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A B S T R A C T   

Fresh-cut vegetables are a food product susceptible to contamination by foreign materials (FMs). To detect a 
range of potential FMs in fresh-cut vegetables, a dual imaging technique (fluorescence and color imaging) with a 
simple and effective image processing algorithm in a user-friendly software interface was developed for a real- 
time inspection system. The inspection system consisted of feeding and sensing units, including two cameras 
positioned in parallel, illuminations (white LED and UV light), and a conveyor unit. A camera equipped with a 
long-pass filter was used to collect fluorescence images. Another camera collected color images of fresh-cut 
vegetables and FMs. The feeding unit fed FMs mixed with fresh-cut vegetables onto a conveyor belt. Two 
cameras synchronized programmatically in the software interface simultaneously collected fluorescence and 
color image samples based on the region of interest as they moved through the conveyor belt. Using simple image 
processing algorithms, FMs could be detected and depicted in two different image windows. The results 
demonstrated that the dual imaging technique can effectively detect potential FMs in two types of fresh-cut 
vegetables (cabbage and green onion), as indicated by the combined fluorescence and color imaging accuracy. 
The test results showed that the real-time inspection system could detect FMs measuring 0.5 mm in fresh-cut 
vegetables. The results showed that the combined detection accuracy of FMs in the cabbage (95.77%) sample 
was superior to that of green onion samples (87.89%). Therefore, the inspection system was more effective at 
detecting FMs in cabbage samples than in green onion samples.   

1. Introduction 

Fresh-cut fruits and vegetables are among the most popular com-
modities worldwide because they are fresh, convenient, uniform in size, 
and require minimal preparation. They are also recognized as a powerful 
source of nutrients vital to human nourishment, such as vitamins, di-
etary fiber, and minerals (Allende and Artés, 2003; Castro-Ibáñez et al., 
2017; Che et al., 2022; Mo et al., 2017; Olaimat and Holley, 2012; Tunny 
et al., 2022; Yousuf et al., 2018) Fresh-cut fruits and vegetables refer to 
fresh fruits or vegetables that have been slightly physically modified by 
slicing, cutting, peeling, or trimming into small serving-size portions and 

ready to eat or cook (Ma et al., 2017; Zhang et al., 2022). Pradas-Baena 
et al. (2015) and (Raffo and Paoletti, 2022) have reported the main steps 
in fresh-cut vegetable processing. 

Initially, the fresh-cut industry was established to supply hotels, 
restaurants, and catering services. However, due to the growing need for 
fresh fruit and vegetables for consumption and technological advance-
ments, this industry has become popular and developed rapidly in the 
last decade (Kim, 2008; Tunny et al., 2022). By increasing the popularity 
of fresh, healthy, convenient, and additive-free prepared products 
consumed globally, they have developed into a major, rapidly expand-
ing food segment of interest to growers, processors, retailers, and 
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consumers (Castro-Ibáñez et al., 2017; Lamikanra, 2002; Pradas-Baena 
et al., 2015). Consequently, the fresh-cut industry has become an 
essential segment of the agriculture industry with multi-billion dollar 
sales (Castro-Ibáñez et al., 2017; Fouayzi et al., 2006; Rico et al., 2007; 
Yu et al., 2022). 

However, the presence of foreign materials (FMs) in food is one of 
the major concerns in the food industry (Mathew, 2021; Trafialek et al., 
2016). An FM is a technical term that refers to any extraneous object 
visible to the naked eye, not intended to be present in food, and causing 
illness or complications to a person during consumption. This term can 
also be defined as anything that the consumer perceives as alien to the 
food (Marsh and Angold, 2004; Mohd Khairi et al., 2018; Trafialek et al., 
2016). According to the U.S. Food and Drug Administration, hard or 
sharp foreign objects measuring between 7 mm and 25 mm are generally 
considered hazardous and may cause injuries (Djekic et al., 2017). FM 
can be accidently present at any stage of the production process and 
carry destructive microbes, creating a more prominent (Aladjadjiyan, 
2005; Jia et al., 2024; Mathew, 2021). The FM sources mainly can be 
classified as intrinsic and extrinsic. Intrinsic types refer to unintended 
foreign material typically found in raw food, such as bones, stems, or 
seed pits. Extrinsic types refer to FMs that are materials not expected to 
be found in food, such as stones, insects, or fragments of plastic, metal, 
or glass (Edwards and Stringer, 2007; Mohd Khairi et al., 2018; Payne 
et al., 2023). These FMs can disgust and injure the consumer, whether 
breaking a tooth, injuring the tongue, or falling into the larynx (Golian 
et al., 2018; Mittal, 2009). However, the range of contaminants is very 
diverse and depends on the specific product (Trafialek et al., 2016). 
According to Edwards and Stringer (2007), FMs are the highest single 
source of customer complaints received by many food manufacturers, 
retailers, and enforcement authorities. Plastic, metal, glass, insects, 
wood, and stone are the types of foreign objects associated with several 
contamination incidents in the food industry. Further, the most common 
foreign materials of concern, their hazards, and their common sources 
have been well-reviewed and presented in Payne et al. (2023) and 
Edwards and Stringer (2007). 

