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Abstract

Extracting the number of objects in perceived scenes is a fundamental

cognitive ability. Number processing is proposed to rely on two consecutive

stages: an early object location map that captures individuated objects in a

location-specific way and a subsequent location-invariant representation that

captures numerosity at an abstract level. However, it is unclear whether this

framework applies to small numerosities that can be individuated at once

(“subitized”). Here, we reanalyzed data from two electroencephalography

(EEG) experiments using multivariate pattern decoding to identify location-

specific and location-invariant stages of numerosity processing in the

subitizing range. In these experiments, one to three targets were presented in

the left or right hemifield, which allowed for decoding target numerosity

within each hemifield separately (location specific) or across hemifields

(location invariant). Experiment 1 indicated the presence of a location-specific

stage (180–200 ms after stimulus), followed by a location-invariant stage

(300 ms after stimulus). A time-by-channel searchlight analysis revealed that

the early location-specific stage is most evident at occipital channels, whereas

the late location-invariant stage is most evident at parietal channels.

Experiment 2 showed that both location-specific and location-invariant com-

ponents are engaged only during tasks that explicitly require numerosity

processing, ruling out automatic, and passive recording of numerosity. These

results suggest that numerosity coding in subitizing is strongly grounded on an

attention-based, location-specific stage. This stage overlaps with the subse-

quent activation of a location-invariant stage, where a full representation of

numerosity is finalized. Taken together, our findings provide clear evidence

for a temporal and spatial segregation of location-specific and location-

invariant numerosity coding of small object numerosities.
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1 | INTRODUCTION

How the brain processes numerosity, for instance, during
object enumeration, has interested cognitive neuroscien-
tists for decades. According to traditional models
(Dehaene & Changeux, 1993; Meck & Church, 1983;
Verguts & Fias, 2004; Zorzi et al., 2005), numerosity cod-
ing is the result of a multistage process that transforms
the initial nonsymbolic sensory input into an abstract
representation of the number of an object set (but see
Dakin et al., 2011). These models rely on a core assump-
tion about a (broad) distinction between location-specific
and location-invariant stages of numerosity processing.

The location-specific stage (“object location map”)
represents the position of the relevant items in a
“normalized” fashion (i.e., irrespective of other physical
factors, such as size), so that their numerosity is reflected
in the number of spatially distinct positions occupied by
the elements. Psychophysical (Burr & Ross, 2008) and
computational (Stoianov & Zorzi, 2012) studies have
further supported the plausibility of a spatially selective
processing stage of numerosity coding. This stage is not
specifically tuned to numerosity but provides a represen-
tation that is shared by many visuospatial functions,
including numerosity coding (Dehaene et al., 2003). In
(a) subsequent location-invariant stage(s) of numerosity
processing, the numerosity of the set of objects is repre-
sented in an abstract way, independently of the location
in the visual field. The final output is a representation of
the specific numerical value of the object set (Verguts &
Fias, 2004).

Neuroimaging findings (Eger et al., 2009, 2015;
Roggeman et al., 2011) have lent initial support to this
distinction, in particular for the existence of location-
invariant numerosity representations in parietal areas
(Eger et al., 2015; Harvey & Dumoulin, 2017; Harvey
et al., 2015; Viswanathan & Nieder, 2020). However,
studies that aimed at providing evidence for a two-stage
model by isolating and segregating both location-specific
and location-invariant stages are scant. Additionally, ana-
tomical segregation alone could prove difficult to reach a
firm conclusion about the existence of two independent
stages of numerosity coding. For instance, whether the
stages operate simultaneously or sequentially cannot be
easily addressed on the basis of anatomical segregation.
Thus, to demonstrate the existence of a sequential two-
stage processing mode of numerosity, the higher time res-
olution provided by electroencephalography (EEG) may
offer more stringent evidence for a temporal dissociation
between location-specific and location-invariant stages of
numerosity processing.

Some previous EEG findings could be compatible
with the existence of either an object location map in

early stages of processing (although with disagreement
on the exact time window, i.e., from about 75 to 150 ms
after stimulus; see Hyde & Spelke, 2009; Park
et al., 2016, respectively) or a more abstract representa-
tion of numerosities (occurring at approximately
250–300 ms; see Libertus et al., 2007). However, there
has been no systematic attempt to directly test in a single
study the time course of location-specific versus location-
invariant components of numerosity coding. The only
recent exception in this direction (Fornaciai et al., 2017)
found an inversion of the early EEG responses in
posterior areas (100 ms after display onset) for the
numerosities in the approximate number system range
(i.e., 8–32) for upper versus lower stimulus presentations,
pointing towards location-specific numerosity coding.
This effect was followed by a second response occurring
at later time (200 ms after stimulus onset), which was
sensitive to the numerosities in a location-invariant fash-
ion. However, this is so far the only electrophysiological
support to the existence of a dual-mode coding of
numerosity, which may become problematic for the cred-
ibility of models of numerosity coding. Moreover, the
study focused on a specific numerosity range, the typical
one used in estimation tasks. Therefore, whether the
dual-mode coding of numerosity applies to all
numerosities, and to small object sets in particular, has
remained elusive.

