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Introduction
The molecular analysis of breast cancer has demonstrated the 
existence of several different subtypes such as estrogen receptor 
(ER)-positive or negative, progesterone receptor (PR)-positive or 
negative human epidermal growth factor receptor 2 (HER2)-
positive or negative or triple negative (ER−, PR−, and HER2−) 
that present with varied clinical behavior and response to therapy.1 
Several prognostic assays that are based on gene expression profil-
ing of tumor tissue complement these molecular subtypes and 
address certain unmet clinical needs, such as the identification of 
patient subgroups with low risk of developing distant metastasis 
who can be spared adjuvant chemotherapy.2-5 These tests focus 
primarily on proliferation and do not consider the role of the 
tumor microenvironment and cross-talk between various signal-
ing pathways in progression of disease.6 Furthermore, transcrip-
tional abundance of a gene does not necessarily correlate with its 
protein expression,7 and posttranslational modifications of pro-
teins are not captured by gene expression analysis. Qualitative and 
quantitative examination of protein expression in a cell allows the 
study of specific cellular responses and functions, including the 

visual examination of proteins in various cellular locations by 
immunohistochemistry (IHC). All of this is critical to identifica-
tion of novel drug targets, the ultimate goal of personalized breast 
cancer therapeutics.

With this goal in mind, we identified and validated a novel 
proteomic risk-classifier of metastasis in early-stage ER+ breast 
cancer. We used the hallmarks of cancer8,9 as a guideline in our 
marker selection strategy to shortlist markers with prognostic 
relevance in breast cancer progression that regulated 1 of the 6 
critical hallmarks. We selected several such markers and stud-
ied the association between their expression and clinical out-
come with respect to distant metastasis in early-stage hormone 
receptor–positive (HR+) breast cancer. We shortlisted 5 mark-
ers and combined them with 3 clinico-pathological parame-
ters—tumor size, tumor grade, and node status in a binary 
classifier that predicts risk of distant recurrence within 5 years. 
We used both biomarkers and clinico-pathological parameters 
as studies have shown that combining the 2 enables more accu-
rate prediction of prognosis,10-12 and therefore better clinical 

Development of a Novel Proteomic Risk-Classifier  
for Prognostication of Patients With Early-Stage 
Hormone Receptor–Positive Breast Cancer

Charusheila Ramkumar1, Ljubomir Buturovic2, Sukriti Malpani1,  
Arun Kumar Attuluri1, Chetana Basavaraj1, Chandra Prakash1,  
Lekshmi Madhav1, Dinesh Chandra Doval3, Anurag Mehta4  
and Manjiri M Bakre1

1OncoStem Diagnostics, Bangalore, India. 2Clinical Persona, Inc., East Palo Alto, CA, USA.  
3Chair Medical Oncology & Chief of Breast & Thoracic Services, Rajiv Gandhi Cancer Institute and 
Research Centre, New Delhi, India. 4Director Department of Laboratory & Transfusion Services and 
Director Research, Rajiv Gandhi Cancer Institute and Research Centre, New Delhi, India.

ABSTRACT: Use of proteomic strategies to identify a risk classifier that estimates probability of distant recurrence in early-stage hormone 
receptor (HR)-positive breast cancer is relevant to physiological cellular function and therefore to intrinsic tumor biology. We used a 298-sample 
retrospective training set to develop an immunohistochemistry-based novel risk classifier called CanAssist-Breast (CAB) which combines 
5 prognostically relevant biomarkers and 3 clinico-pathological parameters to arrive at probability of distant recurrence within 5 years from 
diagnosis. Five selected biomarkers, namely, CD44, ABCC4, ABCC11, N-cadherin, and pan-cadherin, were chosen based on their role in tumor 
metastasis. The chosen biomarkers represent the hallmarks of cancer and are distinct from other proliferation and gene expression–based 
prognostic signatures. The 3 clinico-pathological parameters integrated into the machine learning–based CAB algorithm are tumor size, tumor 
grade, and node status. These features are used to calculate a “CAB risk score” that classifies patients into low- or high-risk groups and predicts 
probability of distant recurrence in 5 years. Independent clinical validation of CAB in a retrospective study comprising 196 patients indicated that 
distant metastasis-free survival (DMFS) was significantly different in the 2 risk groups. The difference in DMFS between the low- and high-risk 
categories was 19% in the validation cohort (P = .0002). In multivariate analysis, CAB risk score was the most significant independent predictor 
of distant recurrence with a hazard ratio of 4.3 (P = .0003). CanAssist-Breast is a precise and unique machine learning–based proteomic risk-
classifier that can assist in risk stratification of patients with early-stage HR+ breast cancer.