Among several food products, fresh-cut vegetables are most suscep-
tible to physical contamination before, during harvest, and post-harvest 
operations such as transport, storage, and retail distribution. Some are 
common contaminants in fresh-cut vegetables, including plastics 
(Edwards and Stringer, 2007), insects (Caparros Megido et al., 2014), 
stones (Choi et al., 2019), and wood pieces (Gil et al., 2009). The 
presence of these contaminants downgrade the quality and can result in 
significant economic losses for producers and retailers (Lohumi et al., 
2021; Lu and Lu, 2017). An average of 500 product recalls are initiated 
annually in Europe, with the second most significant cause being FM 
contamination (20%). The main products of concern are fruits and 
vegetables (14%) (RSA Insurance, 2016). In 2021 and 2022, the Rapid 
Alert System for Food and Feed (RASFF) Window received notifications 
about FM contaminants and recall of products in fruits and vegetables. 
Plastic and insects were found in frozen bell pepper strips from Turkey 
and organic brown lentils, respectively, a piece of glass in canned peas, 
and a freeze-dried organic fruit mixture from Germany. Pointed stones 
and several agglomerates of soil, plant parts, sand, or rock were detected 
in pinto beans from Iran. Insects were reported in pickled tomatoes from 
Poland and glass fragments in fruit spreads from Denmark (www. 
webgate.ec.europa.eu). Therefore, it is imperative for the fresh-cut 
vegetable industry to implement a proper inspection system to ensure 
product safety, thereby guaranteeing consumer satisfaction and health. 
Additionally, such measures are essential for compliance with stringent 
food safety regulations (Jha and Matsuoka, 2000; Tang et al., 2022; Zhu 
et al., 2021). 

To address the challenge of identifying FMs in different food prod-
ucts, a wide range of techniques has been utilized. According to (Lee 
et al., 2012), these techniques include thermal imaging, terahertz im-
aging, microwave imaging, ultrasonic imaging, metal detectors, X-ray 
inspection, and color imaging (optical detectors). These techniques have 

been applied to a diverse range of samples. However, these techniques 
are only suitable for certain FMs, and their effectiveness differs based on 
the specific properties of the samples, such as density, color, water 
content, and sensitivity to temperature variations. The advantages and 
limitations of these techniques for detecting foreign objects in food have 
been thoroughly examined and detailed in the study by (Mohd Khairi 
et al., 2018; Tang et al., 2022). Meanwhile, despite the critical issue of 
recurrent FM contamination in fresh-cut vegetables, no study has been 
performed to investigate the performance of the systems mentioned 
earlier for fresh-cut vegetables. Of the techniques mentioned above, only 
metal detection, X-ray inspection, and color imaging are the predomi-
nant methods used in the commercial sector; while terahertz imaging, in 
particular, is still in its infancy as a food inspection technique (Lohumi 
et al., 2021; Mohd Khairi et al., 2018). Metal detectors are commonly 
utilized in food processing facilities, such as fresh-cut lettuce processing, 
as a final line of defense to detect foreign objects. However, metal de-
tectors can only detect metal objects and cannot effectively identify 
metals with low conductivity, such as stainless steel. It is essential to 
understand that this system cannot be viewed as a total elimination 
device for foreign objects; contamination is possible to get past this 
system (Hurst, 2002; Payne et al., 2023). Similarly, sophisticated X-ray 
inspection instruments are unsuitable for detecting objects with the 
same density as water, such as paper and plastic. Also, X-rays sometimes 
cannot keep up with the manufacturing speed, and the allowable energy 
of the X-ray source is limited, which precludes using X-ray detectors on 
thicker products (H. Chen et al., 2020; Payne et al., 2023). Furthermore, 
color camera-based machine vision methods may struggle to identify 
opaque foreign objects (such as plastic) or those with a similar color to 
the conveyor background or fresh-cut vegetables. Terahertz imaging has 
limitations including expensive, low spatial resolution, significant 
attenuation in water media, and difficulty to use in the production line 
(Mohd Khairi et al., 2018; Tang et al., 2022). Furthermore, color 
camera-based machine vision methods may struggle to identify opaque 
foreign objects (such as plastic) or those with a similar color to the 
conveyor background or fresh-cut vegetables (Lee et al., 2012; Mohd 
Khairi et al., 2018). 

Recently, (Mustafic et al., 2014) introduced a novel approach to 
detecting and differentiating cotton foreign objects using fluorescence 
imaging. Blue and UV LED-induced fluorescence were investigated to 
identify botanical and non-botanical foreign objects in cotton. (Zhou and 
Ding, 2010a) addressed the challenge of detecting cotton lint trash, 
particularly differentiating between colored and white trash types 
within the ultraviolet–visible (UV–Vis) spectral range. The study intro-
duced an efficient method for trash detection using imaging techniques 
that alternate between white light and UV light to minimize spectral 
interference from white light in fluorescence imaging. These previously 
mentioned studies showed that foreign bodies with fluorescence prop-
erties could be distinguished through fluorescence imaging. Since 
commercial plastics currently widely used contain additives with sig-
nificant fluorescence emission, such as optical brighteners, most plastics 
will show significant signs of fluorescence when irradiated with UV-A 
light (365 nm). In addition, leafy greens naturally show distinct chlo-
rophyll peaks in the red or far-red regions of the electromagnetic spec-
trum when irradiated with UV-A light (Arenas et al., 2016; Everard 
et al., 2014; Payne et al., 2023) These considerations can help distin-
guish such contaminants from freshly cut vegetables. Considering the 
unique advantages of fluorescence imaging, fluorescence imaging sys-
tems can detect contaminants in fresh-cut vegetables. 