Small object sets have a special status in enumeration
tasks, leading to the so-called subitizing effect (Kaufman
et al., 1949; Mandler & Shebo, 1982). Subitizing is the
effortless processing of a small set of items (up to three to
four elements), and it seems to be a universal trait of
humans (including infants) and several animal species
(for a review, see Feigenson et al., 2004). According to
some influential models (e.g., Feigenson et al., 2004;
Piazza, 2010; Trick & Pylyshyn, 1994), the effect is con-
sidered a main feature of exact enumeration (as opposed
to approximate enumeration that applies to larger
numerosities), wherein the visual system is capable of
individuating each element of the relevant set to
ensure that it is enumerated once and only once
(Pylyshyn, 2001). Moreover, previous studies (Ansari
et al., 2007; Cavanagh & Alvarez, 2005; Vetter
et al., 2011; Xu & Chun, 2009) have highlighted a strong
link between object individuation and attention, thus
characterizing subitizing as an attention-based effect. For
all these reasons, subitizing seems to rely on a different
mechanism with respect to enumeration or estimation
of larger quantities or to implicit (passive) numerosity
coding. Does subitizing still reflect the outcome of a
dual-mode coding of numerosity? In other words, is there
a two-stage process in subitizing, as predicted by models
of numerosity perception?
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Two studies provided an electrophysiological distinc-
tion between subitizing and the processing of
larger numerosities (Fornaciai & Park, 2017; Hyde &
Spelke, 2009), with small numerosities activating stages
in the mid-latency range (i.e., around 150–180 ms after
stimulus onset). The distinction was taken as further
support to the suggestion that the neural circuitry dedi-
cated to small numerosity coding is different from the
mechanism for estimating larger numerical quantities.
However, this distinction was not directly grounded on
the test for a location-specific versus location-invariant
component. Therefore, whether the activation of the
mid-latency stages (i.e., approximately 180 ms after
stimulus onset) found in these previous studies for
subitizing still rely on a location map has remained
elusive.

Overall, because no direct test for temporal segrega-
tion of a location-specific versus location-invariant
component in subitizing has been conducted so far, it
has remained unclear the extent to which the dual-
mode coding of numerosity applies to subitizing. Here,
we provide direct evidence for a temporal (and spatial)
segregation of the stages involved in subitizing. To
this aim, we exploited data from an EEG study on
individuation of small numerosities (Mazza &
Caramazza, 2011). This study focused on the N2pc
(Eimer, 1996) as an electrophysiological marker of
target individuation and their variation in numerosity.
The (traditional) approach for the event-related poten-
tial (ERP) analysis of lateralized responses used in that
study could not be applied to segregate location-specific
versus location-invariant stages. However, as we
elaborate below, the experimental design is optimally
suited for using multivariate pattern analysis (MVPA) to
test for a dissociation between location-specific and
location-invariant neural numerosity representations in
terms of time course and temporal order. Crucially, the
objects to be enumerated were presented in either the
left or right hemifield. By decoding target numerosity
within each hemifield separately (location specific) or
across hemifields (location invariant), we were able to
disentangle the time courses of location-specific versus
location-invariant stages: to isolate the location-specific
stage, we trained a classifier to discriminate targets
appearing in the left hemifield and tested the classifier
using targets appearing in the same hemifield. The
same was done for targets appearing in the right hemi-
field. Importantly, the location-specific stage is expected
to be processed mainly contralaterally to the hemifield.
We therefore tested for the lateralization of location-
specific numerosity decoding effects, which served as
the critical criterion for the location-specific stage: an
interaction of decoding of left versus right target

numerosities in the right versus left hemisphere can
only be explained by location-specific numerosity
representations. Testing for this interaction is crucial
because within-hemisphere decoding can also be driven
by location-invariant numerosity representations. This
approach thereby provides a highly selective test that
goes beyond previous attempts to isolate location-
specific numerosity representations. To isolate the
location-invariant stage, we trained a classifier to dis-
criminate targets appearing in the left hemifield and
tested the classifier using targets appearing in the right
hemifield (and vice versa). Thus, numerosity decoding
across hemifields can only be explained by location-
invariant numerosity representations. Taken together,
this decoding approach provides the critical selectivity
for segregating location-specific and location-invariant
stages. Finally, we performed a time-by-channel search-
light analysis for location-specific and location-invariant
numerosity decoding to thereby test for the spatial seg-
regation of the dual-mode coding of numerosity.

Following the literature on the subitizing effect in
human adults, where the relevant items have to be
enumerated (e.g., Mandler & Shebo, 1982; Trick &
Pylyshyn, 1993), Experiment 1 used an explicit enumera-
tion task requiring to report the number (or to detect a
specific numerosity) of targets presented among dis-
tracters. The use of distracting objects is not a specific
requirement for the occurrence of subitizing. In fact, in
the original study (Mazza & Caramazza, 2011), the pres-
ence of distractors was mainly motivated by the need to
have a context similar to most of the EEG studies on
attentive individuation. However, it is noteworthy that
the inclusion of distracting objects should not modify the
nature of the subitizing effect, as shown by previous
research (Mazza et al., 2013; Trick & Pylyshyn, 1993). In
addition, the use of distracter elements ensures that the
overall area occupied by the items remains constant
despite the variation in target numerosity. This allowed
us to (at least partially) exclude an explanation of the
effects in terms of sensory-based coding, namely, that
any distinction across numerosities could be exclusively
related to a passive encoding of the variation in continu-
ous magnitudes, such as overall area (namely, the area
occupied by all the objects), that typically covary with
variation in numerosity.

