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Abstract 

Background:  In breast ultrasound elastography, tissues displacements estimation is 
obtained through a technique that follows the evolution of tissues under stress. How-
ever, during the acquisition of B-mode images, tissue displacements are often contami-
nated with multiplicative noise caused by changes in the speckle pattern in the tissue. 
Thus, the application of monogenic signal technique on the B-mode image in order to 
estimate displacement tissue, result in a presence of amplified noise in the deforma-
tion tissue image, which severely obscures the useful information. In this paper, we 
propose a new method based on the monogenic features, that is to improve the old 
monogenic signal (OMS) technique by improving the filtering step, so that the use of 
an effective denoising technique is enough to ensure a good estimation of displace-
ment tissue. Our proposed method is based on the use of a robust filtering technique 
combined with the monogenic model.

Methods:  Two models of phantom elasticity are used in our test validation sold 
by CIRS company. In-vivo testing was also performed on the sets of clinical B-mode 
images to 20 patients including malignant breast tumors. Shrinkage wavelets has been 
used to eliminate the noise according to the threshold, then a guided filter is intro-
duced to completely filter the image, the monogenic model is used after excerpting 
the image feature and estimating analytically the displacement tissue.

Results:  Accurate and excellent displacement estimation for breast tissue was 
observed in proposed method results. By adapting our proposed approach to breast 
B-mode images, we have shown that it demonstrated a higher performance for 
displacement estimation; it gives better values in term of standard deviation, higher 
contrast to noise ratio, greater peak signal-to-noise ratio, excellent structural similarity 
and much faster speed than OMS and B-spline techniques. The results of the proposed 
model are encouraging, allowing quick and reliable estimations.

Conclusion:  Although the proposed approach is used in ultrasound domains, it has 
never been used in the estimation of the breast tissue displacement. In this context, 
our proposed approach could be a powerful diagnostic tool to be used in breast dis-
placement estimation in ultrasound elastography.

Keywords:  Breast static elastography, Displacement estimation, Monogenic signal, 
Shrinkage wavelets
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Background
In recent years, ultrasound elastography has developed to characterize the viscoelastic 
properties of soft tissues. This imaging method is particularly promising to characterize 
pathologies such as carcinomas in the breast, that present a greater elasticity than the 
surrounding tissues [1].

Ultrasound elastography has a purpose to offer the tools allowing to doctors to make 
the best decisions suited to the pathologies in terms of diagnosis, detection or therapy. 
This technique makes it possible to quantify the mechanical properties of soft tissues by 
ultrasonic medical imaging [2]. Hence its objective is to correlate the mechanical prop-
erties of soft tissue with their healthy or pathological characteristics. Historically, this 
technique has existed for a very long time in a qualitative way. In fact, by palpation, doc-
tors evaluate the hardness of the tissues and therefore evaluate its mechanical proper-
ties, like the elasticity. In this context the so-called static elastography was developed: 
imaging the internal deformation of the tissues under stress by ultrasound imaging [3].

In this axis, static ultrasound elastography is a very important technique that has 
proved its effectiveness in the medical environment; Focusing on ultrasound breast elas-
tography, it was reported that the different breast tissues had different elastic character-
istics of the glandular and connective tissue, and that it was possible to differentiate the 
intra-malignant or infiltrating malignant component from one malignant lesion using 
ultrasound elastography. However this technique suffers from noise and artifacts in the 
imaging system environment. The noise presents  in the tissues displacements image 
degrades its quality and modifies the important details, related to texture and tissue 
morphology, which complicates the diagnosis in static ultrasound elastography [4].

From clinical application perspective, the elimination of speckle noise becomes a cru-
cial step before proceeding with the medical diagnosis. The researchers are inspired to 
devote their efforts on this subject, in order to develop a technique to reduce the risk of 
misdiagnosis [5].

In the literature the researchers have developed several methods of estimating tissue 
displacements. The main method to estimate the displacement on B-mode images is 
block matching using cost functions. The pairing of blocks has a major disadvantage: It 
requires interpolation for sub-pixel estimation, so the time calculation is longer com-
pared to the other displacement techniques [6]. Recently new techniques based on phase 
difference have been developed to estimate tissue displacements; however the results are 
always degraded by speckle noise [7].

To solve this problem, several filters have been developed in the literature in order to 
reduce the noise and the artifacts present in tissue displacements images, such as Frost 
filter, non-log-transformed generalized likelihood ratio method, Lee filter, Kuan filter, 
method and speckle reducing anisotropic diffusion [8]. But always, there are losses of 
partial content of image.

