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How does the size of a neural circuit influence its learning per-
formance? Larger brains tend to be found in species with higher
cognitive function and learning ability. Intuitively, we expect the
learning capacity of a neural circuit to grow with the number of
neurons and synapses. We show how adding apparently redun-
dant neurons and connections to a network can make a task more
learnable. Consequently, large neural circuits can either devote
connectivity to generating complex behaviors or exploit this con-
nectivity to achieve faster and more precise learning of simpler
behaviors. However, we show that in a biologically relevant set-
ting where synapses introduce an unavoidable amount of noise,
there is an optimal size of network for a given task. Above the
optimal network size, the addition of neurons and synaptic con-
nections starts to impede learning performance. This suggests
that the size of brain circuits may be constrained by the need to
learn efficiently with unreliable synapses and provides a hypothe-
sis for why some neurological learning deficits are associated with
hyperconnectivity. Our analysis is independent of specific learning
rules and uncovers fundamental relationships between learn-
ing rate, task performance, network size, and intrinsic noise in
neural circuits.

learning | neural network | synaptic plasticity | optimization |
artificial intelligence

In the brain, computations are distributed across circuits that
can include many millions of neurons and synaptic connec-

tions. Maintaining a large nervous system is expensive ener-
getically and reproductively (1–3), suggesting that the cost of
additional neurons is balanced by an increased capacity to learn
and process information.

Empirically, a “bigger is better” hypothesis is supported by
the correlation of brain size with higher cognitive function and
learning capacity across animal species (4–6). Within and across
species, the volume of a brain region often correlates with the
importance or complexity of the tasks it performs (7–9). These
observations make sense from a theoretical perspective because
larger artificial neural networks can solve more challenging com-
putational tasks than smaller networks (10–15). However, we
still lack a firm theoretical understanding of how network size
improves learning performance.

Biologically it is not clear that there is always a computa-
tional advantage to having more neurons and synapses engaged
in learning a task. During learning, larger networks face the
problem of tuning greater numbers of synapses using limited
and potentially corrupted information on task performance (16,
17). Moreover, no biological component is perfect, so unavoid-
able noise arising from the molecular machinery in individual
synapses might sum unfavorably as the size of a network grows.
Intriguingly, a number of well-studied neurodevelopmental dis-
orders exhibit cortical hyperconnectivity at the same time as
learning deficits (18–21). It is therefore a fundamental question
whether learning capacity can grow indefinitely with the num-
ber of neurons and synapses in a neural circuit or whether there
is some law of diminishing returns that eventually leads to a
decrease in performance beyond a certain network size.

We address these questions with a general mathematical anal-
ysis of learning performance in neural circuits that is indepen-

dent of specific learning rules and circuit architectures. For a
broad family of learning tasks, we show how the expected learn-
ing rate and steady-state performance are related to the size of a
network. The analysis reveals how connections can be added to
intermediate layers of a multilayer network to reduce the diffi-
culty of learning a task. This gain in overall learning performance
is accompanied by slower per-synapse rates of change, predict-
ing that synaptic turnover rates should vary across brain areas
according to the number of connections involved in a task and
the typical task complexity.

If each synaptic connection is intrinsically noisy, we show that
there is an optimal network size for a given task. Above the
optimal network size, adding neurons and connections degrades
learning and steady-state performance. This reveals an important
disparity between synapses in artificial neural networks, which
are not subject to unavoidable intrinsic noise, and those in biol-
ogy, which are necessarily subject to fluctuations at the molecular
level (22–25).

For networks that are beneath the optimal size, it turns out
to be advantageous to add apparently redundant neurons and
connections. We show how additional synaptic pathways reduce
the impact of imperfections in learning rules and uncertainty in
the task error. This provides a potential theoretical explanation
for recent, counterintuitive experimental observations in mam-
malian cortex (26, 27), which show that neurons frequently make
multiple, redundant synaptic connections to the same postsynap-
tic cell. A nonobvious consequence of this result is that the size
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of a neural circuit can either reflect the complexity of a fixed
task or instead deliver greater learning performance on simpler,
arbitrary tasks.

