disciplines. This concept is highly visible in the excellent contributions to this special issue.

To unravel this challenging puzzle of disease diagnostics in stem/immune cells, there
is a need for better-individualized diagnostics (precision medicine) of underlying disease
mechanisms using the new technologies of systems medicine and nuclear medicine tissue
imaging. In the Special Issue, stem cell senescence diagnostics in cardiovascular disease,
diabetic heart disease, and amyotrophic lateral sclerosis are presented as well as the impact
of immune reaction for cardiac regeneration. Validated precision T-cell targeted and (stem)
cell therapies modified by mRNA can also be designed based on diagnostic monitoring of
molecular pathomechanisms altered by genetic or cellular repair strategies.

Several groups are helping to clear the roadblock using new technologies and pre-
cision medicine in clinical and experimental studies. This Special Issue places particular
emphasis on stem cell/immune dysfunction in hematologic, cardiac, and neuronal disease
based on immune and cardiovascular pathomechanisms. The first paper by Galow et al.
enlightens the heavily debated question of cardiomyocyte renewal using single nuclei
sequencing technology in inbred and outbred mouse strain models [4]. The identified
proliferative cardiomyocyte subpopulation clearly supports the regeneration of cardiomy-
ocytes by cytogenesis rather than progenitor cells. The second paper by Faulkner et al.
unravels the cardioprotection reprogramming effect exerted by therapeutic application of
the longevity-associated gene (LAV-BPIFB4) in diabetic mice cardiomyopathy using a multi-
omics analysis [5]. Their finding of a boost of mitochondrial metabolic gene expression
by LAV-BPIFB4 identifies a new cardioprotection pathway. The third paper by Lang et al.
used a new PET-CT imaging approach with a [68Ga]-NODAGA-RGD tracer binding to
alpha V-ß3 angiogenesis receptors in a mouse infarction model using cell transplantation of
ES-derived cardiac-induced cells for the induction of cardiac regeneration [6]. Interestingly,
tracer binding was reduced in mice receiving cell transplantation leading to enhanced
regeneration. Another mouse model of cardiomyocyte transplantation from pluripotent em-
bryonic stem cells was used for the treatment of chronic Chagas-cardiomyopathy by Brasil
et al. [7]. Cardiac recovery, however, was not induced by cardiomyocyte cell transplanta-
tion in chronic Chagas cardiomyopathy. The therapeutic effect of intrathecal autologous
Lin- bone marrow stem cell transplantation was studied by Baumert et al. in a Phase I
amyotrophic lateral sclerosis (ALS) trial [8]. Safety and efficacy were demonstrated, and
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multi-omics signatures for response and non-response were identified. Altered immune
response was observed in post-myocardial infarction regeneration after cardiomyocyte
transplantation in a mouse model by Vasudevan et al. [9]. Gene expression signatures
for cardiac regeneration involved circadian regulation, mitochondrial metabolism, and
immune responses after cardiomyocyte transplantation. The functional consequences of
immune cell senescence and aging of the immune system have important consequences
for heart function, as reviewed by Tobin et al. [10]. On this basis, rejuvenation of the aged
immune system may be a valid therapeutic candidate to prevent or treat heart disease.
For immune reconstitution, the success of engraftment of hematopoietic stem cells can be
improved by targeting Mapk14 (p38) was demonstrated by Klatt et al. [11]. An experimental
approach for cell senescence protection to UV-light-induced senescence was demonstrated
by Bellu et al. in skin stem cells using pretreatment with Myrtus communis natural ex-
tract combined with a polycaprolactone nanofibrous scaffold (NanoPCL-M) [12]. Stem
cell repair and cardiovascular regeneration control by mRNA were reviewed by Chanda
et al. [13]. This combined diagnostic and therapeutic approach to repair stem cell senes-
cence and immune dysfunction is the main approach for next-generation cardiovascular
stem cell therapy.
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