The application of local adaptive filters modifies slightly the information in the image 
and provides an inadequate filtering. Anisotropic diffusion filters have a high noise sup-
pression capability; however, can create a strong smoothing of the tissue displacement 
image. The average nonlocal filters have a better filtering effect against speckle noise, 
but the algorithm complexity are generally very high, therefore they cannot meet the 
requirements of elastography [9].
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Another solution using a multi-scale filtering approaches that they provide a good 
results, however they cannot make the optimum balance between speckle noise removal 
and preservation characteristics.

Finally, a technique of tissue displacements that we called it in this paper: OMS, which 
includes the DoP filter, this filter has reduced the noise in the image; however the noise 
is still present in the low frequency component and slightly deteriorates the result [10, 
11].

In this approach, it is desirable to develop a technique that improves the performance 
of estimating tissue displacements with a good noise attenuation and better edge preser-
vation as well as fast and reliable.

In this paper, we proposed a new approach which improves the OMS method. The 
proposed new approach exploits the shrinkage wavelets with a guided filter coupled 
combined with monogenic features. This proposed strategy improves the OMS method 
used in breast tissue displacement.

The results of in vivo and in vitro studies are presented to assess the proposed method. 
We show that the proposed model improved the OMS technique, and improved the 
diagnosis of breast pathology.

The performances of our proposed method are compared with OMS and BS methods; 
we show that our proposed method is more accurate, it gives better values in term of SD, 
higher CNR, greater PSNR, excellent SSIM and much faster speed than other methods.

The paper proceeds as follows: the adapted filtering technique and the monogenic sig-
nal theory of displacement estimation are resumed and presented in “Methods” section.

“Results” section shows the results on soft biological phantom designed for elastog-
raphy and In-vivo breast images, we address also the comparison between the results 
obtained with our proposed method and those obtained with OMS and BS methods.

“Discussion” section shows the discussion of results.
Concluding remarks are left to “Conclusion” section.

Methods
Displacement estimation enhancement based on monogenic signal method

Image filtering

When a tissue is mechanically subjected to a quasi-static compression, the internal 
stresses are defined by the boundary conditions and by the intrinsic properties of the 
tissue [12].

The displacements generated by compression can be evaluated by ultrasonic wave 
when the scanned area is diffusing [13].

It is an area in which an ultrasonic pulse encounters on its way impedance inhomo-
geneities could create a return pulse. The complex interference of these reflected waves 
forms called “acoustic speckle”. The speckle is a particular noise that is found in all ultra-
sonic images, it is a multiplicative noise, that the echo summations are independent 
of the coefficient of background reflectivity; it depend only on the micro-relief. In this 
context, many authors have made contributions to improve speckle filtering techniques 
on ultrasonic data [7]. The crucial goal in any filtering is to remove the noise without 
losing the resolution of the image. In this framework, filtering of B-mode images is a 
very essential step before going to estimate the displacement of breast tissue. We may 



Page 4 of 27Slimi et al. BioMed Eng OnLine  (2017) 16:19 

apply the shrinkage wavelets with a guided filter, in order to suppress the speckle noise 
and protect the details of the image against the degradation; our strategy will necessarily 
improve the displacement estimation of tissue in static ultrasound elastography [14].

Threshold selection  It is shown that it is possible to perform a wavelet decomposition of 
an image, and then reconstruct the image from its wavelet coefficients [15]. The wavelet 
coefficients mark the discontinuities that occur in the image, therefore they correspond 
to image details.

If the selected threshold value is below the noise wavelet coefficients, then the final 
image will still contain noise. Otherwise, if the threshold value is wider than the wave-
let coefficients of certain details, the result is an image that has lost significant details 
for clinical diagnosis [16], so the threshold has a direct effect on the quality of the final 
image.

In order to achieve a compromise between noise suppression and preservation of 
image details, there is shown in the literature that the researchers improved the classic 
wavelet threshold function; the new version of this classic expression has proved effec-
tive against noise in medical ultrasound images [17].

In this paper, we propose the use of this improved function as shown below;

where T is a threshold, j(1,2….,J) are the decomposition layers of wavelet transformation, 
J denotes the largest decomposition layers, aj represents the adaptive parameter of the 
j layer, and is determined experimentally, σn denotes the standard deviation of noise in 
wavelet domain, and M is the number of the wavelet coefficients in the corresponding 
wavelet domain.

Wavelet shrinkage technique  The wavelet threshold shrinkage algorithm is applied here 
using Bayesian maximum a posterior estimation, there is shown in the literature that this 
improved expression of wavelet threshold shrinkage gives better results than Soft and 
Hard threshold [18], the reason why, we decided to use this technique to improve the final 
results of breast B-mode ultrasound images.

where ĝ is the estimation of g, f is suspected in phase with noise-free signal g. sign(f) des-
ignate symbolic function.