Results
Modeling the Effect of Network Size on Learning. Our goal is
to analyze how network size affects learning and steady-state
performance in a general setting depicted in Fig. 1, which is
independent of specific tasks, network architectures, and learn-
ing rules. We assume that there is some error signal that is fed
back to the network via a learning rule that adjusts synaptic
weights. We also assume that the error signal is limited both
by noise and by a finite sampling rate quantified by some time
interval T (Fig. 1A). In addition to the noise in the learning rule,
we also consider noise that is independently distributed across
synapses (“intrinsic synaptic noise”). This models molecular
noise in signaling and structural apparatus in a biological synapse
that is uncorrelated with learning processes and with changes in
other synapses. Network size is adjusted by adding synapses and
neurons (Fig. 1B).

Before analyzing the general case, we motivate the analysis
with simulations of fully connected, multilayer nonlinear feed-
forward neural networks that we trained to learn input–output
mappings (Fig. 2A). We used the so-called student–teacher
framework to generate tasks (e.g., refs. 28 and 29). A “teacher”
network is initialized with random fixed weights. The task is
for a randomly initialized “student” network to learn the input–
output mapping of the teacher. This framework models learning
of any task that can be performed by a feedforward neural net-
work by setting the teacher as the network optimized to perform
the task.

The sizes of the student networks were set by incrementally
adding neurons and connections to internal layers of a network

A

B

Fig. 1. (A) Schematic of learning in a neural network. Information on task
error is received by a learning rule which converts this information into
synaptic changes that decrease task error. Biologically, the learning rule
faces several challenges: It will be subject to noise and perturbations (blue
arrow), and the synapses themselves may suffer from intrinsic noise (red
arrow). Error information will be acquired only intermittently, as shown
in the learning curve on the left, where T specifies the intermittency of
feedback (main text). (B) We analyze the effect of network size on learn-
ing performance by adding redundant neurons and synapses (green) to an
existing network.

with the same initial connection topology as that of the teacher
(Fig. 2B and Materials and Methods). This generated student net-
works of increasing size with the guarantee that each student
can in principle learn the exact input–output mapping of the
teacher.

Learning was simulated by modifying synapses with noise-
corrupted gradient descent to mimic an imperfect biological
learning rule. We emphasize that we do not assume learning in
a biological network occurs by explicit gradient descent. How-
ever, any error-based learning rule must induce synaptic changes
that approximate gradient descent, as we show below (Eq. 1).
We assume that learning must be performed online; that is, data
arrive one sample at a time. We believe this captures a typi-
cal biological learning scenario where a learner gets intermittent
examples and feedback.

The phenomena we wish to understand are shown in Fig. 2
C and D. We trained networks of varying sizes on the same
task, with the same amount of learning-rule noise. Larger net-
works learn more quickly and to a higher steady-state perfor-
mance than smaller networks when there is no intrinsic synaptic
noise (Fig. 2C). This is surprising because the only differ-
ence between the smallest network and larger networks is the
addition of redundant synapses and neurons, and the task is
designed so that all networks can learn it perfectly in princi-
ple. Moreover, as shown in Fig. 2D, adding intrinsic noise to
the synapses of the student networks results in a nonmonotonic
relationship between performance and network size. Beyond a
certain size, both learning and asymptotic performance start to
worsen.

The simulations in Fig. 2 provide evidence of an underlying
relationship between learning rate, task performance, network
size, and intrinsic noise. To understand these observations in a
rigorous and general way, we mathematically analyzed how net-
work size and imperfections in feedback learning rules impact
learning in a general case.