Meanwhile, using long-pass filters in color cameras to capture fluo-
rescence imaging has been a subject of interest in various scientific 
studies. The long-pass filter is an optical filter that allows longer 
wavelengths associated with fluorescence emissions to pass through 
while blocking shorter excitation wavelengths. By selectively trans-
mitting the long wavelength emission signal and blocking excitation 
light, the long-pass filter enhances the contrast and visibility of fluo-
rescence signals emitted by foreign objects against a background 
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(Yamazaki et al., 2012; Wei et al., 2013) developed a hand-held fluo-
rescence imaging device that incorporates a long-pass thin-film inter-
ference filter to reject scattered excitation light, enabling the 
visualization of single nanoparticles and viruses. Crowther (2022) dis-
cussed using Quaser filters for ultraviolet fluorescence photography, 
similar to long-pass filters. Bueno et al. (2014) emphasized the impor-
tance of dichroic mirrors and filters in color cameras to acquire fluo-
rescence images effectively. Chen et al. (2014) proposed a single-camera 
imaging system capable of capturing both near-infrared fluorescence 
and color images, demonstrating the practical application of filter sys-
tems in fluorescence-guided surgery. These studies underscore the sig-
nificance of filter technologies, including long-pass filters, in enhancing 
color cameras’ capability for fluorescence imaging applications. 

Integrating a long-pass filter is crucial to enhance fluorescence signal 
detection in foreign object detection with a color camera. The filter al-
lows the transmission of longer wavelengths associated with fluores-
cence emissions while blocking shorter excitation wavelengths, thereby 
improving the contrast and visibility of signals emitted by foreign ob-
jects against a background. Incorporating a long-pass filter into a color 
camera system offers various advantages, such as isolating fluorescence 
signals from excitation light, reducing background noise, and enhancing 
the signal-to-noise ratio. This selective filtering process is crucial for 
improving the sensitivity and specificity of foreign object detection, 
particularly for the fluorescence of foreign objects (Wei et al., 2013). By 
optimizing the spectral characteristics of the filter, the color camera 
setup can be tailored to target specific fluorescence wavelengths asso-
ciated with the foreign objects under investigation (Wei et al., 2013). 
Thus, incorporating a long-pass filter into a color camera system for 
fluorescence imaging significantly aids foreign object detection by 
selectively capturing fluorescence signals and minimizing background 
interference. 

Based on the above ideas, we proposed an alternative approach using 
fluorescence imaging to detect FMs in fresh-cut vegetable processing. 
Capturing fluorescence images using a camera equipped with a long- 
pass filter and color images is a new approach in this study for 
designing a foreign material detection system, especially for fresh-cut 
vegetables. Therefore, this work aimed to develop a real-time inspec-
tion system to detect FMs using dual imaging techniques (color and 
fluorescence images) in fresh-cut vegetable processing. To achieve this, 
a camera equipped with a long-pass filter was used to collect fluores-
cence images of fresh-cut vegetables and fluorescence FMs. A color 
camera was also installed to collect color images of fresh-cut vegetables 
and non-fluorescence FMs, which can be overlooked in fluorescence 
imaging. Image processing algorithms were developed and incorporated 
into a custom-built software interface. Finally, the system’s FM detec-
tion performance was investigated by synchronizing the sensing units 
with conveyor belt movement. 

The rest of the paper is organized as follows. Section 2 introduces the 
materials and methods, including sample preparation, software inter-
face design, real-time inspection system design, image acquisition, and 
analysis. Section 3 describes the experimental and analysis results. 
Finally, Section 4 describes the conclusions and prospects of this paper. 

2. Materials and methods 

This section provides a detailed description of the experimental setup 
and procedures for the study. It includes information on vegetable 
samples and foreign materials, software interface design, a real-time 
inspection system, image acquisition, and analysis. 

2.1. Sample preparation 

Two different types of fresh-cut vegetables (cabbage and green 
onion) purchased fresh from the local market in Daejeon, Republic of 
Korea, were used in this study and cut into small pieces. These vegeta-
bles were selected for their versatility and diverse coloration. As Lohumi 

et al. (2021) reported, cabbages exhibited a color range from light green 
to near white. By contrast, green onions showed a broader spectrum of 
shades, including light green and dark green, and transitioned from 
yellowish-white to white. Moreover, these vegetables exhibited unique 
fluorescence responses, leading to variations in both fluorescence in-
tensity and color based on their color differences. 

Additionally, the study introduced different types of FMs, both 
fluorescence and non-fluorescence, of diverse shapes and sizes. This 
selection was based on a comprehensive review of literature identifying 
common contaminants in fresh vegetables, including plastics (Edwards 
and Stringer, 2007), insects (Caparros Megido et al., 2014), stones (Choi 
et al., 2019), and wood pieces (Gil et al., 2009). Other potential FMs 
typically encountered in the food processing environment were also 
considered, as illustrated in Fig. 1. 

2.2. Software interface design 

To develop a simple and user-friendly software interface for syn-
chronizing the camera and conveyor unit, LabVIEW was used as a 
graphical programming language because it provides tools for instru-
mental control, data acquisition, data processing and analysis, and 
various display modes. The software interface developed using LabVIEW 
was installed on Microsoft Windows with a vision development and 
acquisition software module (v2017, National Instruments, Austin, TX, 
USA). A software development kit (SDK) provided by the camera 
manufacturer was modified to operate the camera for imaging and 
control conveyor units. 