Experiment 2 was conducted to test the extent to
which the effects found in Experiment 1 were ascribed
to “explicit” enumeration (the typical task used to
study subitizing in human adults, e.g., Trick &
Pylyshyn, 1994), or to an automatic, passive encoding
of target numerosities and their variation, as typically
seen in studies with larger object sets (e.g., Piazza
et al., 2004).
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2 | METHODS

Data were taken from Mazza and Caramazza (2011) and
analyzed here with a multivariate decoding approach to
characterize the generalization profiles of numerosity
representations at different time points. Thus, the
research question and the results obtained by the ana-
lyses used in the present study are fully independent
from Mazza and Caramazza (2011). Data of Experiment
1 were originally collected in two separate experiments
(Experiments 1 and 3, see Mazza & Caramazza, 2011,
hereafter Experiments 1a and 1b). Because both experi-
ments rely on similar enumeration processes, as also
indicated by both behavioral and EEG results (Mazza &
Caramazza, 2011), they were collapsed to increase power
for the EEG decoding procedure. In addition, it was veri-
fied that there were no significant differences in decoding
accuracies between the two experiments (see Section 2.4
for details).

2.1 | Participants

Twenty-four right-handed volunteers, with normal or
corrected-to-normal vision and no color blindness,
recruited among students of the University of Trento,
participated in Experiment 1 (collapsed Experiments 1a
and 1b: 20 females; mean age 20.8 years) and 12 in
Experiment 2 (all right-handed, eight females; mean age
22 years). They all provided their written informed
consent. The experimental procedures were conducted in
accordance with the declaration of Helsinki guidelines
and approved by the Ethics Committee for research
involving human participants at the University of
Trento, Italy.

2.2 | Stimuli and procedure

In both Experiments 1 (Experiments 1a and 1b) and 2, on
each trial, red and green diamond shapes were presented.
The display contained 16 diamonds, eight in each hemi-
field, and appeared for 150 ms. Participants had up to
1500 ms to respond, and the intertrial interval lasted
1500 ms (Figure 1a). In each trial, in one hemifield, one,
two, or three diamonds had a unique color (either red or
green), serving as targets. Experiments 1a and 2 included
also zero-target trials, which were removed for all ana-
lyses, except for a control analysis for Experiment 2. In
Experiments 1a and 2, there were 300 and 200 trials for
each numerosity from 1 to 3 and 300 and 600 trials for
zero-target condition, respectively. In Experiment 1b,
there were 416 trials per numerosity (from 1 to 3). In

Experiment 1a, participants had to report the exact num-
ber (0/1/2/3) of targets presented. In Experiment 1b, in
each block, participants decided (Yes/No) whether a spe-
cific target numerosity (designated at the beginning of
each block) was presented. In Experiment 2, the task was
to decide (Yes/No) whether at least one target was shown
on display. For further specific details, see Mazza and
Caramazza (2011).

2.3 | EEG recording and data
preprocessing

The EEG signal was recorded with BrainAmp
system (Brain Products GmbH, Munich, Germany—
BrainVision Recorder) from 25 electrodes (including
PO7 and PO8) with a 1000-Hz sampling rate (bandpass
filter: 0.01–200 Hz). A right earlobe channel was used
as online reference, and horizontal eye movements were
recorded through two channels positioned on the outer
canthi of both eyes. The continuous EEG signal
was off-line processed using EEGLAB (Delorme &
Makeig, 2004) and ERPLab (Lopez-Calderon &
Luck, 2014). The signal was down-sampled to 250 Hz,
low-pass filtered (40 Hz), and then re-referenced to the
average of both earlobe channels. Trials yielding correct
responses were segmented from �100 to 600 ms with
respect to stimulus onset and baseline corrected over
the 100 ms preceding the stimulus. Finally, those trials
containing artifacts were removed (when HEOG
exceeded �30 μV and/or any other channel exceeded
�80 μV; on average, 8.8% of trials were excluded). After
preprocessing, in Experiment 1a, for each numerosity,
the following average number of trials was used for the
analysis: 278.75 (one target), 269.25 (two targets),
and 288.25 (three targets); in Experiment 1b: 400
(one target), 392.44 (two targets), and 405.81
(three targets); and finally, in Experiment 2: 191.83
(one target), 193.67 (two targets), 190.17 (three targets),
and 578.5 (zero target).