KEyWoRDS: early breast cancer, prognosis, recurrence risk classification, immunohistochemistry, machine learning

RECEIVED: March 28, 2018. ACCEPTED: June 26, 2018.

TyPE: Original Research

FuNDINg: The author(s) disclosed receipt of the following financial support for the 
research, authorship, and/or publication of this article: The company received private 
funding for the research, authorship, and/or publication of this article.

DEClARATIoN oF CoNFlICTINg INTERESTS: The author(s) declared the following 
potential conflicts of interest with respect to the research, authorship, and/or publication of 

this article: All authors except D.C.D. and A.M. are current or former employees/
consultants at OncoStem Diagnostics Private Limited which has developed the 
CanAssist-Breast risk classifier. M.M.B. and C.R. are co-inventors on a patent application 
related to this article. All other authors have no other competing interests to declare.

CoRRESPoNDINg AuTHoR: Manjiri M Bakre, OncoStem Diagnostics, 4, Raja Ram 
Mohan Roy Road, Aanand Towers, 2nd Floor, Bangalore 560 027, Karnataka, India.   
Email: manjiri@oncostemdiagnostics.com

789100 BMI0010.1177/1177271918789100Biomarker InsightsRamkumar et al
research-article2018

https://uk.sagepub.com/en-gb/journals-permissions
mailto:manjiri@oncostemdiagnostics.com


2 Biomarker Insights 

decision making. Here, we describe the development, pilot 
clinical validation, and independent prognostic ability of a 
novel biomarker based-risk classifier reflective of the meta-
static potential of the tumor in early-stage HR+ breast cancer. 
This classifier, called CanAssist-Breast (CAB), predicts risk of 
distant metastasis within 5 years.

Methods
Ethics statement

This multicentric study was performed in accordance with the 
Declaration of Helsinki and approved by the Institutional 
Review Board (IRB) and/or Institutional Ethics Committee 
(IEC) of participating hospitals. The study was performed 
with the approval of Bangalore Ethics Committee (registration 
number: ECR/87/Indt/KA/2013), an independent ethics 
committee registered with Central Drugs Standard Control 
Organization, Government of India. Patient information was 
anonymized and de-identified prior to analysis.

Patients and tumor samples

Inclusion criteria for the study were as follows:

1. Hormone receptor–positive tumors;
2. Stage I, II, III disease;
3. Information available about tumor type and treatment 

taken. This included information on age and calendar 
year of diagnosis, type of surgery, tumor (size, tumor 
grade, histopathologic type), node status, details of radia-
tion therapy, details of hormone therapy taken including 
drug prescribed, and duration of therapy. Details of 
chemotherapy including type of regimen, number of 
cycles, dosage and dates of treatment.

4. Minimum 5 years of follow-up since diagnosis. Clinical 
follow-up included dates and methods of annual follow-
up, or distant recurrence—detection and treatment, and 
date of last visit, if death—cause and date of death.

5. At least 30% or more invasive tumor content in the for-
malin-fixed paraffin-embedded (FFPE) block for ade-
quate assessment of IHC staining on several sections;

6. Less than 50% necrosis and hemorrhagic content in the  
FFPE block.

Exclusion criteria for the study were as follows:

1. Hormone receptor–negative tumors;
2. Less than 5 years clinical follow-up since diagnosis unless 

a distant recurrence occurred within 5 years;
3. Incomplete information about type of tumor and treat-

ment taken;
4. Evidence of local recurrence including chest wall, ipsilat-

eral, or contralateral tumors;
5. Patients treated with neoadjuvant therapy;

6. Samples with <30% invasive tumor content;
7. Improperly fixed tumors;
8. Samples with >50% necrotic tissue content;
9. Patients with metastatic disease at diagnosis (M1).

The FFPE blocks of 298 patients with Stage I, II, and III 
breast carcinoma, ER+/PR+, HER2+/−, with a minimum of 
5-year follow-up and containing at least 30% tumor were used 
for development of CAB, whereas an additional 196 samples 
were used for clinical validation.