2.3. Real-time inspection system 

In this study, we developed an inspection system that simultaneously 
applies fluorescence and color imaging to detect foreign objects in fresh- 
cut vegetables, as shown in Fig. 2. The system consisted of two main 
elements: feeding and sensing units, including cameras, illumination, 
and a conveyor unit. The feeding unit designed to feed fresh-cut vege-
tables to the conveyor had dimensions of 318 x 60 × 116 cm. The unit 
comprised three trays with identical lengths but varying widths from top 
to bottom at 30 cm, 35 cm, and 40 cm, respectively. The vibration of 
each tray was adjusted by the control panel, which had voltage and 
frequency settings. 

The sensing unit consisted of two-color cameras with a 5-megapixel 
CMOS USB 3.0 camera (MV-CA050-20UC, Hikvision, USA) featuring an 
8 mm focal length C-mount lens and a 1:1.4 aperture ratio. The first 
camera captured color images under a white LED light source, while the 
second camera captured fluorescence images under UV light conditions. 
UV light is intended to provide the best possible excitation light for the 
fluorescence foreign material (Zhou and Ding, 2010b). The second 
camera also had a 415 nm long-pass filter (LP415, Midwest Optical 
Systems Inc., USA). A long-pass filter was placed in front of the camera 
to avoid overlapping with the fluorescence excitation of the sample 
being observed (Mustafic et al., 2014). Both cameras were positioned 
parallel at 35 cm apart and perpendicular to the conveyor at 35 cm 
above the conveyor belt. The first camera was positioned 20 cm away 
from the LED light, with a spacing of 15 cm between the adjacent LED 
lights. The second camera was placed 20 cm from the UV light and 
maintained a 15 cm distance between each adjacent UV light. Both 
cameras were housed within a dark chamber to negate external light 
interference and separated by a 5 mm thick dark board. It ensured that 
illumination from the white LED, used for color imaging, did not affect 
the fluorescence imaging produced by UV-A lighting and vice versa. 

2.4. Image acquisition and analysis 

In this work, three test sets were prepared for each type of fresh-cut 
vegetable. In test set 1, each type of fresh-cut vegetable was mixed solely 
with non-fluorescence FMs. In test set 2, only fluorescence FMs were 
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mixed with each fresh-cut vegetable. The remaining test sets were used 
as validation sets, comprising mixes of non-fluorescence and fluores-
cence FMs with each fresh-cut vegetable. 

Color and fluorescence images of FMs mixed with fresh-cut vegeta-
bles were collected for each test set. Fig. 3(a) shows the software user 
interface for programmatically controlling two cameras and a conveyor 
belt to simultaneously collect color and fluorescence images. The color 
image was first collected by arranging the sample on a conveyor unit 
illuminated by a white light source, followed by collecting the fluores-
cence image irradiated by UV light, as shown in Fig. 3(b). Both images’ 
field of view (FOV) was 6 x 30 cm. The areas captured in the color image 
by the first camera and the fluorescence image by the second camera 
were identical. This method detected fluorescence foreign objects not 
visible in the color image. Both fluorescence and color images were then 
saved in .tiff format. 

An image processing algorithm applying simple thresholding was 
developed for fluorescence and color image analysis. Thresholding in-
volves dividing the image into several regions based on pixel intensity 
levels, distinguishing between foreground and background (Eesa and 
Talib, 2021). Color images were converted to grayscale images to 
identify dark-colored objects. Also, the color images were extracted into 
its color channels (red, green, and blue). The grayscale image then 
subtracted the intensity of each channel to identify red-yellow, green, 
and blue-colored objects, respectively. The foreign material of each of 
these colors was then identified by applying the optimal threshold value 
to the reduced image as expressed by equation (1) (Cañero-Nieto et al., 
2019). The selection of this threshold value was based on minimizing the 

number of false negative and false positive pixels generated. Also, the 
image was converted to grayscale for fluorescence images, and each 
channel was extracted. Each channel was then analyzed using the 
appropriate threshold to identify red-yellow, green, and dark objects. 
Image summation was then applied between the red channel and the 
grayscale image to identify dark objects before applying the threshold. 
The image processing flowchart for fluorescence and color image anal-
ysis is shown in Fig. 4. 

h(x, y)
{

= 1 f(x, y) ≥ Threshold

= 0 f(x, y) < Threshold
(1) 

The FM detection algorithm was first applied to test sets 1 and 2. Test 
set 1, which included only non-fluorescence FMs, was used to determine 
an optimal threshold value for differentiating FMs from fresh-cut veg-
etables and the conveyor belt background. Furthermore, the threshold 
value for detecting fluorescence FMs was selected based on test set 2. An 
optimal threshold value in each case (test sets 1 and 2) was determined 
by considering the lowest number of resulting false-negative and false- 
positive pixels. Thus, based on the selected threshold, all FMs mixed 
with fresh-cut vegetables would be classified correctly with minimal 
misclassification. Furthermore, the determined threshold values were 
applied to the processed images of the remaining test sets for each fresh- 
cut vegetable. 

