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Abstract: QSAR (Quantitative Structure Activity Relationships) models for the 
prediction of human intestinal absorption (HIA) were built with molecular descriptors 
calculated by ADRIANA.Code, Cerius2 and a combination of them. A dataset of 552 
compounds covering a wide range of current drugs with experimental HIA values was 
investigated. A Genetic Algorithm feature selection method was applied to select proper 
descriptors. A Kohonen's self-organizing Neural Network (KohNN) map was used to 
split the whole dataset into a training set including 380 compounds and a test set 
consisting of 172 compounds. First, the six selected descriptors from ADRIANA.Code 
and the six selected descriptors from Cerius2 were used as the input descriptors for 
building quantitative models using Partial Least Square (PLS) analysis and Support 
Vector Machine (SVM) Regression. Then, another two models were built based on nine 
descriptors selected by a combination of ADRIANA.Code and Cerius2 descriptors using 
PLS and SVM, respectively. For the three SVM models, correlation coefficients (r) of 
0.87, 0.89 and 0.88 were achieved; and standard deviations (s) of 10.98, 9.72 and 9.14 
were obtained for the test set. 
 
Keywords: Human intestinal absorption (HIA), Kohonen’s self-organizing Neural 
Network (KohNN), Support Vector Machine (SVM), Genetic Algorithm Feature 
Selection, Quantitative Structure Activity Relationships (QSAR). 
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1. Introduction 
 

In drug discovery and development process, complexity and risk have increased greatly as they 
have become more expensive and time-consuming. Hundreds of millions of dollars and several years 
are required to develop a new drug. Once on the market, some drugs fail to recover their research and 
development costs. Market withdrawals add to the industry’s problems. The attrition of compounds 
through clinical development means that only one in ten compounds entering development will ever 
make it to the marketplace [1]. 

The main cause for high attrition rates in drug discovery is from the absorption, distribution, 
metabolism and excretion (ADME) properties of candidate compounds. Many active drugs fail in 
phase II or III of the clinical development process because they do not reach their intended target. Poor 
ADME properties are the major reason for failures. So absorption, distribution, metabolism and 
elimination studies have to be carefully considered in the drug discovery process, and better ADME 
properties are pursued by getting experimental data through high throughput screening. 

Human intestinal absorption (HIA) is one of the most important ADME properties. Utilization of 
drugs in the human body is such a complicated process that it can hardly be analyzed precisely by 
statistical models. HIA is also one of the key steps during the drugs’ transporting to their targets. In 
addition, it is difficult to predict oral bioavailability for diverse sets of pharmaceuticals, because there 
are various components playing a role in this process [2]. Due to the diverse pathways of absorption of 
drugs, powerful descriptors related to carrier-mediated transport and first-pass metabolism are needed 
for building a useful prediction model for human oral bioavailability. And HIA is considered as one of 
the important components which influence bioavailability, so a lot of effort has been made for accurate 
prediction of HIA. 

Drug molecules are transported from the gastroenteric tract to the blood circle and permeate the 
gastroenteric membrane by various mechanisms. The primary mechanism is passive diffusion caused 
by a concentration gradient. P-Glycoprotein (P-gp) is a common carrier in drugs intestinal penetration, 
which caused efflux process. This process has been discussed in previous articles: Varma and 
colleagues evaluated the quantitative contribution of passive permeability to P-glycoprotein-mediated 
(P-gp-mediated) efflux [3]. The functional activity of P-gp in determining intestinal absorption of 
drugs was also evaluated. A Biopharmaceutics Classification System was used to classify 63 P-gp 
substrates (P-gpS) and 73 nonsubstrates (NS) into three classes. Xue and colleagues used support 
vector machines (SVM) with recursive feature elimination (RFE) to build P-gp classification  
model [4].  

Some researchers have made predictions of human intestinal absorption from molecular graph- 
based models. A typical application was made by Klopman and colleagues [5]; they built a HIA model 
with 37 structural descriptors derived from the chemical structures for a data set of 417 drugs. The 
model was able to predict the percentage of drug absorbed from the gastrointestinal tract. Pérez and 
colleagues used a topological sub-structural approach (TOPS-MODE) to classify HIA properties into 
three classes (<30%, 30%-79%, >80%) [6]. Two linear discriminate analyses were carried out. An 
external prediction set of 127 drugs and a test set of 109 oral drugs with bioavailability values were 
reported. Sun and colleagues predicted LogP, LogS, LogBB, and HIA by atom type classification and 
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partial least-squares (PLS) method [7]. The five-component PLS-DA HIA model separated the 
compounds into three classes. 