Study end points

The event of interest in the study was distant recurrence. If a 
recurrence occurred within 5 years, the date of recurrence was 
considered the end of the study for that patient. If no recur-
rence occurred within 5 years, the patient was considered dis-
ease free at the end point. Any distant recurrences after 5 years 
were censored for the purpose of the study. Success criteria for 
the study were defined as statistically significant separation of 
patients into low-risk or high-risk for recurrence groups in 
Kaplan-Meier survival analysis.

Sample size estimation

Sample size needed to validate the proteomic risk-classifier was 
estimated based on relative risk using data from the training set 
after accounting for overfitting. To achieve a power of 80%, we 
estimated a sample size of at least 138 patients with 24 events.

IHC staining

The IHC analysis is semiautomated and performed as follows. 
The FFPE tissues are sectioned into 3- to 5-µ slices using a 
Leica microtome (#RM2125RTS). Poly-l-Lysine–coated 
slides (PathnSitu, India) were used for taking sections. The sec-
tions are fixed on glass slides by placing them in a hot-air oven 
(Apollo Scientific, India) at 55°C for 1 hour. The slides are then 
deparaffinized with xylene (Fisher Scientific, USA) solution 
twice for 15 minutes each. Slides are rehydrated by washing 
twice with 100% alcohol for 5 minutes followed by 2 washes 
with 70% alcohol for 5 minutes and finally with demineralized 
water (Nice Cat # D1505) for 5 minutes. Antigen retrieval is 
performed for each antibody as per the manufacturer’s instruc-
tions. Following antigen retrieval, slides are cooled completely 
to room temperature in the same buffer. On attaining room 
temperature, the slides are washed in demineralized water for 
5 minutes. After wiping extra moisture on the slide with a tissue, 
the tumor section is marked with a PAP pen. The rest of the 
steps are performed using the Novolink Polymer Secondary Kit 
(Leica, Biosystems, Germany; RE-7280K). Peroxidase block is 
added to each slide and incubated for 5 minutes. Slides are 
washed with wash buffer (10 mM TBS-Tween 20, pH 7.4) 
twice, for 5 minutes each. After washing, the protein block is 
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added and slides are incubated for 5 minutes. Slides are washed 
with wash buffer twice, for 5 minutes each. Dilution of primary 
antibody is performed as per the manufacturer’s instructions for 
all antibodies. All antibodies are obtained from commercial 
vendors (details in Supplementary Methods). Slides are incu-
bated for 1 hour in a humidifying chamber with antibody. After 
primary antibody incubation, slides are washed with wash buffer 
twice, for 5 minutes each. Postprimary solution is added to the 
slides, and incubated for 30 minutes, followed by 2 washes with 
wash buffer as described previously. Following this, slides are 
incubated with polymer for 30 minutes and then washed twice 
with wash buffer. Peroxidase activity is developed using 
3,3′-diaminobenzidine (DAB) working solution for 5 minutes, 
following which the slides are rinsed with demineralized water 
for 2 minutes. Sections are counterstained with hematoxylin 
(Fisher Scientific, USA) for 8 minutes and rinsed in demineral-
ized water for 8 minutes. The slides are subsequently dehydrated 
with 70%, 95%, and 100% alcohol, each for 5 minutes. They are 
dried at room temperature and then incubated in xylene for 
5 minutes. Slides are dried and mounted with D.P.X. Mountant 
(Nice Chemicals, India; Product # D30475).

IHC grading

The IHC grading was performed as follows:

1. All markers were assessed for % and intensity of the 
staining on membrane or cytoplasm or nucleus.

2. Percentage of cells stained can range from 0% to 100%. 
Percentage staining is derived by assessing number of 
tumor cells stained in roughly about 100 cells per field. 
The percentage staining may vary from field to field in a 
given slide and hence an average of all the scores after 
scanning the entire slide is given as the final % value.

3. Intensity of staining can vary from 1 to 3: 1 being weak 
(light brown), 2 being intermediate (medium brown), 
and 3 being strong intensity (dark brown). The intensity 
of staining observed in most of the tumor tissue section 
was recorded (eg, if 15% of the tissue was found to be 
stained with intensity 1, and 85% with intensity 2, the 
recorded intensity was 2).