Furthermore, The developed fluorescence and color image process-
ing algorithms were then incorporated into the LabVIEW-based software 
interface to deploy the developed real-time inspection system. The 
performance of the developed foreign material detection system was 

Fig. 1. Photograph of the different types of fluorescence and non-fluorescence foreign materials. 
(a) Hard plastic; (b) Soft plastic (film); (c) Paper; (d) Metal; (e) Cigarette butt; (f) Rubber; (g) Cable; (h) Thread; (i) Wood; (j) Insect; (k) Cotton bud; (l) Nail; 
(m) Stone. 

Fig. 2. Schematics of a real-time inspection system for foreign material detection. 
(a) Camera 1, (b) Camera 2, (c) White LED light, (d) UV light, (e) Conveyor, (f) Motor control, (g) Computer unit, (h) Feeding unit, and (i) Control panel. 
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evaluated by customizing it to operate in a production line environment. 

3. Results and discussion 

3.1. Dual imaging-based classification for foreign materials detection 

In this study, a simple yet effective algorithm was developed to 
construct a detection system for FMs in fresh-cut vegetables. The algo-
rithm was evaluated separately for color and fluorescence images, both 
non-fluorescence and fluorescence FMs. For non-fluorescence types, the 
evaluation results facilitated the identification of an ideal threshold 
value to differentiate between FMs and fresh-cut vegetables and the 
conveyor belt background. Conversely, the threshold value for fluores-
cence FM detection was determined by examining fluorescence types. In 
each scenario, optimal threshold values were determined to reduce false 
negatives and false positives. As a result, applying these selected 
threshold values ensured the accurate categorization of FMs mixed with 
fresh-cut vegetables, significantly reducing misclassification. These 
established threshold values were then applied to analyzed images of the 
different FM test sets in each sample category, as shown in Fig. 5. 

Fig. 5(a) and (b) show that the algorithm could reliably identify 
specific types of foreign material under two different lighting conditions 
in the cabbage and green onion samples, respectively. Although the 
color imaging method was not optimal for FM detection, it was still 
reliable due to the color discrimination power of color cameras, which 
depended heavily on the color difference between samples and foreign 
objects. As shown in the cabbage and green onion color images (left (a) 
and left (b)), colored FMs were successfully detected in cabbage and 

green onion samples, respectively. For color image processing, the al-
gorithm is straightforward. The grayscale image of the RGB image was 
initially created, and the red, green, and blue channels were eliminated. 
Each subtracted image was then subjected to threshold settings to 
identify the small FMs of the corresponding colors. Each case’s optimal 
threshold value was established by considering the fewest number of 
false-positive and false-negative pixels that resulted. However, detecting 
FMs with color similarities with vegetables and conveyor backgrounds 
from fresh vegetable samples, such as transparent plastic, green plastic, 
paper, nail pieces, cotton buds, cloth, and nylon, was impossible. These 
results indicate that it is challenging for color image processing algo-
rithms to distinguish them from vegetables. 

Meanwhile, fluorescence imaging is advantageous for detecting FMs 
that cannot be detected by color imaging alone. Fluorescence imaging 
allows the identification of unique features for each FM and fresh-cut 
vegetable, regardless of their chromatic appearance. It works by 
exploiting the fluorescence properties of an object, that is, the ability of 
some substances to absorb light at a specific wavelength and then re- 
emitting light at longer wavelengths. As irradiated with UV light at a 
specific wavelength (excitation), the material with fluorescence prop-
erties will absorb this light, emit it at a different wavelength (emission), 
and then capture it with a camera. These emission patterns can then be 
detected and analyzed to identify the presence of FMs. Fluorescence 
imaging will produce a high contrast between FMs and samples, facili-
tating detection even when visual differences are minimal (Hwang et al., 
2021; Karoui and Blecker, 2011). In this study, the reliability of fluo-
rescence images provides an advantage in detecting FMs that cannot be 
identified by color images alone. The reliability of fluorescence imaging 
has also been reported by Mustafic et al. (2014) in classifying various 
types of foreign objects, such as cotton contaminants, which are difficult 
to distinguish by conventional methods. The results of the developed 
algorithm for FM detection based on fluorescence images for cabbage 
and green onion samples are shown on the right (a) and right (b) of 
Fig. 5. It can be seen that the fluorescence FMs are in high contrast with 
vegetables. It should be noted that all FMs, including transparent plas-
tics, films, paper, threads, and cotton buds, were successfully detected in 
both samples. Thus, this dual imaging technique can be powerful for 
detecting FMs that would have been missed if only one type of imaging 
was used. 

Validation test sets consisting of non-fluorescence and fluorescence 
FMs for each FM type were used to validate further the developed al-
gorithm for FM detection in fresh-cut vegetables. Tables 1 and 2 present 
the accuracy of FM detection in cabbage and green onion samples by 
comparing color images and fluorescence images, which show varying 
results depending on the type of FM. In both tables, almost all FMs 
provided unsatisfactory detection accuracy if only one type of imaging 
was relied upon. For example, in plastic, color, and fluorescence images, 
only 59.38% and 65.63% were accurate in the cabbage sample, 
respectively. In green onion, the accuracy rates were 42.11% and 
82.46% for color and fluorescence images, respectively. 