The most frequently used approaches to make QSAR (quantitative structure activity relationship) 
predictions involve artificial methods such as evolution algorithms or artificial neural networks 
(ANN). Many applications have been proposed in previous papers. Wessel and colleagues developed a 
QSAR model for the prediction HIA values by a genetic algorithm combined with a neural network 
fitness evaluator based on 86 drugs and drug-like compounds [8]. The molecules were encoded with 
calculated molecular structure descriptors including charge and bond descriptors. Zhao and colleagues 
built models on 169 compounds [9, 10]. Five descriptors called ‘Abraham descriptors’ were derived 
from their ABSOLV program, which correspond to basic physicochemical properties. A reliable model 
was constructed for 38 compounds; another model for the total 169 compounds was also built. 
Cruciani and colleagues modeled the BBB and caco-2 cell absorption properties of 35 compounds with 
VolSurf descriptors which refer to molecular size and shape, to size and shape of both hydrophilic and 
hydrophobic regions and to the balance between them [11]. Kustrin and colleagues applied genetic 
neural network (GNN) to model HIA properties of 83 drugs [12]. The 15 descriptors involved polarity, 
hydrogen bonding, and conformational stabilities. Osterberg and colleagues applied PLS statistics to 
predict biopharmaceutical properties including HIA from ACD/ChemSketch and ACD/logP 
descriptors [13]. Norinder used MolSurf descriptors and multivariate partial least squares projections 
to latent structures [14]. Niwa and colleagues built a HIA model of 86 compounds based on their 2D 
descriptors [15]. A general regression neural network (GRNN) and a probabilistic neural network 
(PNN) were applied. Wegner and colleagues used an adaptive boosting algorithm to solve the binary 
classification problem (AdaBoost.M1) and Genetic Algorithms based on Shannon Entropy Cliques 
(GA-SEC) variants as hybrid feature selection algorithms [16]. The model was got from 52 drugs and 
TPSA (JOELib) descriptors.  

This work aimed at building reliable QSAR models for predicting compound HIA using physico-
chemical descriptors calculated from a compound’s structure. The procedure includes: (1) a structure 
dataset is set up with experimental HIA values; (2) descriptors are calculated by the descriptor 
generators ADRIANA.Code 2.1 [17-18] and Cerius2 4.10L [19]; (3) subsets of descriptors are selected 
by the Genetic Algorithms program genetic-PLS [20]; (4) the dataset is divided into training set and 
test set by Kohonen's self-organizing neural network [21]; (5) using the Partial Least Square (PLS) 
method and the Support Vector Machine (SVM) program Libsvm [22] models are built with training 
the set and tested with the test set. 

2. Data Sets 

The data for human intestinal absorption were derived from Hou’s dataset (Training_set_454.sdf 
and Test_set_98.sdf) [23]. Altogether 552 compounds were available for passive diffusion analysis. 
Abraham had provided us with a dataset of 241 compounds with HIA values and SMILES structures 
[9] before Hou’s data were obtained; other HIA data from the literature were also collected [5, 7, 11, 
14, 15]. After our examination, the data from Abraham and other literature were contained in Hou’s 
dataset, so Hou’s dataset was adopted in our study. All chemical structures of the compounds in the 
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dataset (especially the chirality) were checked against the following databases: National Library of 
Medicine [24], ChemFinder database [25], and Chemblink database [26] 

For the ultimate dataset with 552 compounds, molecular weight (MW) was distributed in the range 
of 46 to 1403, octanol-water partitioning coefficient (Log P) was distributed in the range of -17.83 to 
9.71, and HIA (%) value was distributed in the range of 0 to 100. 

3. Methods 

3.1. Descriptors  

A total number of 107 descriptors were calculated. They were calculated by the ADRIANA.Code 
2.1 [17, 18] and Cerius2 4.10L [19]. 