We note that in machine learning, noise processes such as
dropout and stochastic regularization (e.g., refs. 30–32) can
be applied to improve generalization from finite training data.
Intrinsic synaptic noise is qualitatively different from these reg-
ularization processes. In particular, the per-synapse magnitude
of intrinsic noise remains constant, independent of network
size or training level. Moreover, our simulations use online
learning, which is distinct from the common machine-learning
paradigm where data are divided into training and test sets.
The implications of our paper for this paradigm are consid-
ered in SI Appendix, Regularization and Generalization Error
and Online Learning and Generalization Error, where we also
show that regularization can be incorporated as learning-
rule noise.

Learning Rate and Task Difficulty. We define task error as a smooth
function F [w] which depends on the vector w of N synaptic
weights in a network. We assume that learning rules use some
(potentially imperfect) estimate of this error to adjust synaptic
weights.

Biologically, it is reasonable to assume that learning-related
synaptic changes occur due to old information. For example,
a task-related reward or punishment may be supplied only at
the end of a task, which itself takes time to execute. Similarly,
even if error feedback is ongoing in time, there will always
be some biochemically induced delay between acquisition of
this error signal and its integration into plastic changes at each
synapse.

Thus, there will be a maximum rate at which task error infor-
mation can be transmitted to synapses during learning, which
for mathematical convenience can be lumped into discrete time
points. Suppose feedback on task error occurs at time points 0
and T , but not in between, for some T > 0 (Fig. 3A). If the

10538 | www.pnas.org/cgi/doi/10.1073/pnas.1813416116 Raman et al.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813416116/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1813416116/-/DCSupplemental
https://www.pnas.org/cgi/doi/10.1073/pnas.1813416116


N
EU

RO
SC

IE
N

CE

-

outputs

task error

fixed mapping

network

network resizing

learning task

learning without intrinsic noise

learning with intrinsic noise

outputs

intrinsic
synaptic noise

noise in
learning rule

inputs

A

C

D

B

learning rule

inputs outputs

network size
(# synapses)

time (training cycles) network size (synapses)

network size (synapses)time (training cycles)

add neurons
and synapses

er
ro

r 
(m

ea
n-

sq
ua

re
)

st
ea

dy
-s

ta
te

 e
rr

or
st

ea
dy

-s
ta

te
 e

rr
or

er
ro

r 
(m

ea
n-

sq
ua

re
)

0 2000 4000 6000 8000
0

200

0 2000 4000 6000 8000

200

400

600

0 500 1000 1500
0

500

1000

235
2496
9235

0 500 1000 1500

500

1000

235
2496
9235

Fig. 2. (A) Learning task. Neuronal networks are trained to learn an input–
output mapping using feedback error and a gradient-based learning rule
to adjust synaptic strengths. The feedback is corrupted with tunable levels
of noise (blue), reflecting imperfect sensory feedback, imperfect learning
rules, and task-irrelevant changes in synaptic strengths. Synaptic strengths
are additionally subject to independent internal noise (red), reflecting their
inherent unreliability. (B) Network size is increased by adding neurons and
synapses to inner layers. (C) Three differently sized networks are trained on
the same task, with the same noise-corrupted learning rule. A learning cycle
consists of a single input (drawn from a Gaussian distribution) being fed to
the network. The gradient of feedback error with respect to this input (i.e.,
the stochastic gradient) is then calculated and corrupted with noise (blue
component in A). All networks have five hidden layers of equal size. We vary
this size from 5 neurons to 45 neurons across the networks. (C, Right) Mean
task error after 1,500 learning cycles, computed over 12 simulations. Error
bars depict ±1 SEM. (C, Left) Task error over time for a single simulation
of each network. (D) The same as C but each synapse is subject to internal
independent noise fluctuations in addition to noise in the learning rule (red
component in A).

network learned over the interval [0,T ], then F [w(T )]−
F [w(0)]< 0 by definition. We quantify learning rate during this
interval as the value of k such that

F [w(T )]= (1− kT )F [w(0)],

with k < 1
T

. A larger positive value of k implies a faster rate of
learning. We can write the total change in error over the interval
T (Fig. 3A) as