Experimental results highlight the importance of using a combined 
detection approach to improve accuracy. Table 1 shows that FMs such as 
wood, stone, metal, thread, and cable had an overall detection accuracy 
below 95%, with wood exhibiting the lowest accuracy. Conversely, 
other types of FMs achieved a total detection accuracy of 100%, for 
instance, plastic, film, and insects, when the detection methods from 
both types of images were combined. Meanwhile, in Table 2, almost all 
FM types provided satisfactory combined accuracy, with threads at 93%, 
films at 98%, and other FMs reaching 100% accuracy. However, only 
metal, wood, stone, and insects were significantly detected in color 
images with unsatisfactory accuracy. They were not identified in fluo-
rescence images, indicating that these materials do not exhibit fluores-
cence. This discrepancy could be due to their color characteristics, 
which are similar to natural color variations in green onions. Green 
onion samples typically display a color spectrum from yellowish-white 
to dark green in color images. Distinguishing unfamiliar objects from 

Fig. 3. Image acquisition: (a) software interface for collecting color and fluo-
rescence images: Cabbage (left), Green onion (right); (b) capturing a field of 
view of 6 × 30 cm on color and fluorescence images. (For interpretation of the 
references to color in this figure legend, the reader is referred to the Web 
version of this article.) 
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the product’s wide range of colors can be challenging if they share the 
same color tone. In particular, metal, wood, stone, and insects can have 
darker colors that mix with green onions dark green color, leading to 
lower detection rates. Color-based detection algorithms could only 
identify the contrast between green onions and foreign objects; when the 
colors were not different enough, the algorithm failed to identify them as 
anomalies. 

These findings indicate that detection methods’ effectiveness varies 
greatly depending on FM type. Since not all FMs have the same reflective 
or fluorescence characteristics, the detection technique’s effectiveness 
depends on the specific optical properties of each FM type. Combining 
color images with fluorescence images significantly improved overall 
detection accuracy, as evidenced by the high percentage of combined 
accuracy for most FMs. However, for some FMs, one method may be 
superior to another. 

3.2. Real-time foreign material detection 

A user-friendly software interface was developed, and previously 
developed fluorescence and color image processing algorithms were 
incorporated into LabVIEW-based software interfaces, as shown in Fig. 6 
(a). The sample moved at a constant speed of 30 cm/s across the 
conveyor belt, which spanned a length of 150 cm. As they moved, the 
color camera first captured an image with a field of view (FOV) of 6 x 30 
cm. Subsequently, a fluorescence camera captured a corresponding 
image with an identical FOV, ensuring precise overlap between the two 
imaging modalities. To achieve this congruence, the image data 
collection interval was meticulously set to 200 ms. In conjunction with 
the conveyor speed, this interval was critical for aligning the FOV of 
both color and fluorescence images, resulting in a seamless and syn-
chronized dual imaging process. Therefore, the software interface 

Fig. 4. Image processing flowchart for (a) color and (b) fluorescence image analysis. (For interpretation of the references to color in this figure legend, the reader is 
referred to the Web version of this article.) 
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focused on capturing images within the specified region of interest 
(FOV), displaying only the cropped image region (left for fluorescence 
and right for color imaging in Fig. 6(a)). The developed algorithm was 
applied to real-time FM detection of moving samples. A button to select 
the type of vegetable for image processing is provided on the user 
interface. 

To evaluate the performance of the developed system for real-time 
FM detection in fresh-cut vegetables, each sample mixed with FMs 
was introduced to the conveyor via a feeding unit. The feeding unit 
minimized the risk of undetectable foreign materials caused by over-
lapping samples (Fig. 6(b)). As the sample was dropped on the moving 
conveyor surface, fluorescence and color images were simultaneously 
captured for image processing (Fig. 6(c)). Upon activating the image 
processing button, the system detected and displayed any foreign mat-
ter. The study found that most foreign materials were identifiable 
through fluorescence and color imaging. 

Table 3 shows that most FMs were detected with 100% accuracy, 
such as plastics, films, insects, cigarette butts, cotton buds, nails, rub-
bers, and Styrofoam. Metal, paper, and thread generated a combined 
accuracy of about 90–96%. However, unsatisfactory combined accuracy 
was obtained by wood and stone. It should be noted that the algorithm 
developed in this inspection system successfully identifies small-sized 
foreign bodies, such as nylon (0.5 mm), with 100% accuracy. To bet-
ter illustrate how the system can successfully identify these objects, it 
can be shown in the yellow bounding box in Fig. 6(a). It demonstrates 
that the uniqueness of fluorescence imaging can overcome the short-
comings of relying solely on color imaging. Furthermore, in Table 4, low 
combined accuracy was obtained by stone, insects, metal, wood, and 
plastic, which was less than 90%. Film, paper, and thread produced a 
combined accuracy of 90–96%, and the rest provided a combined ac-
curacy of 100%. 

It should be noted that cabbage typically presents a more uniform 
color range, primarily different shades of green, which can be more 
consistent and predictable. This uniformity allows the optical detection 
system to more easily contrast between the natural cabbage color and 
anomalies (foreign materials). In contrast, green onions exhibit a 
broader spectrum of colors ranging from yellowish-white to dark green. 
This variation can make it difficult for optical systems to differentiate 
between the plant’s natural color variance and foreign materials, 
remarkably when the colors of FMs closely resemble parts of the green 
onion. Optical systems relying on color detection algorithms are also 
tuned to identify contrasts. Since cabbages have a more uniform color, 
the contrast between the cabbage and most foreign materials (such as 
metals, woods, stones, and insects) might be more pronounced, leading 
to better detection rates. On the other hand, the diverse coloration in 
green onions decreases the likelihood of strong contrast, thus reducing 

Fig. 5. Color and fluorescence images of foreign materials in two fresh-cut 
vegetables: (a) cabbage; and (b) green onion. (For interpretation of the refer-
ences to color in this figure legend, the reader is referred to the Web version of 
this article.) 