2.4 | Multivariate pattern classification

To decode numerosity from EEG signals, the
CoSMoMVPA Toolbox (Oosterhof et al., 2016) was used.
The procedure for Experiments 1 and 2 was identical: for
each participant, channel, and condition, we generated
pseudotrials that were used for training and testing
a linear discriminant analysis (LDA) classifier: first,
we randomly divided the data into eight chunks.
For each chunk, we then generated an equal number of
pseudotrials consisting of the average of two trials each.
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We resampled each trial with a maximum number of
three times, that is, each trial was averaged with another,
randomly selected trial maximally three times. Moreover,
the partitions for classification training and testing were
balanced in terms of trial number within each participant
(using the Matlab function cosmo_balance_partitions of
the CoSMoMVPA Toolbox) to ensure that for each condi-
tion, the same number of pseudotrials was entered into
classification. As a result, the number of trials for each
chunk and numerosity was identical. Each chunk con-
tained on average 674 pseudotrials (225 per condition;
range 184–248) for Experiment 1 and 712 pseudotrials
(237 per condition; range 112–288; ranges reflect the vari-
ance between participants) for Experiment 2. Because
resampling was done for each chunk separately, data for
training and testing classification were guaranteed to be
independent.

A temporal searchlight MVPA was performed using a
temporal radius of two time bins (one bin = 4 ms), that
is, for each time point, EEG data from 2 preceding to
2 following time points was used for classification
(covering a range of 20 ms).

Location-specific numerosity representations should
be lateralized to the contralateral hemisphere, that is,
numerosity of left targets should be represented in the
right hemisphere (and thus be decoded better from right
electrodes) and vice versa for right targets. Because
within-hemifield decoding could in principle be
driven by both location-specific and location-invariant
numerosity representations, the interaction of hemifield-
and hemisphere-specific decoding thus provides a com-
pelling proxy for location-specific coding of numerosity.

Numerosity decoding was performed using either all
EEG channels or for left and right EEG channels sepa-
rately (excluding channels along the midline), using the
following multiclass decoding schemes: (1) for the
location-specific decoding, we used all channels to decode
targets for each hemifield separately, that is, we trained
and tested the classifier on targets appearing on the
left side only, and in a separate classification, we did
the same for targets appearing on the right side.
Classification performance was assessed using leave-
one-chunk-out cross validation: the classifier was trained
to decode numerosity using data of seven out of the eight

F I GURE 1 Stimuli and behavioral results. (a) Temporal sequence of a trial. (b) Mean response times of Experiments 1 and 2. Vertical

bars represent standard error of the mean
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chunks and tested on its ability to decode numerosity
using data of the held-out chunk. This was iterated eight
times, leaving out each chunk once. Resulting decoding
accuracies were then averaged across the iterations and
across hemifield. (2) For the location-invariant decoding,
we trained the classifier, using all channels, to discrimi-
nate the numerosity of left targets and tested the classifier
on its ability to decode numerosity of right targets. The
same was done vice versa, and resulting decoding accura-
cies were averaged. (3) For the location-specific/
hemisphere-specific decoding, we repeated the location-
specific decoding for left and right channels separately,
that is, for targets appearing on the left side, we used
either right (contralateral) or left (ipsilateral) channels
and vice versa for targets appearing on the right side.
Resulting decoding accuracies were averaged only across
the iterations but not across hemifield or hemisphere.

For each decoding scheme, resulting accuracy time
courses were entered into one-tailed one-sample t tests
across participants against chance (=33.3%). For the loca-
tion-specific/hemisphere-specific decoding, we also per-
formed repeated-measures ANOVA with the factors
HEMIFIELD and HEMISPHERE. To correct for multiple
comparisons, we used a cluster-based Monte Carlo simu-
lation algorithm as implemented in the CoSMoMVPA
Toolbox (Oosterhof et al., 2016). We used a threshold of
p = 0.05 (one-tailed) at the cluster level, an initial
threshold of p = 0.001 per time bin, and 10,000 iterations
of Monte Carlo simulations. Based on the initial
p threshold, it is estimated how many time bins would be
expected to pass this threshold by chance (i.e., are false
positives). Monte Carlo simulations are used to estimate
cluster sizes of temporally adjacent false positives. This is
done by randomly flipping the sign of decoding accura-
cies (over all time points, which preserves the temporal
smoothness in individual subjects) after subtracting
decoding at chance (i.e., 1/3 for numerosity decoding).
The resulting null distribution of cluster sizes is then
compared with the actually observed cluster size (at the
initial p threshold) to compute the likelihood that an
observed cluster occurs by chance (i.e., the cluster
threshold).

To test whether there were any significant differences
between Experiments 1a and 1b, we performed
independent t tests between decoding accuracy time
courses from Experiments 1a and 1b for each decoding
scheme (location-specific decoding and location-specific/
hemisphere-specific decoding). Resulting t time courses
were corrected for multiple comparisons as described
above. For all of the decoding schemes, there were no
significant differences between Experiments 1a and 1b.

Finally, we computed Bayes factors (BFs) for Experi-
ment 2 to estimate the likelihood for the presence versus

absence of decoding accuracies different from chance.
Bayesian statistical analyses were computed using the
bayesFactor toolbox for Matlab (https://github.com/
klabhub/bayesFactor), with a default Cauchy prior width
of r = 0.707 for effect size.