Risk score generation

Each biomarker that is part of the CAB classifier is graded 
quantitatively on a scale of 0 to 100 for % of staining on mem-
brane (CD44, ABCC4, and ABCC11) or cytoplasm 
(N-cadherin and pan-cadherin) along with intensity of stain-
ing (scale of 0-3) by trained pathologists. The % staining or 
intensity of the 5 biomarkers is then used by the machine 
learning–based classifier along with the values of 3 clinical 
parameters to compute the risk score. Clinical parameters are 
used by the risk classifier as categorical variables—tumor size 

T1, T2, or T3; tumor grade 1, 2, or 3; and node status N0, N1, 
N2, or N3. The CAB risk classifier generates risk scores on a 
scale of 0 to 100. Using a prespecified threshold of 15.5, patients 
are classified into low-risk or high risk for recurrence.

Patient demographics

Patients were categorized into various subgroups based on fac-
tors such as age (<50, >50), tumor size (T1, T2, T3+T4), tumor 
grade (1—well differentiated, 2—moderately differentiated, 
3—poorly differentiated), and node status (no nodes positive 
N0, 1-3 nodes positive N1, >4 nodes positive N2+N3) to study 
patient demographics.

Results
Selection of breast cancer prognostic markers

Cancer metastasis involves multiple steps, and the critical 
steps with some of the key biomarkers involved in each step 
are listed in Table 1. We chose to examine some of the bio-
markers (Supplementary Methods) listed in Table 1 as rep-
resentatives of the steps involved in metastasis. We selected 
biomarkers which were not part of other risk stratifying 
tests and had robust proteomic tools available to examine 
the expression. We analyzed these markers by performing 
IHC in our 298 sample training set (Table 3) that com-
prised samples from patients who were recurrence free at 
5 years (n = 230) or recurred at a distant site within 5 years 
(n = 68). Each biomarker was assessed for % and intensity of 
staining in the membrane or cytoplasm or nucleus depend-
ing on the biomarker. We prioritized the biomarkers by uni-
variate ranking based on absolute value of Pearson correlation 
coefficient between IHC expression of the marker and out-
come (recurrence or no recurrence) and chose the top 5 
markers (Table 2). In order of the rank assigned by Pearson 
correlation, we tested the ability of these markers to prog-
nosticate patients into distinct distant metastasis-free sur-
vival (DMFS) groups by Kaplan-Meier survival analysis. To 
this end, we divided the training set into 2 groups based on 
low or high IHC expression for each biomarker and corre-
lated the differential expression of each marker with DMFS 
(Figure 1). Low or high expression of the top 5 markers 
CD44, ABCC4, ABCC11, N-cadherin, and pan-cadherin 
showed significant correlation with DMFS (Figure 1A to 
E). We found that high membrane expression of the cancer 
stem cell marker CD44 correlated with poor metastasis-free 
survival (Figure 1A). Patients with high membrane expres-
sion of CD44 (DMFS: 55%) were significantly separated 
from patients with low membrane expression of CD44 
(DMFS: 83%). The average recurrence rate in patients with 
low CD44 expression was 16%, compared with 44% in 
patients with high CD44 expression—a 2.75-fold increase 
in recurrence rate. Similarly, we found that high membrane 
expression of the 2 adenosine triphosphate (ATP) drug 
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transporters, ABCC4 and ABCC11, also correlated with 
worse metastasis-free survival (Figure 1D and E). Patients 
with high membrane expression of ABCC4 (DMFS: 59%) 
or ABCC11 (DMFS: 60%) had 2.2-fold higher rate of dis-
tant recurrence compared with patients with low membrane 
expression of these proteins. We also observed that low 
expression of the cadherin markers, N-cadherin and pan-
cadherin, were associated with poor prognosis in the train-
ing set (Figure 1B and C). Patients with low expression of 
N-cadherin (DMFS: 70%) and pan-cadherin (DMFS: 62%) 
had ~1.7-fold higher rate of distant metastasis compared 
with patients with high expression of N-cadherin (DMFS: 
82%) and pan-cadherin (DMFS: 83%). Representative 
images of low and high expression of each of the 5 biomark-
ers are provided in Supplementary Material (Figure S1).