The guided filter  It is found in the experiment, that the B-mode images result found 
after the application of shrinkage wavelets techniques, still contains noise in the low-
frequency component. This result is logical, since shrinkage wavelet makes it possible 
to retain the wavelet coefficients of the low frequency subband, while the wavelet coef-
ficients of the frequency component are narrowed by the threshold selection. With this in 
mind, we decided to use a guided filter in order to filter the speckle noise present in the 
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low-frequency component, the researchers opted the guided filter for its effectiveness in 
preserving the image details [19].

The mathematical form implies a guidance image I, an input image p, and an output 
image q. Both I and P are given before hand according to the application, and they can 
be identical. The filtering output at a pixel i is expressed as a weighted average [7]:

where q is output image, W represents a function of the guided image I, i is a pixel 
indexes. Where ak and bk are linear coefficients in wk, We assumed that in a window wk 
centered at the pixel k.

Monogenic signal method

After filtering the images of the breast by the shrinkage wavelet technique and the 
guided filter, we implement them in a monogenic algorithm, the monogenic signal pro-
vides the image features [20] energy (A), the local orientation (θ) and phase (ϕ). These 
features are computed using two odd filters (Riesz transform) [21].

The monogenic signal has the following format:

where p(x, y) is the filtered image by using Wavelet shrinkage denoising and guided filter 
(i, j) are two imaginary components of a quaternion. q1

(

x, y
)

and q2(x, y) represent the 
result of image filtered with Wavelet shrinkage denoising and guided filter, convolved 
with Riesz transform.

The following equations give expression of orientation, phase and frequency of its 
information in a pixel as shown below.

According to this, we can create a phase vector if we combine the orientation vector 
and the phase, formulated along axial displacement (dx) and lateral displacement (dy).

An analytical estimation of displacement can be obtained, using Taylor series 
expansions.
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The assumption is made as follow:

While (ℵ) is a constant deformation in the region, n is a Taylor series expansion, (f) is 
the frequency, r1 and r2 are two phase vectors along axial and lateral displacement.

Results
In this section, all results have been verified and validated by two radiologist doctors.

Soft biological phantom designed for elastography

We implemented the proposed method using Matlab software (The MathWorks, soft-
ware Matlab, Pentium 4, 3.2 GHz), we tested our method on two models of phantom 
elasticity sold by the company CIRS, the first phantom contains 10 and 20 mm diameter 
spheres of varying hardness relative to the background material. The sphere is located at 
depths of 15 and 35 mm respectively and will appear almost isoechogenic to the back-
ground using standard B-mode imaging.

The second phantom contains sets of stepped cylinders that vary in diameter from 1.6 
to 16.7 mm. The stepped cylinders in each set are located at depths of 3 and 6 cm. Each 
set has a different hardness relative to the background material and will appear almost 
isoechogenic to the background using standard B-mode imaging.

In the software parameterization, we used the linear transducer features with which 
the phantom was originally acquired: 7.5 MHz center frequency, 60 MHz sampling fre-
quency, 512 physical elements of size 5–0.2 mm (height and width, respectively), with 
128 active elements. Two B-mode images (pre-compression and post compression 
image) are loaded while the pressure was applying by the probe.

We tested our proposed enhancement elastography method on both (pre and after 
compression B-mode images) and then we implemented them into monogenic signal 
algorithm to estimate the displacement field. The results were validated by two radiolo-
gists (Figs. 1, 2).

In order to quantitatively compare the efficiency and robustness of our proposed 
method. We compare it to OMS and BS techniques using SD (in pixels) of the errors 
between estimated and B-mode post compression images (as shown in the Table  1), 
CNR, PSNR and SSIM comparison (as shown respectively in the Tables 2, 3 and 4), the 
execution time of each method (as presented in the Tables 5 and 6).

On these motion phantom results, a CNR is computed as follows:

where mt and mb are the spatial strain average of the target and background, σ2b and σ2t  
are the spatial strain variance of the target and background, and are the spatial average 
and variance of a window in the strain image, respectively.
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We use the region of interest (ROI) A as the target and ROI B as the background. 
These parameters (ROI A and ROI B) were used to calculate the CNR and PSNR in the 
strain images.