2.5 | Time-by-channel searchlight MVPA

To provide further evidence for a segregation between
the location-specific and location-invariant stages and to
investigate the topographical distribution of these stages
on the scalp, we performed a searchlight analysis across
time and EEG channels. This was realized by crossing
the feature neighborhoods of the temporal dimension
(radius = two time bins around each center time bin)
and the spatial dimension (radius = two EEG
channels around each center channel), resulting in
time-by-channel neighborhoods (Oosterhof et al., 2016).
For each time-by-channel neighborhood, we performed
the location-specific and location-invariant numerosity
decoding using the same parameters and procedures as
described above, except that for the location-specific
decoding, resulting accuracy maps were not averaged
across hemifields. Resulting time-by-channel maps were
corrected for multiple comparisons using cluster-based
Monte Carlo simulations as described above, with the
specification that clusters do not have to be connected
by neighboring time points, which increases the
threshold to reach significance but allows more accurate
inferences about time points of significant effects
(Oosterhof et al., 2016). The time-by-channel accuracy
maps were converted into FieldTrip structures to
generate topographical plots (Oostenveld et al., 2011) for
visualization.

3 | RESULTS

3.1 | Behavioral results

The main findings from the behavioral analyses are sum-
marized below and shown in Figure 1b. For detailed
descriptions, see Mazza and Caramazza (2011). For
Experiments 1 (a and b) and 2, proportion of correct
responses and reaction times (RTs, calculated for
correct responses between 200 and 1500 ms) were mea-
sured. As Experiments 1a and 1b yielded comparable
results, the data were collapsed. All values were submit-
ted to repeated-measures ANOVAs with numerosity
(three levels) as within-subjects factor.

In Experiment 1, the ANOVA on RTs revealed a sig-
nificant effect of Target numerosity (F(2, 46) = 40.002,
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p < 0.001, η2p ¼ 0:635). RTs were slower for two than one
and three targets (ps < 0.001). Also for accuracy, target
numerosity was significant (F(2, 46)= 21.020, p<0.001,
η2p ¼ 0:478 ). In line with RTs, the proportion of correct
responses was lower for two than one and three targets
(ps < 0.001). In Experiment 2, the ANOVA on RTs only
showed a trend towards significance for target
numerosity (F(3, 33)= 3.259, p= 0.053, η2p ¼ 0:229 ). RTs
were faster when two and three targets were presented
compared with one-target condition (ps < 0.039). No
effect was significant with accuracy data (p= 0.095).

3.2 | EEG results

3.2.1 | Experiment 1

To investigate the time course of location-specific and
location-invariant numerosity representations, we first
performed multivariate pattern decoding on target
numerosity (1, 2, and 3) for each hemifield separately
(within-hemifield decoding) and across hemifields,
respectively. For the location-specific decoding, we
trained and tested the classifier on targets from the same
hemifield. For the location-invariant decoding, we
trained the classifier on left targets and tested it on right
targets and vice versa. All channels were used in this
analysis. For each time point and decoding test, one-
tailed one-sample t tests were performed. Location-
specific and location-invariant decoding accuracies were

compared using paired samples t tests. We found that
location-specific numerosity representations were reliably
present from 180 ms after stimulus (peaking around
270–320 ms after stimulus onset). Location-invariant
representations started at approximately 300 ms, peaking
much later (around 550 ms after stimulus onset). Signifi-
cant differences between location-specific and location-
invariant decoding started at 184 ms after stimulus onset
(Figure 2a and Table 1).

Whereas the location-invariant decoding provides
unambiguous evidence about location-invariant numerosity
representations, the location-specific decoding could
theoretically also be driven by ipsilateral (and thus loca-
tion invariant) numerosity representations. To provide
additional, compelling evidence for the location-specific
decoding, we tested whether the location-specific
decoding is stronger for contralateral as compared with
ipsilateral channels with regard to the hemifield in
which the targets appeared. We therefore repeated the
location-specific numerosity decoding for left and
right channels separately. As predicted, we found
stronger decoding in contralateral versus ipsilateral
channels (Figure 2b and Table 1). A repeated-measures
ANOVA with the factors HEMIFIELD (left and right
targets) and HEMISPHERE (left and right channels)
revealed a significant interaction between HEMIFIELD
and HEMISPHERE after 224 ms, with a second
peak at 508 ms after stimulus onset (significant
interaction effect ranges [min–max]: F(1, 23)
= 7.9–44.4, p = 9.7e-03–8.4e-07, η2p ¼ 0:26 – 0:66).

F I GURE 2 Numerosity decoding in Experiment 1. (a) Location-specific and location-invariant decoding using all channels. The black

horizontal line indicates significant differences between location-specific and location-invariant decoding. (b) Location-specific decoding for

left and right channels separately. Black horizontal lines indicate a significant interaction between HEMIFIELD and HEMISPHERE. In both

(a) and (b), colored horizontal lines indicate significant decoding accuracies above chance. All significance tests are corrected for multiple

comparisons
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3.2.2 | Experiment 2

Experiment 2 was identical to Experiment 1 except that
participants just had to indicate the presence or absence
of targets irrespective of their numerosity. For all
numerosity decoding tests, no significant effects were
observed, and apart from trends for location-specific and
location-invariant decoding around 300 ms, decoding
accuracies fluctuated around chance (Figure 3a,b).