Classif ier development

The top 5 biomarkers identified were integrated with 3 well-
studied clinico-pathological parameters—tumor size, tumor 
grade, and node status into a classifier that produces a risk 
score (on a scale of 0-100) to classify patients into low- or 
high-risk groups for distant recurrence. The classifier was 
developed using the 298-sample training set, and the clinical 
characteristics of the patients in this cohort are defined in 
Table 3. The training set is representative of the demograph-
ics of breast cancer in the Indian population and comprises 

47% patients under the age of 50 and 77% patients with T2 
disease.13

To choose the best method to develop the classifier, we 
evaluated multiple machine learning techniques including 
(1) Support Vector Machine (SVM) with linear and Radial 
Basis Function (RBF) kernel, (2) Random Forest (RF), (3) 
Elastic Net (ESL), (4) multilayer perceptron (MLP), and (5) 
normal mixture modeling. Classifier selection was facili-
tated using ROG (receiver operating graph) whereby each 
classifier was represented by its cross-validation sensitivity 
versus 1-specificity. The selection criterion was maximum 
achievable sensitivity at specificity >90%. The RBF-SVM 
(Figure 2A) proved superior to the other classifiers 
(Supplementary Figure S2) according to the chosen criteria 
of 90% specificity and maximum sensitivity and was there-
fore selected for classifier assessment. The Supplementary 
Figure S2 shows ROG for ESL, RF, MLP, and linear SVM. 
Normal mixture model performed poorly (data not shown). 
The chosen RBF-SVM classifier was assessed further by 
application of cross-validation criteria by performing 
repeated 10-fold nested cross-validation (NCV). The NCV 
performance was analyzed by means of a receiver operating 
characteristic plot which determined that the classifier per-
formance was acceptable and all parameters were within the 
predefined limits, including the achievement of specificity 
>90% and area under the curve of 0.67 (Figure 2B). The 
threshold for discrimination between low and high risks was 
set at the risk score of 15.5 that corresponded to a 9% prob-
ability of distant recurrence (Figure S3).

Prognostic performance of the CAB classif ier

The CAB risk score in training set ranged from 0 to 100. Patients 
in the training set were classified into low- or high-risk groups 
using the CAB risk score. Accordingly, 193 patients (64%) were 
called low risk and 105 patients (36%) were called high risk 
(Figure 3A). The Kaplan-Meier survival curve showed a statisti-
cally significant difference in DMFS between the low- and 
high-risk groups (P < .0001). The 5-year probability estimates of 
DMFS in the low- and high-risk groups were 91% and 51%, 

Table 1. The critical steps and associated biomarkers involved in cancer progression.

HALLMARK OF CAnCER BIOMARKER

Self-sufficiency in growth signals Ki67, FOXA1, IFITM1, GATA3, c-Myc, IGFBP3, FOXP1, FOXP3

Insensitivity to antigrowth signals ABCG2, ABCC4, ABCC11, nrf2, PI3K, Akt

Evading apoptosis MAGE-A9, MAGE-A11, BAG1, Apaf1, BCL2

Limitless replicative potential CD44, CD24, SOX2, Oct3, nAnOG, nESTIn, KLF4, ALDH1A1, CD133, CD90 (THY-1), CD15, 
CD61, hTERT

Sustained angiogenesis HIF1α, HIF2α, XBP1, TIE2, FGF, AnG1, VEGFR1, VEGFR2, CXCR1, MMP8

Tissue invasion and metastasis P-cadherin, n-cadherin, E-cadherin, β-catenin, APC, EpCAM, FOXA1, KLK6, CxCR4, CD147, 
HSP70, Integrinb-6, EGFR

Table 2. The ranking of the top 5 biomarkers by Pearson correlation 
coefficient.

MARKER nAME PEARSOn CORRELATIOn 
COEFFICIEnT

CD44 0.26

Pan-cadherin 0.24

n-cadherin 0.21

ABCC11 0.20

ABCC4 0.19
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respectively. The average rate of distant recurrence was ~5.5 
times higher in the high-risk group (48.5%) versus the low-risk 
group (8.8%). This result demonstrates that the CAB risk score 
can significantly differentiate patients at low or high risk of dis-
tant metastasis. We tested the association between the CAB risk 
score and distant metastasis using the Cox proportional hazards 
model–based multivariate analysis (Table 4). Multivariate analy-
sis comparing the performance of the CAB risk score with 
respect to other prognostic clinical variables found that the CAB 
risk score correlated significantly with distant metastasis (hazard 
ratio: 6.82, 95% confidence interval [CI]: 3.9-11.8, P < .0001), 
whereas the other tested clinical variables (age, ER+, PR+, and 
disease stage) did not show significant correlation (Table 4).