Fifty five descriptors were calculated by ADRIANA.Code. they include: molecular weight (MW), 
Topological Polar Surface Area (TPSA) [27], aqueous solubility (logS) [17, 28, 29], octanol/water 
partition coefficient (XlogP) [30], number of violations of the rule of 5 (Nrule5) [31], number of H-bond 
donor groups (Hdon), number of H-bond acceptor groups (Hacc), 2D molecular autocorrelation vectors 
et al. 

In the autocorrelation vectors calculated by ADRIANA.Code, the hydrogen atoms were included. 
2D molecular autocorrelation vectors [32] for physicochemical atomic properties were calculated for 
each molecule by using the following equation:  

( ) ∑=
ij

ji ppdA  (d=dj-di)      (1) 

where A(d) is the topological autocorrelation coefficient referring to atom pairs i, j which are separated 
by d bonds. pi is an atomic property, e.g. the σ charge on atom i. Thus, for each compound, a series of 
coefficients for different topological distances d, a so-called autocorrelation vector is obtained; Seven 
distances from distance of d=0 to d=6 were considered. Seven atomic properties are represented by pi: 
σ charge (SigChg) [33-34], π charge (PiChg) [35], total charges (TotChg), σ electronegativity 
(SigEN), π electronegativity (PiEN), lone-pair electronegativity (LpEN) and atomic polarizability  
(Apolariz) [36]. 

For example, ethanol (Figure 1) has three pairs of atoms that are separated by four bonds: H1-H4, 
H2-H4 and H3-H4. Thus, the corresponding autocorrelation for the topological distance four  
computes to:  

434241)4( ppppppA ++=       (2) 

The other 52 descriptors were calculated by Cerius2 4.10L as follows: molecular weight (MW), 
number of rotatable bonds (Nrot), number of H-bond donor groups (Hdon), number of H-bond acceptor 
groups (Hacc), octanol-water partitioning coefficient (LogP), molecular molar volume, molecular molar 
refractivity (MR), number of violations of the rule of 5 (Nrule5) [31], radius of gyration, molecular area, 
molecular volume, principal moment of inertia, 10 shadow indices, 12 Kier and Hall molecular 
connectivity indices (ø), Wiener index (W), and Zagreb index (Zagreb) et al. [37]. 
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Figure 1.  An example for autocorrelation coefficient calculation. 
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It is commonly considered that TPSA, LogP, Nrot, Nrule5 are responsible descriptors for HIA 
prediction. In order to evaluate the performance of descriptors calculated by ADRIANA.Code and 
descriptors calculated by Cerius2, two sets of descriptors were taken into models separately. The 
mixture of two sets of descriptors was then also used for building models that may have good quality 
for predicting HIA. Thus the dataset with 552 compounds was converted into three datasets with 
different descriptors. 

3.2. Feature Selection of the Descriptors with GA Strategy 

A program genetic-PLS20 was applied to select the proper descriptors in this work. This tool can be 
run in a MatLab environment (MatLab version 4.0 and later versions). This is an optimization software 
based on the GA strategy and the its principles can be described as follows: (1) definition and 
encoding; (2) reaction of initial population; (3) evaluation of each chromosome; (4) protection of 
chromosome; (5) selection of best chromosomes; (6) crossover and mutation; (7) stop if a halt 
condition is satisfied, otherwise go to step 3.  Three functions included in this program were employed 
in our study: GAPLSOPT(1), GAPLSOPT(2), GAPLS. GAPLSOPT(1) was used for testing whether 
the dataset was suitable to this study. GAPLSOPT(2) was used to estimate the number of evaluations 
that was required in the function GAPLS. GAPLS was run in order to select descriptors. More details 
about the principles of this GA strategy can be found in Leardi’s articles [38-40]. The author had 
studied feature optimization of spectral data with his genetic-PLS tools. The results proved this tool 
could accomplish the feature selection job successfully [41]. 