3.2.3 | Control analyses

Because the sample size was lower in Experiment
2 (N = 12) than in Experiment 1 (N = 24), we also tested

for the possibility that Experiment 2 did not have enough
power to detect location-specific and location-invariant
numerosity representations. We used three control ana-
lyses: first, we computed Bayesian comparisons to test
the strength of evidence for H1 and H0. This revealed
trends for location-specific and location-invariant
numerosity decoding around 300 ms and for location-
specific/hemisphere-specific decoding (right targets)
around 280–300 ms after stimulus onset (BFs > 10).
Importantly, the decoding profiles did not correspond
with the decoding profiles of Experiment 1. Moreover,
several time windows that overlapped with the location-
specific and location-invariant stages found in
Experiment 1 showed stronger evidence for H0
(BFs < 0.3), which argues against the possibility that

TAB L E 1 Statistical information about decoding onsets, peaks, and significant time windows for the different numerosity decoding

analyses in Experiment 1

Location
specific

Location
invariant

Location specific/hemisphere specific

Left
hemisphere/
left hemifield

Left
hemisphere/
right hemifield

Right
hemisphere/
left hemifield

Right
hemisphere/
right hemifield

Decoding onset (s) 0.116 0.316 0.248 0.224 0.192 0.172

Onset accuracy � SEM 0.35 � 0.0045 0.35 � 0.0056 0.35 � 0.0052 0.35 � 0.0078 0.35 � 0.0073 0.35 � 0.0057

Peak decoding (s) 0.276 0.552 0.588 0.496 0.28 0.452

Peak accuracy � SEM 0.42 � 0.0071 0.39 � 0.0081 0.39 � 0.0086 0.40 � 0.0085 0.43 � 0.0116 0.39 � 0.0086

Max–min t(23) 2.8–14.1 3.4–8.2 3.1–7.2 4.5–8.7 1.4–9.6 2.9–9.1

Min–max p 4.9e-03–3.9e-13 1.1e-03–1.3e-08 2.3e-03–1.2e-07 8.8e-05–4.6e-09 9.1e-02–8.9e-10 4.5e-03–2.1e-09

Abbreviation: SEM = standard error of mean.

F I GURE 3 Numerosity decoding in Experiment 2 (control experiment). (a) Location-specific and location-invariant decoding using all

channels. (b) Location-specific decoding for left and right channels separately. In both (a) and (b), no significant decoding accuracies above

chance or interactions were observed. To highlight trends for the presence or absence of numerosity decoding, Bayes factors (BFs) are

plotted as red/blue/gray lines (evidence for H1, BFs > 3; thick lines BFs > 10; gray lines indicate differences between location-specific and

location-invariant decoding) or black lines (evidence for H0; BFs < 0.3). (c) Decoding of each target numerosity versus zero-target trials

(task-relevant dimension). Colored horizontal lines indicate significant decoding accuracies above chance. All significance tests are corrected

for multiple comparisons
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Experiment 2 targeted similar location-specific and
location-invariant stages, and that they were not detected
because of weaker effects due to lower power. Second, to
test whether the EEG data in Experiment 2 is generally
sufficiently powerful for successful decoding, we tested
whether targets (1, 2, and 3) could be discriminated from
zero-target trials. Because this comparison targeted task-
relevant information, we would expect that each of the
numerosities can be successfully discriminated from
zero-target trials. This was the case for each numerosity.
Notably, each numerosity could be decoded equally well
from zero-target trials, further indicating that the three
numerosities were not processed differently (Figure 3c).
Third, to test whether 12 participants are generally suffi-
cient to demonstrate significant effects for location-
specific and location-invariant numerosity decoding, we
used a bootstrapping approach, in which we randomly
selected 12 participants of Experiment 1 and repeated the
statistical analysis. In each of 1000 iterations, we
replicated the significant decoding of location-specific and
location-invariant numerosity representations (for further
information on this analysis, see supporting information
and https://osf.io/kb23q/). Taken together, these results
suggest that the numerosity representations decoded in
Experiment 1 were not due to a passive processing of
object numerosity but depended on the explicit require-
ment to enumerate the relevant objects.

3.2.4 | Time-by-channel searchlight MVPA

To corroborate the identified segregation between the
location-specific and location-invariant stages and to

provide a coarse idea about the location of these stages in
channel space, we performed a time-by-channel search-
light analysis. The resulting topographical maps for the
location-specific numerosity decoding in Experiment
1 revealed classification accuracies above chance that
peaked around posterior channels of the contralateral
hemisphere from around 200 to 300 ms (Figure 4, top
and middle rows). Later decoding was more widespread
and less lateralized, peaking around central channels.
The location-invariant decoding started later (250 ms),
with bilateral peaks around more anterior parietal chan-
nels (sparing the most posterior channels that revealed
the strongest effects in the location-specific decoding;
Figure 4, bottom row), suggesting not only a temporal
but also a spatial segregation of the two stages. Experi-
ment 2 revealed no significant effects of location-specific
and location-invariant decoding.