Fig. 1  Estimating displacements of a spherical tumor for the first phantom. a Simulated pre compression 
B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with OMS 
method. d tissues displacement obtained with BS method, and e tissues displacement obtained with pro-
posed method: areas selected by a rectangle are used for CNR computation

Fig. 2  Estimating displacements of a cylindrical tumor for the second phantom. a Simulated pre compres-
sion B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation
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The PSNR is defined via the mean squared error (MSE) as:

(12)MSE = 1

MN

M
∑

i=1

N
∑

j=1

(

Xi,j − X̂i,j

)2

Table 1  Comparison of the SD in pixels for the proposed method with OMS and BS meth-
ods

OMS method BS method Proposed method

SD in pixels (first phantom) 0.07 0.05 0.03

SD in pixels (second phantom) 15.96 15.80 14.30

Table 2  Comparison of CNR for the proposed method with OMS and BS methods

B-mode image OMS method BS method Proposed method

CNR (first phantom) 0.10 0.29 0.32 0.44

CNR (second phantom) 0.22 0.43 0.48 0.63

Table 3  Comparison of PSNR for the proposed method with OMS and BS methods

OMS method BS method Proposed method

PSNR (first phantom) 19 26 33

PSNR (second phantom) 22 31 42

Table 4  Comparison of SSIM for the proposed method with OMS and BS methods

OMS method BS method Proposed method

SSIM (first phantom) 0.65 0.69 0.72

SSIM (second phantom) 0.81 0.83 0.87

Table 5  Comparison of execution time for the proposed method with OMS and BS meth-
ods

OMS method BS method Proposed method

Execution time (s) (first phantom) 12 10 8

Execution time (s) (second phantom) 20 16 12

Table 6  Comparison of SDCT for the proposed method with OMS and BS methods

SDCT between the proposed method 
and the OMS technique (s)

SDCT between the proposed method 
and the BS technique (s)

First phantom 4 2

Second phantom 8 4
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where M and N represent the length and width of image corresponding to Xi,j, its noisy 
approximation is X̂i,j.

The SSIM index is measured between the two windows X and X̂ of common length 
and width:

where µX, µX̂, σ2x and µ2
x̂ designate the mean and variance of image and their estimation 

respectively. σX,X̂ designates the covariance of X and X̂. c1 and c2 are two variables to 
maintain the calculation with a low denominator.

In‑vivo breast images

The process described in “Methods” section is assessed here; we use the in vivo breast 
ultrasound B-mode images (pre and post compression) from 20 patients with breast 
malignant tumor. Acquired with clinical ultrasound scanner (Logiq E9), with 7.5-MHz 
linear probe (GE Healthcare).

Both B-mode images (pre and post compression) were taken by the radiologist apply-
ing a small compression of the breast, the results were validated by two radiologists.

We have presented below the results of our proposed method for enhancement dis-
placement estimation of breast tissue (Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 
18, 19, 20, 21 and 22).

(13)PSNR
(

X, X̂
)

= 10 log

(

2552

MSE

)

(14)SSIM
(

X, X̂
)

=

(

2µXµX̂ + c1
)

(

2σX,X̂ + c2

)

(

µ2
X + µ2

X̂
+ c1

)(

σ2X + σ2
X̂
+ c2

)

Fig. 3  Estimating tissue displacements of breast malignant tumor for the patient 1. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation
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In order to evaluate the efficiency of our approach, quantitative measures as SD in pix-
els (as shown in the Table 7), CNR comparison (as presented in the Table 8), PSNR com-
parison (as given in the Table 9), SSIM (as demonstrated in the Table 10), the execution 

Fig. 4  Estimating tissue displacements of breast malignant tumor for the patient 2. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation

Fig. 5  Estimating tissue displacements of breast malignant tumor for the patient 3. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation
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time of each method (as exposed in the Table  11) and the SDCT (as shown in the 
Table 12) were used in order to highlight the contribution of our method and to com-
pare its accuracy with OMS and BS approaches.

Fig. 6  Estimating tissue displacements of breast malignant tumor for the patient 4. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation

Fig. 7  Estimating tissue displacements of breast malignant tumor for the patient 5. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation
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Discussion
According to the experimental results presented in “Soft biological phantom designed 
for elastography” and “In-vivo breast images” sections, we can analyze the breast tis-
sue displacement estimation improvement based on the quantitative indicators. The 

Fig. 8  Estimating tissue displacements of breast malignant tumor for the patient 6. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation

Fig. 9  Estimating tissue displacements of breast malignant tumor for the patient 7. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation
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proposed method is applied first to ultrasound B-mode images of two phantoms (that 
whose stiffness characteristics are the same texture of breast tissue). Secondly, it is 
applied to ultrasound B-mode images of breast organ of 20 patients with malignant 
tumor. We note that all results have been verified and validated by two radiologists.

Fig. 10  Estimating tissue displacements of breast malignant tumor for the patient 8. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation

Fig. 11  Estimating tissue displacements of breast malignant tumor for the patient 9. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation
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Soft biological phantoms

Results obtained on simulated data of Soft biological phantoms show that our proposed 
method retrieves speckle denoising in displacement estimation better than the OMS and 
BS technique.