Three sets of descriptors (descriptors calculated by Cerius2, descriptors calculated by 
ADRIANA.Code and the combination of them) were adopted in genetic-PLS selection respectively. 
Therefore three corresponding sets of selected descriptors were obtained. In order to decrease 
interferes of multicollinearity before genetic-PLS selection, for each pair of descriptors with 
correlation coefficients over 0.9 in one set of descriptors, only one descriptor remained. The detailed 
procedure of genetic-PLS was demonstrated with descriptors calculated by Cerius2. The other two 
selection procedures were very similarly. The parameters were set to defaults [41]. Here the 52 Cerius2 

descriptors were taken into the genetic-PLS selection, as an example. 
Before the feature selection could be started, some preparations were needed by using the functions 

GAPLSOPT(1) and GAPLSOPT(2). GAPLSOPT(1) could be used for testing whether the dataset was 
suitable to this program. According to the author’ presentation: good datasets got results < 5; datasets 
with results < 10 was acceptable for GA robusty. When 52 Cerius2 descriptors and corresponding HIA 
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data were tested by GAPLSOPT(1), as Figure 2 shows, the result of GAPLSOPT(1) test (dark line) 
spanned from 0.3 to 1. So the dataset was suitable to this program [41].  

 
Figure 2. GAPLSOPT(1) test 

 
 

GAPLSOPT(2) was used to estimate the number of evaluations that was required in the function 
GAPLS. The way to find the best number of evaluations was to pick the point where no significant 
increase is observed. Normally the value should be controlled between 50 and 200 to prevent 
overfitting. As Figure 3 shows, the GAPLSOPT(2) differences curve is a continuous ascending curve. 
The number of evaluations was thus set to its maximum value 200. 

 
Figure 3. GAPLSOPT(2) differences curve. 

 

 

After these preparations, GAPLS could be run to make feature selection. To reduce the random 
errors, five repeats of GAPLS were applied; each includes 100 runs, which was set by the program.  
Figure 4 showed the cross validation response and the select frequency of all 52 Cerius2 descriptors. 
The six most frequently used descriptors were chosen for further analysis. 
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Figure 4. Select frequency figure by GAPLS function. Five repetitions were executed to 
obtain an average result. 

 
 
3.3. Training /Test Set Selection with Kohonen's Self-organizing Neural Network 

Kohonen's self-organizing Neural Network (KohNN) [21] has the special property of effectively 
creating a spatially organized internal representation of various features of input signals and their 
abstractions. A two-dimensional array map with neurons was then generated to classify the dataset. 
Data with similar input were mapped into the same neuron or neighbor neurons in the neural network. 

The dataset was split into training set and test set with the generated feature map. This division had 
an advantage compared to random selection [42-43]. This method is for splitting a data set into 
training set and test set, and assures that both sets cover the information space as good as possible. As 
the test set was not used during training of the PLS or SVM model, it still can be considered as an 
external dataset. 

3.4. Support Vector Machine (SVM) Analysis 

The Libsvm program was used to build SVM models [22]. This software is based on the function of 
classification. After some improvement, it can also be applied to the regression problem well. More 
introductions and implementations about Libsvm can be found in their website [44-45]. The Libsvm 
regression was realized by the ε-Support Vector Regression (ε-SVR) with a radial basis function 
(RBF) kernel function. The ε-SVR algorithm is a generalization of the better known support vector 
classification algorithm to the regression case. Given n training vectors xi and a vector y Rn∈  such 
that iy R∈ , we want to find an estimate for the function y = f(x) which is optimal from a structural risk 

minimization viewpoint. According to ε-SVR, this estimate is: 

*

1
( ) ( ) ( , )

n

i i i j
i

f x a a k x x b
=

= − +∑      (3) 

where b is a bias term and k(xi,xj) is a special function called the kernel. The coefficients ai and ai* are 
the solutions of the quadratic problem: 
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parameters C and ε can be chosen by the user. The “penalty parameter” C may be as high as infinity, 
while usual values for ε are 0.1 or 000.1. 

The kernel function is used to convert the data into a higher-dimensional space in order to account 
for nonlinearities in the estimate function. A commonly used kernel is the Radial Basis Function 
(RBF) kernel: 

2( , ) exp( )k x y x yγ= − −      (5) 

The parameter γ is selected by the user [46]. 
According to the program guide, two necessary steps had to be taken in advance: the scaling of 

input data and searching for best parameters. The input data (the descriptors selected by genetic-PLS) 
was compressed into [0.1, 0.9] through the formula:  

min

max min

* 0.8 0.1x xx
x x

−
= × +

−
     (6) 

where x was the original value, and x* is the scaled value. xmin and xmax are the corresponding 
minimum and maximum values of the descriptor variable, respectively. 