4 | DISCUSSION

The human brain is endowed with the ability to effi-
ciently enumerate up to three to four objects, a phenome-
non known as subitizing effect (Kaufman et al., 1949).
Despite being a pervasive phenomenon, some aspects of
subitizing have remained unclear. By means of EEG
decoding, the present study addressed whether a crucial
aspect of the neural architecture of numerosity represen-
tation, namely, the presence of a dual-stage numerosity
mode, also applies to the special case of subitizing.
Specifically, decoding numerosity within each hemifield
separately and testing for significantly stronger contralat-
eral versus ipsilateral numerosity discrimination allowed

F I GURE 4 Searchlight multivariate pattern analysis (MVPA) for location-specific and location-invariant numerosity representations

in Experiment 1. For visualization purposes, time-by-channel searchlight maps were averaged across time every 50 ms. Black dots indicate

center electroencephalography (EEG) channels that revealed significant numerosity decoding accuracies above chance (corrected for

multiple comparisons) in at least one time point (i.e., 4 ms) within each 50-ms step
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us to isolate a location-specific stage of numerosity
processing. By contrast, decoding numerosity across
hemifields allowed us to isolate a location-invariant stage
of numerosity processing. In other words, by characteriz-
ing the generalization profiles and lateralization of
numerosity representations at different time points, we
provided direct evidence for a dual-stage mode of
numerosity processing in the subitizing effect.

In line with some previous neuroimaging findings
(Bankson et al., 2019; Eger et al., 2009; Eger et al., 2015;
Fornaciai & Park, 2017; Hyde & Spelke, 2009; Libertus
et al., 2007; Luyckx et al., 2019; Park et al., 2016;
Roggeman et al., 2010; Roggeman et al., 2011; Spitzer
et al., 2017; Teichmann et al., 2018), the present EEG
results lent direct support to the existence of a distinction
between location-specific and location-invariant
numerosity coding of small object numerosities. Experi-
ment 1 indicated that there are two subsequent stages of
representation: a location-specific stage that starts at
approximately 180–200 ms after stimulus and a location-
invariant stage with an onset latency of 300 ms after
stimulus. Crucially, the results of the additional analysis
on the interaction between hemisphere and hemifield
further disclosed the spatially selective organization of
the first stage of numerosity coding by pointing to
a predominant contralateral processing of the target
numerosities in this stage. This interaction provides more
selective evidence than the location-specific decoding
using all channels, which might also be driven by
location-invariant numerosity representations. We also
observed significant decoding effects in ipsilateral hemi-
spheres, starting around 250 ms. While decoding at later
time points could also be driven by location-invariant
numerosity representations, this seems unlikely for time
points earlier than 300 ms, that is, before significant
location-invariant decoding is observed. However,
ipsilateral channels might have picked up information
from the contralateral hemisphere, which could explain
the decoding around 250 ms. Importantly, potential
spread of information across hemispheres would increase
the strength of decoding in the ipsilateral hemispheres.
As a result, decoding strengths in ipsilateral and contra-
lateral hemispheres would become more similar, which
would reduce the interaction between hemisphere- and
hemifield-specific decoding and thereby bias the null
hypothesis. Potential spread is therefore not problematic
for interpreting the significance of the interaction, which
is the critical test for isolating the location-specific stage.

The nature and time course of the location-specific
stage of numerosity coding resonate with previous ERP
work on attention individuation of multiple targets in
various contexts (e.g., enumeration, multiple object track-
ing, delayed match to sample tasks; Drew & Vogel, 2008;

Ester et al., 2012; Foster et al., 2020; Mazza &
Caramazza, 2011, 2015; Pagano et al., 2014; Vogel &
Machizawa, 2004). In all these studies, a numerosity-
related contralateral ERP response with a latency of
approximately 200 ms (N2pc, Eimer, 2014; Luck, 2012)
was found, suggesting that an attention-based mecha-
nism of object individuation is a core component of the
visual system involved in processing multiple targets
(up to the three to four objects) in a variety of tasks,
including enumeration. Given the presence of distracting
elements in the present study, it may be that the
location-specific effect measured here reflects selective
tracking of relevant numerosities rather than a mecha-
nism of numerosity perception of the total set of elements
(which was kept fixed throughout the experiment).
Rather than relying on a location map of the overall
elements, the representation produced at this stage of
analysis would reflect only the location of the crucial
elements in the visual map—a representation that is
crucial for subitizing in explicit enumeration tasks.

In general, the current results are in accordance with
the idea that a spatially selective, attention-based mecha-
nism may have a first important role for numerosity cod-
ing (Dehaene et al., 2003; Stoianov & Zorzi, 2012;
Verguts & Fias, 2004, 2008). For instance, according to
some influential proposals (e.g., Dehaene et al., 2003),
the attention system could operate on numerosities as it
does for other physical dimensions, such as space or time.
There is evidence that numerosity can be encoded
independently of and in the same fashion as other
primary attributes (e.g., shape and color) (for a review,
see Anobile et al., 2016; but see Dakin et al., 2011).