Table 1 
Evaluation of detection accuracy for individual foreign materials in cabbage sample.  

Type of FMs No. 
FMs 

No. of FMs detected Accuracy (%) Total FMs detected (Color + Fluorescence 
image) 

Combine Accuracy 
(%) 

Color 
image 

Fluorescence 
image 

Color 
image 

Fluorescence 
image 

Plastic 64 38 42 59.38 65.63 64 100.00 
Film 39 26 24 66.67 61.54 39 100.00 
Insect 8 8 6 100.00 75.00 8 100.00 
Stone 9 7 6 77.78 66.67 8 88.89 
Wood 8 5 3 62.50 37.50 5 62.50 
Metal 20 18 8 90.00 40.00 18 90.00 
Paper 31 16 19 51.61 61.29 31 100.00 
Thread 16 9 6 56.25 37.50 15 93.75 
Cable 17 16 6 94.12 35.29 16 94.12 
Rubber 3 3 2 100.00 66.67 3 100.00 
Cigarette 

butt 
5 2 3 40.00 60.00 5 100.00 

Cotton bud 4 0 4 0.00 100.00 4 100.00 
Nail 5 0 5 0.00 100.00 5 100.00 

FMs: Foreign materials. 
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the algorithm’s effectiveness. Overall, the combined detection accuracy 
of cabbage (95.77%) samples was superior to green onion samples 
(87.89%). Hence, the developed inspection system was significantly 
more effective in detecting FMs in cabbage samples than in green onion 
samples. 

The dual imaging-based inspection system developed in this study 
has improved the detection accuracy of various foreign objects poten-
tially present in fresh-cut vegetables. The system can detect types of 

foreign objects that existing commercial inspection systems find difficult 
to detect. For example, metal detection is the most common and stan-
dardized technology that food manufacturers utilize to detect foreign 
materials. It can be used in all food industries and is commonly found in 
production facilities. These systems have very high sensitivity and per-
formance in detecting various types of metals (Kilifarev, 2024; Righe-
lato, 2018). However, plastics and foreign materials of biological origin, 
such as insects and wood pieces, are the most problematic foreign 

Table 2 
Evaluation of detection accuracy for individual foreign materials in green onion sample.  

Type of FMs No. 
FMs 

No. of FMs detected Accuracy (%) Total FMs detected (Color + Fluorescence 
Image) 

Combine Accuracy 
(%) 

Color 
image 

Fluorescence 
image 

Color 
image 

Fluorescence 
image 

Plastic 57 24 47 42.11 82.46 57 100.00 
Film 50 33 25 66.00 50.00 49 98.00 
Paper 46 21 40 45.65 86.96 46 100.00 
Metal 11 8 0 72.73 0.00 7 63.64 
Wood 5 2 0 40.00 0.00 2 40.00 
Stone 5 1 0 20.00 0.00 1 20.00 
Insect 4 2 0 50.00 0.00 2 50.00 
Thread 15 6 8 40.00 53.33 14 93.33 
Rubber 7 6 3 85.71 42.86 7 100.00 
Cotton bud 7 0 7 0.00 100.00 7 100.00 
Cigarette 

butt 
6 3 6 50.00 100.00 6 100.00 

Nail 7 0 7 0.00 100.00 7 100.00 
Cable 6 4 2 66.67 33.33 6 100.00 

FMs: Foreign materials. 

Fig. 6. Photograph of a real-time inspection system for foreign material detection using dual imaging techniques. 
(a) the user interface of a real-time inspection system for foreign materials detection: cabbage sample (left); green onion sample (right); (b) feeding unit, (c) Sensing 
units (camera, illumination, and conveyor unit). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of 
this article.) 
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materials to detect in food (Payne et al., 2023; Righelato, 2018). 
Meanwhile, X-ray systems are less sensitive to low-density FMs such as 
paper, wood chips, plastic, insects, thread, and cartilage (Einarsdóttir 
et al., 2016). The results of a study conducted by (Voss et al., 2021) on 
the effectiveness of using X-ray, CT and MR in detecting wood, plastic 
and glass showed that X-ray had the lowest detection rate (61.8%) 
compared to MR (97.1%) and CT (86%). Additionally, the results of a 
study conducted by (Kwon et al., 2008) in the classification of foreign 
bodies (stainless steel ball, stainless steel wire, Teflon ball, aluminum 
ball, rubber ball, glass ball, ceramic ball) showed a detection rate above 
98% without false positives. However, the detection rate is low for small 
diameters (0.3–5 mm) and low-density materials such as Teflon (2.18 
g/cm3) and rubber (1.30 g/cm3). Therefore, additional techniques are 
indispensable as a layer of defense that must be applied to achieve a 
higher level of safety and minimize the risk of contamination to ensure 
product safety and quality. 

Nonetheless, FMs such as non-fluorescence transparent plastics 
posed a challenge to the developed system, as they could not be detected 
in either color or fluorescence images. This discrepancy is due to their 
nature of emitting or refracting light without significant change, which 

causes them to blend into the background, especially if they are color- 
matched. Fresh vegetables’ similar reflectivity and refractive index 
also contribute to detection difficulty. Dark green foreign objects such as 
insects, stones, wood, and metals were poorly detected for the green 
onion sample. Due to color similarity, light brown pieces of wood and 
white stones were not detected for cabbage. Therefore, as a continuation 
of this research, we will focus on different approaches and more 
advanced algorithms such as deep learning approaches to identify FMs 
with a broader scope. 