There are three parameters to adjust the efficiency of Libsvm program: C, γ and ε. An autosearching 
program named “grid regression” was adopted. It could search for best parameters C, γ and ε through a 
leave-k-out cross validation method. Meanwhile, overfitting of training set could be prevented. Here a 
leave-25%-out cross validation was carried out. Manual searches were then performed around the 
leave-25%-out cross validation results to select the best parameters. 

4. Results and Discussion 

Six descriptors were selected from the initial 55 descriptors calculated by ADRIANA.Code after the 
genetic-PLS feature selection, which are Nrule5, Nrot, MW, LogS, TPSA and Acorr_Sigchg_3. They 
were used to build Model 1A and Model 1B by PLS and SVM, respectively.  

Six descriptors were selected from the initial 52 descriptors calculated by Cerius2 after the genetic-
PLS feature selection, which are Nrule5, LogP, Nrot, Jurs-FNSA-3, Jurs-RPCG and Hdon. They were used 
to build Model 2A and Model 2B by PLS and SVM, respectively. 

Nine combined descriptors were taken from six selected ADRIANA.Code descriptors and six 
selected Cerius2 descriptors by a stepwise regression method. Nine combined descriptors were used to 
build Model 3A and Model 3B by PLS and SVM, respectively. The selected descriptors are shown in 
Table 1. 
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Table 1. Selected descriptors and corresponding coefficients in the Partial Least Square 
models. Model 1A was based on six selected ADRIANA.Code descriptors, Model 2A was 
based on six selected Cerius2 and Model 3A was based on nine combined descriptors. 

Model 1A Model 2A Model 3A 
descriptors coefficient descriptors coefficient descriptors coefficient
Nrule5 10.3161 Nrule5 -10.0335 Nrule5 8.4014 
Hdon 2.8231 Nrot 1.4978 Nrot 1.2908 
LogS 2.9385 LogP 1.4458 LogP 1.4358 
MW -0.0194 Hdon 2.7628 Hdon 2.5400 
TPSA 0.1446 Jurs- FNSA3 85.0957 Jurs- FNSA3 97.3355 
Acorr_Sigchg_3 14.5617 Jurs-RPCG 38.3653 Jurs-RPCG 28.8753 
    LogS 1.7446 
    MW -0.0236 
    Acorr_Sigchg_3 10.2598 
Dc 96.5824 Dc 102.393 Dc 105.466 

Jurs- FNSA3 represents fractional charged partial surface areas [37]. 
Jurs-RPCG represents relative positive charge [37]. 
Acorr_Sigchg_3 is the third components of 2D autocorrelation coefficients for σ charge (where d=2) 
 
The pairwise correlation coefficients of the selected descriptors in each group have been estimated. 

None of the correlation coefficients is over 0.70. A rectangular KohNN with 24 × 23 was utilized with 
ten descriptors from six selected ADRIANA.Code descriptors and six selected Cerius2 descriptors as 
input vectors (two repeated descriptors were excluded before classification). The initial learning spans 
are 12 and 11.5, with an initial learning rate of 0.7 and a rate factor of 0.95. The initial weights are 
randomly initialized, and training was performed for a period of 1600 epochs in an unsupervised 
manner. A map was formed according to the ranges of Human intestinal absorption of the most 
frequently occupied neuron. The classification correctness rates were 89%. As indicated in Figure 5, 
compounds were mapped into Kohonen map according to their HIA ranges. 

In the Kohonen map, 374 of a total of 552 neurons are occupied. Then, one object of each neuron 
was taken for the training set; for the conflict neurons, if the HIA values (%) of compounds in the 
same neuron had differences over 50, all compounds in this neuron were taken into training set; other 
objects were assigned as the test set. So 552 compounds were divided into a training set of 380 
compounds and a test set of 172 compounds after the KohNN classification. 