Independent validation of the CAB classif ier

The CAB classifier was independently validated in a cohort of 
196 patients. Patient demographics and clinical characteristics 
of the validation set are provided in Table 3. Similar to the 
training set, the validation cohort also had ~48% patients under 
50 years of age. Approximately 81% patients had T2 disease 
and 48% patients were node negative at diagnosis. The CAB 
risk score ranged from 2.1 to 100 in the validation set. Kaplan-
Meier survival analysis of CAB risk score discrimination in the 
validation set demonstrated statistically significant difference 
in DMFS between the low- and high-risk groups (P = .0002; 
Figure 3B). About 132 patients (68%) were called low risk and 

64 patients (32%) were called high risk by CAB in the valida-
tion set. The 5-year probability estimates of DMFS in the low- 
and high-risk groups were 92% and 73%, respectively. The 
average rate of distant recurrence was ~3.5 times higher in the 
high-risk group (26.6%) versus the low-risk group (7.5%). 
Multivariate analysis of the validation set demonstrated that 
the CAB risk score correlated significantly with distant metas-
tasis (hazard ratio: 4.37, 95% CI 1.99-9.61, P = .0003), whereas 
the other tested clinical parameters including age, % ER stain-
ing and disease stage did not show significant correlation 
(Table 5). % PR staining also showed significant correlation 
with distant metastasis; however, the CAB risk score exhibited 
stronger association with distant metastasis and was shown to 
be the best independent predictor of prognosis in the valida-
tion set (Table 5). Taken together, these results indicate that 
the CAB risk classifier can accurately place patients into low- 
or high-risk groups based on their probability of distant recur-
rence within 5 years.

Discussion
In this article, we describe the development and clinical valida-
tion of CAB—a risk-classifier in patients with early-stage HR+ 
breast cancer that measures the protein expression of 5 bio-
markers and uses clinical information from 3 clinico-patholog-
ical parameters, tumor size, tumor grade, and node status, to 
arrive at a risk estimate for distant recurrence within 5 years. 
Studies have shown that random gene expression signatures can 

Table 3. The demographics and patient characteristics of the training and validation cohorts.

TRAInInG COHORT (n = 298) VALIDATIOn COHORT (n = 196)

 nO. OF SAMPLES % OF SAMPLES nO. OF SAMPLES % OF SAMPLES

Age

 <50 142 47.6 95 48.5

 >50 156 52.3 101 51.5

Tumor size

 T1 41 13.7 23 11.7

 T2 230 77.1 160 81.6

 T3+T4 27 9.1 13 6.6

Tumor grade

 Well differentiated 22 7.3 18 9.2

 Moderately differentiated 150 50.3 115 58.6

 Poorly differentiated 126 42.2 63 32.1

node status

 n0 122 40.9 95 48.5

 n1 107 35.9 63 32.1

 n2+n3 69 23.1 38 19.4
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be associated with breast cancer outcome owing to the con-
founding effect of proliferation genes which comprise more 
than 50% of the breast cancer transcriptome.14 It is therefore 
critical to select biomarkers from pathways other than prolifera-
tion and delineate their role in cancer progression.14 We took a 
hypothesis driven approach to solve this problem by choosing 
biomarkers that characterize several important biological pro-
cesses in cancer. CAB uses the IHC-based expression of 5 bio-
markers, including CD44, ABCC4, ABCC11, N-cadherin, 

pan-cadherin, that regulate important steps in metastasis of 
cancer. The CD44-high–expressing cells within a breast tumor 
are breast cancer stem cells that fingerprint aggressive disease15 
by effecting cancer stem cell self-renewal and loss of cell adhe-
sion.16,17 Altered expression of the 2 ATP drug transporters, 
ABCC4 and ABCC11, can lead to chemotherapy drug resist-
ance, and therefore poorer overall survival18 by causing insensi-
tivity to antigrowth signals.18,19 Altered expression of the 
cadherin proteins are known to be associated with the epithe-

Figure 1. Correlation of the expression of the top 5 ranked biomarkers with DMFS in the training set. (A) Kaplan-Meier survival analysis of distant 

recurrence in the training cohort (n = 298) analyzed by low versus high staining of CD44 in the cell membrane. (B) Kaplan-Meier survival analysis of 

distant recurrence in the training cohort (n = 298) analyzed by low versus high staining of ABCC4 in the cell membrane. (C) Kaplan-Meier survival analysis 

of distant recurrence in the training cohort (n = 298) analyzed by low versus high staining of ABCC11 in the cell membrane. (D) Kaplan-Meier survival 

analysis of distant recurrence in the training cohort (n = 298) analyzed by low versus high staining of n-cadherin in the cell cytoplasm. (E) Kaplan-Meier 

survival analysis of distant recurrence in the training cohort (n = 298) analyzed by low versus high staining of pan-cadherin in the cell cytoplasm.
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lial-mesenchymal transition of cancer cells that facilitates inva-
sion of the primary tumor into distant secondary sites.20,21