4. Conclusion 

To detect various potential FMs in fresh-cut vegetables, a real-time 
inspection system was developed using a dual imaging technique 
(color and fluorescence imaging) with a simple and effective image 
processing algorithm in a user-friendly software interface. The system 
consisted of a feeding unit that feeds and avoids overlapping FMs and 
fresh-cut vegetables, a sensing unit with two cameras positioned in 
parallel, and a conveyor unit. All hardware, including two color cameras 
and a conveyor belt, was synchronized programmatically to simulta-
neously collect color and fluorescence image samples as they passed 
through the moving conveyor belt. Combining fluorescence and color 
imaging to detect foreign material in fresh-cut vegetables demonstrated 
improvements in detection accuracy. The combined accuracy of cabbage 
and green onion samples was higher than that obtained by a single 
imaging technique. The testing results also showed that the real-time 
inspection system could detect foreign material in fresh-cut vegetables 
up to a size of 0.5 mm. The combined detection accuracy of FMs in 
cabbage samples was superior to that of green onion samples. In the 
green onion sample, FMs such as metal, wood, stones, and insects were 
not identified in the fluorescence image and were only significantly 
detected in the color image with unsatisfactory accuracy. Therefore, the 
developed inspection system was more effective at detecting FMs in 
cabbage samples than in green onion samples. 

The developed inspection system was focused on enhancing the ac-
curacy and reliability of detecting foreign objects in fresh-cut vegetables 
using dual imaging techniques. The system could serve as an additional 
layer in the production line of fresh-cut vegetables. It addresses the 
shortcomings of existing commercial inspection systems and can 
significantly reduce the risk of food contamination. However, the system 
still faces challenges, particularly in detecting foreign objects similar in 
color to the conveyor background, such as non-fluorescence transparent 
plastic. Moving forward, We will explore using more sophisticated 
image processing algorithms, including machine learning and deep 
learning, to improve the system’s detection capabilities. 
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Table 3 
Performance of developed system in detection accuracy for individual foreign 
materials. in cabbage sample.  

Type of 
FMs 

No. 
FMs 

No. of FMs detected Total FMs 
detected (Color 
+ Fluorescence 
image) 

Combine 
Accuracy 
(%) Color 

image 
Fluorescence 
image 

Plastic 24 10 17 24 100.00 
Film 23 15 14 23 100.00 
Insect 13 13 6 13 100.00 
Wood 10 7 3 7 70.00 
Stone 12 9 6 10 83.33 
Metal 14 13 0 13 92.86 
Paper 25 13 17 24 96.00 
Cable 17 17 7 17 100.00 
Thread 17 10 6 16 94.12 
Cigarette 

butt 
7 2 4 7 100.00 

Cotton 
bud 

7 0 7 7 100.00 

Nail 8 0 8 8 100.00 
Rubber 4 3 1 4 100.00 
Styrofoam 3 0 3 3 100.00 
Nylon 5 0 5 5 100.00  

Table 4 
Performance of developed system in detection accuracy for individual foreign 
materials in green onion sample.  

Type of 
FMs 

No. 
FMs 

No. of FMs detected Total FMs 
detected (Color 
+ Fluorescence 
image) 

Combine 
Accuracy 
(%) Color 

image 
Fluorescence 
image 

Plastic 54 27 30 46 85.19 
Film 25 17 11 23 92.00 
Paper 27 13 19 26 96.30 
Insect 7 4 0 4 57.14 
Stone 8 4 0 4 50.00 
Wood 6 5 0 5 83.33 
Metal 10 7 0 7 70.00 
Thread 18 4 13 17 94.44 
Cable 12 10 3 12 100.00 
Nail 4 0 4 4 100.00 
Cotton 

bud 
4 0 4 4 100.00 

Nylon 4 0 4 4 100.00 
Cigarette 

butt 
5 1 5 5 100.00 

Styrofoam 2 0 2 2 100.00 
Rubber 4 4 4 4 100.00  

H. Kurniawan et al.                                                                                                                                                                                                                            



Current Research in Food Science 9 (2024) 100802

10

Data availability 

Data will be made available on request. 

Acknowledgements 

This study was supported by Chungnam National University, South 
Korea. 

References 

Aladjadjiyan, A., 2005. Physical hazards in the Agri-food chain. In: Luning, P.A., 
Devlieghere, F., Verhe, R. (Eds.), Safety in the Agri-Food Chain. Wageningen 
Academic Publishers. https://doi.org/10.3920/978-90-76998-77-0. 

Allende, A., Artés, F., 2003. UV-C radiation as a novel technique for keeping quality of 
fresh processed “Lollo Rosso” lettuce. Food Res. Int. 36 (7), 739–746. https://doi. 
org/10.1016/S0963-9969(03)00054-1. 
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Gil, M.I., Selma, M.V., López-Gálvez, F., Allende, A., 2009. Fresh-cut product sanitation 
and wash water disinfection: problems and solutions. Int. J. Food Microbiol. 134 
(1–2), 37–45. https://doi.org/10.1016/j.ijfoodmicro.2009.05.021. 
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