4.1. Partial Least Square (PLS) Models 

Partial least square analysis was carried out with six selected ADRIANA.Code descriptors, six 
selected Cerius2 descriptors and nine combined descriptors to build Model 1A, Model 2A and Model 
3A, respectively. 380 compounds in the training set were used to build models, 172 compounds in the 
test set were used to predict human intestinal absorption (HIA).  
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The equations were obtained as follows: 

HIA% ( )i i cc D D= +∑  

Figure 5. A rectangular KohNN map for 552 compounds obtained by 10 descriptors. ‘low’ 
means compounds with low Human intestinal absorption (HIA) in the range of [0 ~ 29%], 
‘middle’ means compounds with middle HIA in the range of [30 ~ 79%], and ‘high’ means 
compounds with high HIA in the range of [80 ~ 100%]. 

 low  middle  high

 
In the equation, Di is a descriptor, and ci is its corresponding coefficient in the PLS model. Dc is the 

constant in the equation. The corresponding coefficients are shown in Table 1.  
For the training set of Model 1A, one component is abstracted, r =0.72, s=15.10, n=380 and q=0.70 

and for the test set of Model 1A, r =0.83, s=13.06, n=172. (r is the correlation coefficient, s is the 
standard deviation), The root-mean-square (RMS) deviation of the calculated human intestinal 
absorption (%) of Model 1A is 18.79. 

For the training set of Model 2A, one component is abstracted, r =0.73, s=14.67, n=380 and q=0.72 
and for the test set of Model 2A, r =0.83, s=13.12, n=172. RMS of the calculated human intestinal 
absorption (%) of Model 2A is 18.67. 

For the training set of Model 3A, one component is abstracted, r =0.74, s=14.97, n=380 and q=0.73 
and for the test set of Model 3A, r =0.83, s=13.36, n=172. RMS of the calculated human intestinal 
absorption (%) of Model 3A is 18.18. The results are shown in Table 2.  

4.2. Support Vector Machine (SVM) Models 

Model 1B, Model 2B, and Model 3B were built by the Support Vector Machine with the Libsvm 
program [22]. Six selected ADRIANA.Code descriptors, six selected Cerius2 descriptors and nine 
combined descriptors were used to build Model 1B, Model 2B and Model 3B, respectively. 
For Model 1B, 380 compounds in the training set were used to train a Support Vector Machine (SVM) 
model, the option parameters were set as: 32.0, 1.5, 0.125C γ ε= = = , and 172 compounds in the test 
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set were used for prediction of HIA. For the training set, r =0.79, s=13.25, n=380, for the test set, r 
=0.87, s=10.98, n=172. RMS of the calculated HIA (%) of Model 1B is 16.68. 

For Model 2B, 380 compounds in the training set were used to train a Support Vector Machine 
(SVM) model, the option parameters were set as: 90.0, 1.0, 0.125C γ ε= = = , and 172 compounds in 
the test set were used for prediction of HIA. For the training set, r=0.80, s=13.40, n=380, for the test 
set, r =0.89, s=9.72, n=172. RMS of the HIA (%) of Model 2B is 16.35. 
 

Table 2. The prediction performances of 6 models: Partial Least Square (PLS) models and 
Support Vector Machine (SVM) models. Model 1A and Model 1B are based on six 
selected ADRIANA.Code descriptors; Model2A and Model2B are based on six selected 
Cerius2 descriptors; Model 3A and Model 3B are based on nine combined descriptors. 

Model Training set Test set RMS 
 n r s n r s  

Model 1A PLS 380 0.72 15.10 172 0.83 13.06 18.79 
Model 1B SVM 380 0.79 13.25 172 0.87 10.98 16.68 
Model 2A PLS 380 0.73 14.67 172 0.83 13.12 18.67 
Model 2B SVM 380 0.80 13.40 172 0.89 9.72 16.35 
Model 3A PLS 380 0.74 14.97 172 0.83 13.36 18.18 
Model 3B SVM 380 0.81 12.50 172 0.88 9.14 16.00 
Hou’s model17 455 0.84 15.50 98 0.90 - - 

n: number of compounds;  r: correlation coefficient;  s: standard deviation. 
RMS: root-mean-square (RMS) deviation for the whole model 
 

For Model 3B, 380 compounds in the training set were used to train a Support Vector Machine 
(SVM) model, the option parameters were set as: 32.0, 1.0, 0.125C γ ε= = = , and 172 compounds in 
the test set were used for prediction of HIA. For the training set, r=0.81, s=12.50, n=380, for the test 
set, r=0.88, s=9.14, n=172. RMS of the HIA (%) of Model 3B is 16.00. 