Fig. 12  Estimating tissue displacements of breast malignant tumor for the patient 10. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation

Fig. 13  Estimating tissue displacements of breast malignant tumor for the patient 11. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation
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The method that has been used to denoise the speckle does not only have an effect on 
images filtering, but it also has an effect on the quality of the displacement estimation, 
it has improved the clinical diagnosis of displacement estimation of hard and soft areas.

Fig. 14  Estimating tissue displacements of breast malignant tumor for the patient 12. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation

Fig. 15  Estimating tissue displacements of breast malignant tumor for the patient 13. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation



Page 16 of 27Slimi et al. BioMed Eng OnLine  (2017) 16:19 

Compared with our proposed method, the OMS technique appears very noisy with 
many artifacts that destroy the image quality and prevent the good diagnosis.

The BS technique has more artifacts in displacement estimation tissue and the lesion 
in phantoms is covered with a large granular of speckle. However, our proposed method 
can ensure a good speckle suppression, displacement feature preservation and efficiency.

Fig. 16  Estimating tissue displacements of breast malignant tumor for the patient 14. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation

Fig. 17  Estimating tissue displacements of breast malignant tumor for the patient 15. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation
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By coupling the shrinkage wavelets and guided filter with monogenic signal, we can 
not only obtain a strong removing ability of noise, but also we can preserve the details of 
the displacement estimation tissue without strain degradation. From the index values in 
Tables 1, 2, 3, 4, 5 and 6, further prove the above description.

Fig. 18  Estimating tissue displacements of breast malignant tumor for the patient 16. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation

Fig. 19  Estimating tissue displacements of breast malignant tumor for the patient 17. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation
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It is clear from Table 1, that the SD in pixels of proposed method is lower than OMS 
and BS methods. This is explained by our solid algorithm to produce a denoising sub-
pixel estimation using filtering and monogenic extracted features (orientation, frequency 
and phase difference).

Fig. 20  Estimating tissue displacements of breast malignant tumor for the patient 18. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation

Fig. 21  Estimating tissue displacements of breast malignant tumor for the patient 19. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c Tissues displacement obtained with 
OMS method. d Tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation
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Table 2 demonstrates that the CNR of our proposed method were significantly higher 
than those in the OMS and BS techniques. This is explained by the effectiveness of 
our method to reduce the worm noise artifacts in displacement estimation by using 

Fig. 22  Estimating tissue displacements of breast malignant tumor for the patient 20. a Simulated pre com-
pression B-mode image. b Simulated post compression B-mode image. c tissues displacement obtained with 
OMS method. d tissues displacement obtained with BS method, and e tissues displacement obtained with 
proposed method: areas selected by a rectangle are used for CNR computation

Table 7  In vivo results comparison of  SD in  pixels for  the proposed method with  OMS 
and BS methods for 20 patients

OMS method BS method Proposed method

SD in pixels: patient 1 5.88 5.28 4.98

SD in pixels: patient 2 4.76 4.11 3.92

SD in pixels: patient 3 3.87 3.27 2.87

SD in pixels: patient 4 8.32 7.98 6.54

SD in pixels: patient 5 6.20 4.76 3.55

SD in pixels: patient 6 8.98 8.21 7.98

SD in pixels: patient 7 4.87 3.68 2.43

SD in pixels: patient 8 3.01 2.97 2.15

SD in pixels: patient 9 4.65 3.93 2.84

SD in pixels: patient 10 3.10 2.31 2.11

SD in pixels: patient 11 5.85 4.97 3.48

SD in pixels: patient 12 7.43 5.87 4.75

SD in pixels: patient 13 8.09 6.21 5.89

SD in pixels: patient 14 4.72 4.65 4.12

SD in pixels: patient 15 3.52 2.47 2.33

SD in pixels: patient 16 5 4.71 4.53

SD in pixels: patient 17 6.18 4.81 3.76

SD in pixels: patient 18 8.31 6.93 5.92

SD in pixels: patient 19 7.16 5.24 4.51

SD in pixels: patient 20 5.41 3.64 3.02
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Table 8  Comparison of  CNR for  the proposed method with  OMS and  BS methods for  20 
patients