Studies have also shown that using the nominal P value from 
a Cox proportional hazards analysis to develop a metastatic sig-
nature is potentially misleading14; we therefore used machine 
learning technology22 to build CAB—a binary risk classifier that 
differentiates patients into distinct low- and high-risk groups for 
distant recurrence with >90% specificity. Analysis of the perfor-
mance of CAB in the training set showed ~40% risk difference 
between the low- and high-risk groups. Prognostic classifiers dis-
play better performance in the training set owing to model over-
fitting23; therefore, we performed an independent validation 

study to confirm the prognostic value of CAB. Our validation 
study showed that an absolute difference of 19% in DMFS 
between the CAB low- and high-risk groups, with a 3.5-fold 
higher rate of distant recurrences in patients called for recurrence. 
CanAssist-Breast was also the best independent predictor of dis-
tant metastasis in a multivariate analysis that compared it with 
other prognostic clinical parameters (hazard ratio: 4.3, P = .0003).

It is established that the messenger RNA (mRNA) and pro-
tein levels of a marker may not correlate,7 complicating the 
prognostic relevance of gene expression–based signatures. 
Studies examining HER2 expression by IHC and the 21-gene 
assay have shown that relying on mRNA expression alone 

Figure 2. Classifier development. (A) Receiver operating graph analysis of various RBF-SVM classifiers that were tested. For each potential classifier, we 

plotted cross-validation sensitivity versus 1-specificity. The intersection of the red lines indicates the chosen classifier. (B) Receiver operating 

characteristic analysis of 10-fold nested cross-validation for distant metastasis-free survival by the chosen RBF-SVM classifier. RBF-SVM indicates 

Radial Basis Function-Support Vector Machine.

Figure 3. Risk classification by CAB. (A) Kaplan-Meier plot of distant recurrence in the training set (n = 298) stratified by CAB into low- or high-risk groups. 

(B) Kaplan-Meier survival analysis of distant recurrence in the validation set (n = 196) stratified by CAB into low- or high-risk groups. CAB indicates 

CanAssist-Breast.
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could lead to false-negative results in up to 12% of patients 
with breast cancer.24 Various biomarkers including CD44 and 
ABCC11 have been shown to exhibit differences in protein 
and mRNA level.25,26 Our approach of measuring protein 
expression using the gold standard IHC technique overcomes 
these limitations. Moreover, as opposed to gene expression, 
measuring protein expression also leads to identification of 
potentially druggable targets. CD44, a component of CAB, is 
currently in clinical trials for various cancers such as lung and 
colorectal cancer.10 Its role as a potential therapeutic target in 
breast cancer could be the subject of further investigation.

This study has some limitations. First, ours was a study per-
formed on patients treated with chemotherapy. Chemotherapy 
benefit rates in early-stage breast cancer are known to be in the 
range of 3% to 5%27,28 and may confound the analysis of 
DMFS. A future study to validate the performance of CAB in 
a cohort patients treated with hormone therapy alone is ongo-
ing and would address this limitation adequately. Second, the 
size of validation cohort should ideally be much larger than the 
size of the training cohort, which is not the case in our pilot 
validation study. Further larger studies required to confirm 
these results are currently ongoing and will yield a much larger 
sample size in the near future. Finally, to provide level I 

evidence of utility as a prognostic classifier, CAB needs to be 
validated in samples from a suitable randomized controlled 
trial29 such as the validation of the 21-gene assay in samples 
from the NSABP-B20 study.30

The clinical utility of a risk classifier comes from its predic-
tive proficiency which is demonstrated by the ability of the test 
to predict benefit of chemotherapy.31 We are currently con-
ducting a study to test the ability of CAB to predict benefit of 
chemotherapy.

Based on the pilot validation study described in this article, 
we believe CAB adds significant value to predicting prognosis 
in patients with early-stage HR+ breast cancer. In conclusion, 
here we present CAB—a prognostic risk classifier that (1) uses 
IHC to interrogate protein expression of various hallmarks of 
cancer, (2) was developed using machine learning, and (3) and 
is the only risk classifier validated in a cohort of Indian patients.
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