The results are shown in Table 2 and Figure 6. 
According to the PLS and SVM prediction figures, all the models had a good prediction for high HIA 
(over 80%) compounds, but a poor prediction for low HIA (below 30%) ones. That was caused mainly 
by the unbalanced distribution of experimental HIA values. In the dataset, 71.7% of compounds had 
high HIA values over 80%; only 18.9% of compounds with HIA from 30% to 80%, and 9.4% 
compounds with HIA below 30%. Complicated mechanisms which are still unknown can lead to the 
irregular distribution in the low HIA area of the prediction figures, so the models were trained with 
biases to well-absorbed drugs. Great efforts are still needed to make to find more drugs with reliable 
and accurate experimental HIA during medium and low range. Hou’s model [23] with r=0.84 for 
training set of 455 compounds and r=0.90 for test of 98 compounds, which is still the best available. A 
descriptor named LogD in his model which is an extension of the LogP can response that. However, 
we have tried to explore to build proper prediction models of HIA with some the other descriptors 
(such as logS and 2D_Acorr_Sigchg_3) and some other methods (such as KonNN  
and SVM). 
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Figure 6. Calculated vs. Experimental values of human intestinal absorption (HIA) for the 
corresponding training sets and test sets of 552 compounds by Support Vector Machine 
(SVM) regression models. Model 1B are based on six selected ADRIANA.Code 
descriptors, Model2B are based on six selected Cerius2 descriptors and Model 3B are based 
on nine combined descriptors. 
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Models built by ADRIANA.CODE (Model 1A and Model 1B) and by Cerius2 (Model 2A and 
Model 2B) had similar performances: in the models of ADRIANA.CODE descriptors, best r=0.79 for 
training set, best r=0.87 for test set; in the models of Cerius2 descriptors, best r=0.80 for training set, 
best r=0.89 for test set. This indicates descriptors generated by each of them can provide enough 
information for HIA prediction. Some ADRIANA.CODE descriptors had showed their potentials for 
HIA prediction such as LogS and Acorr_Sigchg_3. 

By comparison of the PLS models (Model 1A, Model 2A, Model 3A) and SVM models (Model 1B, 
Model 2B, Model 3B), it can be seen that SVM had obvious advantage in building HIA model. Taking 
test sets of three models as an example, r=0.83, r=0.83, r=0.83 in PLS models; r=0.87, r=0.89, r=0.88 
in SVM models. It reveals the superiority of SVM as a non-linear method to linear methods.  
Genetic-PLS feature selection had been successfully applied to pick out the useful descriptors such as 
Nrule5, TPSA, Hdon, LogP. But when dealing with some highly correlated descriptors, genetic-PLS can 
not recognize them. So high correlations should be eliminated before genetic-PLS selection. 

5. Conclusions 

The selected descriptors included some popular descriptors such as Nrule5, TPSA, Hdon, LogP, and 
some unique ones such as LogS and Acorr_Sigchg_3. This indicated that σ charge values [33-34] 
which represent the influence of heteroatoms and the network of bonds in a computational scheme had 
a powerful ability in the prediction of HIA. Comparing the six models built with different descriptors 
and methods, it can be concluded that the models built with ADRIANA.CODE descriptors (Model 1A, 
Model 1B), Cerius2 descriptors (Model 2A, Model 2B), and the combination of them (Model 3A, 
Model 3B) had similar performances for the prediction of human intestinal absorption. Each of the 
descriptor generation software packages can work independently to build HIA prediction models.  

The SVM method had shown a reliable ability in building effective models. This indicated that a 
non-linear method such as SVM is superior to a linear method such as PLS in building prediction 
models. The descriptors applied can be generated by calculation from the constitution of the 
molecules. For the 552 compounds, under the Windows XP (PM 790 MHZ) computer the descriptors 
used here can be calculated by ADRIANA.Code in 26 seconds. For the 552 compounds, under the 
Linux Redhat (IBMZ 2.5GHZ), all Cerius2 descriptors can be calculated in about 10 minutes. No 
experimental data such as additional descriptors are needed. Thus, the prediction models based on 
ADRIANA.Code descriptors can be used to work on larger datasets because of short computation 
time. 
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Supplementary Material 

The SD file of all the 552 compounds;  the calculated 107 descriptors for the 552 compounds; the 
380 compounds used in the training set, the 172 compounds used in the test set, with their 
experimental and predicted HIA values in Model 3B (based on nine combined descriptors) by SVM 
method. The supplementary materials can be downloaded from http://www.mdpi.com/1422-
0067/9/10/1961. 
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