B-mode image OMS method BS method Proposed method

CNR: patient 1 0.31 0.39 0.41 0.62

CNR: patient 2 1.62 1.97 2.01 2.32

CNR: patient 3 0.62 1.12 1.20 1.27

CNR: patient 4 1.14 1.98 2.03 2.47

CNR: patient 5 0.74 1.31 1.40 1.76

CNR: patient 6 0.16 0.93 1.21 1.43

CNR: patient 7 1.23 1.76 1.87 1.97

CNR: patient 8 0.18 0.86 0.92 1.16

CNR: patient 9 0.95 1.32 1.99 2.23

CNR: patient 10 0.19 0.49 0.52 1.23

CNR: patient 11 0.53 0.97 1.12 1.45

CNR: patient 12 0.61 1.32 1.63 1.97

CNR: patient 13 0.73 1.83 1.98 2.31

CNR: patient 14 0.39 0.84 0.89 1.36

CNR: patient 15 0.41 0.79 0.96 1.42

CNR: patient 16 0.72 1.14 1.38 1.79

CNR: patient 17 0.87 1.34 1.64 1.84

CNR: patient 18 0.74 1.20 1.56 1.95

CNR: patient 19 0.73 1.17 1.53 2.09

CNR: patient 20 0.39 1.16 1.37 1.79

Table 9  Comparison of PSNR for the proposed method with OMS and BS methods for 20 
patients

OMS method BS method Proposed method

PSNR: patient 1 23.95 26.17 29.31

PSNR: patient 2 12.80 15.30 17.82

PSNR: patient 3 24.87 31.02 34.91

PSNR: patient 4 15.83 17.21 19.78

PSNR: patient 5 37.85 42.80 44.71

PSNR: patient 6 14.36 16.21 20.31

PSNR: patient 7 30.96 37.31 38.43

PSNR: patient 8 27.84 32.80 37.96

PSNR: patient 9 37.53 39.12 41.02

PSNR: patient 10 29.31 34.91 36.17

PSNR: patient 11 18.98 20.93 25.95

PSNR: patient 12 32.61 38.59 44.18

PSNR: patient 13 12.44 14.71 17.50

PSNR: patient 14 39.42 41.60 43.11

PSNR: patient 15 43.04 46.13 52.64

PSNR: patient 16 23.80 27.07 32.85

PSNR: patient 17 19.71 22.95 23.96

PSNR: patient 18 23.05 25.93 33.71

PSNR: patient 19 24.61 30.19 31.88

PSNR: patient 20 31.96 33.36 35.87
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Table 10  Comparison of SSIM for the proposed method with OMS and BS methods for 20 
patients

OMS method BS method Proposed method

SSIM: patient 1 0.89 0.91 0.95

SSIM: patient 2 0.76 0.80 0.86

SSIM: patient 3 0.94 0.95 0.98

SSIM: patient 4 0.69 0.74 0.78

SSIM: patient 5 0.83 0.86 0.91

SSIM: patient 6 0.79 0.80 0.89

SSIM: patient 7 0.88 0.92 0.99

SSIM: patient 8 0.75 0.79 0.81

SSIM: patient 9 0.78 0.83 0.84

SSIM: patient 10 0.81 0.82 0.90

SSIM: patient 11 0.92 0.94 0.97

SSIM: patient 12 0.75 0.79 0.83

SSIM: patient 13 0.69 0.70 0.78

SSIM: patient 14 0.77 0.81 0.85

SSIM: patient 15 0.91 0.94 0.97

SSIM: patient 16 0.78 0.79 0.85

SSIM: patient 17 0.86 0.88 0.93

SSIM: patient 18 0.65 0.73 0.77

SSIM: patient 19 0.48 0.53 0.69

SSIM: patient 20 0.87 0.91 0.95

Table 11  Comparison of execution time for the proposed method with OMS and BS meth-
ods for 20 patients

OMS method BS method Proposed method

Execution time (s): patient 1 76 74 68

Execution time (s): patient 2 54 50 45

Execution time (s): patient 3 36 34 28

Execution time (s): patient 4 52 49 39

Execution time (s): patient 5 31 28 18

Execution time (s): patient 6 49 45 34

Execution time (s): patient 7 55 50 42

Execution time (s): patient 8 81 78 69

Execution time (s): patient 9 42 39 27

Execution time (s): patient 10 35 30 21

Execution time (s): patient 11 59 55 47

Execution time (s): patient 12 66 62 57

Execution time (s): patient 13 54 46 39

Execution time (s): patient 14 44 40 32

Execution time (s): patient 15 63 59 49

Execution time (s): patient 16 23 19 10

Execution time (s): patient 17 62 54 48

Execution time (s): patient 18 41 35 29

Execution time (s): patient 19 57 55 50

Execution time (s): patient 20 43 39 35
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shrinkage wavelets and guided filter, contrary to OMS method that uses a Difference of 
Gaussian Filter (DoG), or to BS technique that uses a Difference Of Poisson Filter (DoP), 
and they do not succeed to eliminate the noise affecting the quality of the displacement 
estimation.