Despite there has not been any previous EEG attempt
to directly test for the dissociation between location-
specific versus location-invariant stages of small
numerosity representation, the present results are in line
with some previous ERP studies that separately disclosed
stages with similar latencies (approximately 200 and
250 ms, respectively) as the ones seen here. The first stage
has been associated with the existence of an object file
system that spatially tags multiple locations at once
(Hyde & Spelke, 2009), whereas the latter has been
interpreted as evidence of abstract coding for number
(Libertus et al., 2007). However, none of these studies
have tried to investigate whether these stages were
location specific. Interestingly, recent investigations
(Fornaciai & Park, 2017; Park et al., 2016) have also
shown an early effect (approximately 75 ms) related to
the specific activation of occipital areas and interpreted
this as evidence of the location-map stage where object
locations are represented regardless of other physical
dimensions (e.g., size). This early stage would only be
activated by large numerosities (Fornaciai & Park, 2017),
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whereas a later stage (approximately 180–200 ms) would
instead be associated with a summation layer where the
results of the location-map stage are added and an
abstract representation of quantity is formed, irrespective
of the numerical range used. By identifying distinct time
ranges in which EEG patterns are sensitive to discrimi-
nate small numerosities in either a hemifield-specific and
lateralized way or across hemifields, we could here pro-
vide direct support, in a single study, to the existence of
location-sensitive versus location-invariant stages in the
subitizing range.

It is unclear why the present study (as well as previ-
ous ones, e.g., Hyde & Spelke, 2009) did not reliably find
a location-specific effect already in the early time win-
dows (<80 ms, as in Fornaciai & Park, 2017; Park
et al., 2016; although we observed significant location-
specific decoding shortly after 100 ms and a trend for a
significant interaction around the same time). Although
future research will address this aspect in more detail, we
suggest that the early effect reflects the operation of a
stage that relies on a location map of the entire set of
objects presented and of their variation in numerosity
(as in the Fornaciai & Park, 2017; Park et al., 2016),
which was not the case for the present study where the
overall number of elements did not vary across trials.
This would further reinforce the idea that the location-
specific effect measured found here reflects attention
selection of relevant numerosities rather than an early
mechanism of numerosity perception of the total set of
elements.

Finally, we found that the early location-specific and
later location-invariant stage were associated with differ-
ent topographical distributions, peaking around posterior
occipital channels and more anterior parietal channels,
respectively. This might suggest that the two stages are
processed by different neural substrates. Although the
EEG topography of the numerosity decoding effects does
not allow for a precise anatomical localization, it appears
plausible (based on related fMRI findings) that location-
specific effects originate from occipitotemporal or
occipitoparietal areas and location-invariant effects origi-
nate from more anterior, parietal areas (Eger et al., 2009;
Roggeman et al., 2011; Wurm et al., 2019).

Overall, Experiment 1 provided compelling evidence
that small numerosities are processed via an attention-
based stage that initially takes into account the location
of the to-be-enumerated elements, followed by a stage
that is invariant to the elements’ location and (likely)
represents numerosities in a more abstract way. The
location-specific stage (as identified by the more
conservative interaction, 224–380) remains activated
overlapping with the location-invariant stage (starting
around 300 ms) for at least 60 ms.

Experiment 2 further specified the nature of the
numerosity coding stages involved in the task used in
the present study. The results showed that there was no
numerosity-related modulation when numerosity was
irrelevant for the task. Importantly, we can rule out that
this null effect could be due to a lack of power: Bayesian
comparisons revealed that many points during the
location-specific and location-invariant stages identified
in Experiment 1 do not show evidence for trends or even
stronger evidence for the null hypothesis that effects are
not different than chance. Moreover, location-specific
and location-invariant stages in Experiment 1 could still
be identified after reducing the sample size to N = 12
(as in Experiment 2) using a bootstrapping approach.
Most importantly, we observed highly significant
decoding in Experiment 2 when target numerosities (one,
two, or three targets) were discriminated from zero-target
trials, that is, when the classifier could rely on the task-
relevant dimension. This finding perfectly matches the
typical context in which subitizing emerges, namely, enu-
meration tasks where the observers have to explicitly
report the numerosity of the relevant elements
(e.g., Trick & Pylyshyn, 1993). Therefore, the findings
suggest that the location-specific and location-invariant
components seen in Experiment 1 were not merely trig-
gered by an automatic, passive recording of numerosities
and their variation (as well as other, continuous magni-
tudes related to this variation). Likewise, these results
further rule out alternative explanations for the
numerosity effect observed in Experiment 1, such as
those related to passive recording of changes in continu-
ous dimensions (e.g., density and local area) that typically
correlate with variations in numerosity. The existence of
a mechanism for coding numerosity independently
of other continuous magnitudes (e.g., size and area) is
still debated (for a recent review, see Leibovich
et al., 2017). However, the results of Experiment 2
indicated that (passive) recording of continuous
magnitudes is insufficient to explain the effects found in
Experiment 1. Altogether, the results of Experiments
1 and 2 point out that the decoding of numerosity
addressed in the present study only pertains to contexts
where numerosity is task relevant, rather than to passive
viewing of numerosities.

5 | CONCLUSION

Using EEG-based MVPA, we disentangled location-
specific and location-invariant stages of small numerosity
representation in (explicit) enumeration. The results sug-
gest that numerosity coding in subitizing is strongly
grounded on an attention-based stage that operates
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according to coordinates of a location map. This stage
remains active overlapping with the subsequent
activation of a location-invariant stage, where a complete
abstract representation of numerosity is finalized by the
brain. The approach taken in the present study could
successfully be extended to larger numerosities and for
different task requirements in order to fully disclose the
neural architecture of number coding.
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