Table 3 shows that the proposed method is the best technique of displacement estima-
tion, which could be used for ultrasound elastography; it gives the highest PSNR value 
compared with OMS and BS methods. It can be seen that the proposed method gets 
better results both in terms of speckle reduction and signal detail preservation. This is 
explained by the implementation of the shrinkage wavelet combined with guided filter 
instead of the DoG or DoP filters corresponding respectively to OMS and BS techniques.

According to Table 4, the OMS method gets the lowest SSIM value, which means that 
the output image has less similar structure. The main reason for which is that the DoG 
filter cannot filter enough noise.

The BS technique has a higher SSIM values than that OMS method, and it do not per-
form well on similarity. The reason is associated with the DoP filter in BS technique, 
which in turn failed also to filter the noise.

The proposed method has higher SSIM values than those OMS and BS methods, and 
we obtained favorable results. It can be readily observed that the coupling between 
shrinkage wavelets and guided filter combined with monogenic features, outperform 
other techniques with higher SSIM values in images. The proposed approach has more 
similar structure and performs better on maintaining the structure of tissue displace-
ment estimation image.

Table 12  Comparison of SDCT for the proposed method with OMS and BS methods for 20 
patients

SDCT between the proposed method  
and the OMS technique (s)

SDCT between the proposed 
method and the BS technique 
(s)

Patient 1 8 6

Patient 2 9 5

Patient 3 8 6

Patient 4 13 10

Patient 5 13 10

Patient 6 15 11

Patient 7 13 8

Patient 8 12 9

Patient 9 15 12

Patient 10 14 9

Patient 11 12 8

Patient 12 9 5

Patient 13 15 7

Patient 14 12 8

Patient 15 14 10

Patient 16 13 9

Patient 17 14 6

Patient 18 12 6

Patient 19 7 5

Patient 20 8 4
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The processing speeds of each method are also studied. The three methods (Proposed, 
OMS and BS methods) are performed on a Pentium 4, 4.2 GHz with 6 GB RAM using 
MATLAB.

From Table 5, the running time of our proposed approach is shorter than the running 
time of OMS and BS methods. Table 6 shows the SDCT between the proposed method 
and the OMS technique and the SDCT between the proposed method and the BS tech-
nique, in order to confirm that our approach is the fastest speed compared to the other 
methods.

The OMS method takes a lot of time, although the DoG filtering algorithm gives it a 
more computational time to eliminate artifacts and noise before application of mono-
genic model. The BS method also requires much more time; the implementation of the 
DoP algorithm takes more time to filter images before extraction of tissue displacements 
information. These limits have been exceeded when we have introduced our proposed 
method. By parallel implementation algorithm of shrinkage wavelets and guided filter in 
the proposed approach, we can gain a very short time computation.

The computing time to perform displacement estimation depends also on the size 
of the ultrasound B-mode images (pre and post compression). It is very clear to note 
that the proposed method improves the estimation of the deformation in ultrasound 
elastography.

Breast clinical ultrasound image

To validate quantitatively and qualitatively the effectiveness of our proposed algorithm, 
we simulated it on ultrasound images of the breast, and we compared it to both methods 
(OMS and BS methods).

The tissue displacement estimation obtained from cited methods are illustrated in 
Figs. 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 and 22, the proposed 
approach gave a better estimate of breast tissue displacement than OMS and BS tech-
niques; the displacement estimation tissue in the case of our developed approach is 
devoid of artifacts and noise with good preservation of breast texture tissue. We notice 
a good accuracy of tumor location, the lesion is well defined in its position, no noise, no 
artifact, and the image is clear enough to be read by the doctor to ensure a more accu-
rate diagnosis.

For a quantitative assessment of results, the SD, CNR, PSNR, SSIM, execution time 
and the SDCT are computed for each method.

It is seen from Table 7 that the SD in pixels of proposed method is lower than that 
obtained with OMS and BS methods. Thanks to the use of shrinkage wavelets and 
guided filter algorithm which eliminates all notions of noise in the image, coupled with 
the monogenic model which estimates a sub-pixel displacement with good preservation 
of texture. This explains the smaller value of SD in the proposed model. Our strategy has 
announced its success from these results, nor the OMS method that used a DoG filter 
can assume a good sub pixel precision estimation in front of our proposed method, nei-
ther can the BS method do it perfectly.

Since the noise is much diffused in the image, the OMS and BS methods have not suc-
ceeded in eliminating perfectly the noise. So in all the cases, the error will be very great, 
which explains these obtained results.
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A further fundamental point concerns CNR of proposed method, OMS and BS meth-
ods, is calculated, a criterion often involved in the evaluation of ultrasound image pro-
cessing techniques [22, 23].

Table 8 demonstrates that the displacement estimation with proposed model gives a 
higher CNR than these B-mode images, OMS and BS techniques.

Despite the fact that the CNR is good in both methods: OMS and BS techniques, the 
CNR is better in the case of the proposed model, better contrast, better filtering, good 
visibility of the image details.

These results are explained by the fact that the noise is eliminated by two steps in the 
developed model; the first step is related to the shrinkage wavelet which eliminates the 
noise according to the adapted threshold, and the second step consists of filtering the 
noise still existing in the low frequencies, information still containing noise. In the other 
methods (OMS and BS) we find only the DoG and the DoP filters that processes the 
images in a single band, band-pass filtering, which does not solve perfectly the noise 
problem.

Our proposed strategy will solve much more the problems of artifacts and noise, 
before integrating monogenic model of displacements estimation and that will necessar-
ily improve the results in ultrasound elastography.

From Table 9, it can be seen that the OMS method obtains the lowest PSNR value. The 
reason for which, is that it does not filter the large noise in the low frequency band. The 
BS technique also does not perform well according to PSNR. This is explained by the 
DoP filter deficiency in the non-preservation of the details in the low frequency compo-
nent with imperfect filtering of noises.

For the proposed method; it provides a better PSNR value than those in the OMS and 
BS techniques and it demonstrate a strong de-speckling ability. The filtering technique 
adopted by the selection of the wavelet threshold and the guided filter in the proposed 
approach, contributes effectively to preserve the details in all frequency bands, which 
improves the resolution of displacement estimation image, and perfectly reduces the 
noise.

It can be observed from Table 10, that the proposed method outperforms other tech-
niques with the highest SSIM value. The BS technique also provides a satisfactory result, 
but still having lower SSIM value than our proposed method. However, the reason why 
OMS technique method did not get a favorable SSIM value, is that the DoG filter may 
suffer from speckle noise in the low frequency band, as often appears on an edge. The 
proposed filtering strategy is suitable for removing the speckle in ultrasound images and 
improving the image qualities as well, which explain the satisfactory result obtained with 
proposed approach.

Another evaluation criteria using computational time is calculated for these three 
methods (Proposed, OMS and BS methods) to demonstrate the rapidity of our method. 
The simulation results were done on a MATLAB executed on a desktop PC with a Pen-
tium 4, 4.2 GHz, 6 GB RAM running Windows 7 using MATLAB.

It is seen from Tables 11 and 12, that the proposed model is much faster speed than 
those OMS and BS methods. The OMS technique suffers from a wide range of noise 
covering B-mode images, this noise will require much processing steps by the filter to 
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denoise it, and it will necessarily take a longer computation time to get the displacement 
estimation result.

The weak point of the BS method is in its complex algorithm, in terms of non-perfect 
filtering and very long calculation time to estimate the tissues displacements, so the BS 
method cannot meet the requirements of ultrasound elastography and it takes a lot of 
time running.

The parallel implementation of our proposed algorithm via non-iterative fast filtering 
accelerates the displacement estimation result.

Given all this, it is very clear to confirm the excellence of the proposed method as a 
quick method in the case of displacement estimation of breast tissue that is suitable to 
be used in ultrasound elastography.

In this article we have improved the OMS technique used in quasi-static ultrasound 
elastography, we have adapted the use of shrinkage wavelet and guided filter with mono-
genic model to obtain a good qualitative and quantitative results.

We have succeeded in improving breast tissue displacement; our proposed model 
will solve several problems related to noise and low contrast in ultrasound elastography 
images. The implementation of our method will help doctors for a reliable and accurate 
diagnosis for the evaluation of tumor stiffness with more comfort due to its rapid execu-
tion time.

Conclusion
In this paper, we proposed a new method for the analysis of breast tissue displacements 
estimation, the adopted methodology has improved the OMS technique used to esti-
mate the strain in Breast ultrasound elastography. The new utility of proposed frame-
work leads to improve the diagnosis of breast pathology.

A shrinkage wavelets and guided filter combined with monogenic signal technique 
between a pair of images is presented, to estimate with accuracy the breast tissues 
deformation.

The proposed approach was found very effective in tissue displacements estimation in 
ultrasound elastography. It can preserve correct texture details and reduce artifacts gen-
erated by speckle noises and target movement.

Moreover, the implementation of proposed approach is discussed, using synthetic 
ultrasound elastography Phantom and in  vivo B-mode breast images of 20 patients 
with malignant tumors. It has been observed that the proposed method works much 
better compared to OMS and BS techniques and gives better SD, higher CNR, greater 
PSNR, more suitable SSIM and shorter run time than OMS and BS methods. There-
fore, our selected method gives encouraging results and may facilitate the breast tumors 
diagnosis.

Generally, the proposed enhancement method is valuable in improving the quality of 
displacement estimation, used in breast ultrasound elastography, for better visualization 
and clinical assessment.
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