F [w(T )]−F [w(0)]=
∫ T

0

〈∇F [w(t)], ẇ(t)〉 dt

=T Et [〈∇F [w(t)], ẇ(t)〉], [1]

where expectation is taken across a uniform distribution of time
points in [0,T ], dots denote time derivatives, and angle brackets
denote the (standard) inner product. Eq. 1 shows that synap-
tic changes, on average, must anticorrelate with the gradient for
learning to occur. We can thus decompose net learning rate dur-
ing the interval T into contributions as follows (further details in
SI Appendix, Learning Rate and Local Task Difficulty):

k =
−‖∇F [w(0)]‖2

F [w(0)]︸ ︷︷ ︸
gradient
strength


contribution

from gradient︷ ︸︸ ︷
〈ω̇T ,∇F̂ [w(0)]〉+GF [ ˙̂ωT ]‖ω̇T‖22T︸ ︷︷ ︸

contribution
from curvature


+O(T 2), [2]

where

GF [ ˙̂ωT ] :=
1

2‖∇F [w(0)]‖2

〈
˙̂ωT ,∇2F [w(0)] ˙̂ωT

〉
.

Hats indicate unit length normalized vectors (i.e., x̂ = x
‖x‖2

) and
ω̇T denotes the average synaptic change over the time interval
[0,T ], normalized by T :

ω̇T =
w(T )−w(0)

T
. [3]

Note that we have made no assumptions on the size of T , so the
O(T 2) term in Eq. 2 is not necessarily small. Nonetheless, we can
gain useful insight for how error surface geometry affects learn-
ing by examining the other terms on the right-hand side of Eq. 2.
The gradient strength scales the overall learning rate. Inside the
brackets, the curvature term (which can change sign and magni-
tude during learning) can compete with the gradient term to slow
down (or reverse) learning.

Informally, the curvature term in Eq. 2 therefore controls the
learning “difficulty” at each stage of learning. As we will show,
this term can be tuned by changing the number of neurons and
synaptic connections in the network.

The learning rate, k , is likely to remain positive during learning
if the gradient direction changes gradually as the error surface
is traversed (i.e., the error surface is almost linear). In this case
a high rate of plasticity—due to a high gain between feedback
error and synaptic change—will result in a high learning rate.
However, if the descent direction changes rapidly due to the
curvature of the error surface (i.e., the surface is crinkled up),
then correlation with −∇F [w(0)] becomes a weaker predictor
of learning over the entire time interval T . Effective learning
therefore involves balancing error surface curvature and per-
synapse rate of plasticity. This is illustrated in Fig. 3A, where the
length of the leaps along the error surface indicates the rate of
plasticity.

We next decompose the contributions to the overall synap-
tic change during a learning increment. First we assume that
synapses are perfectly reliable, with no intrinsic noise fluctua-
tions affecting their strengths. In this case, we can decompose
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Fig. 3. Geometry of error-based learning in arbitrary networks. (A)
Schematic of task error as a function of (two) synaptic weights. Learn-
ing rule receives and processes task-relevant feedback to provide direction
for each synapse to move in weight space. Direction must correlate with
steepest-descent direction, resulting in initial improvement of task error.
If no new feedback is received over a long time period T , this initially
good direction may eventually go uphill, thus becoming bad. Frequent
error feedback, a less “curvy” error surface, and a good correlation with
the initial steepest-descent direction make learning faster. Local task diffi-
culty captures these factors. (B) Schematic of changes in three weights over
interval [0, T]. The true weight trajectory w(t) over time (red line) is sum-
marized by an interpolated, linear trajectory ω̇T (blue line) between w(0)
and w(T). We can decompose this interpolated trajectory into task-relevant
and task-irrelevant plasticity components. The former is the initial steepest-
descent direction −∇F[w(0)], and the latter is the remaining orthogonal
component, which corresponds to the direction n̂2 + n̂3.

ω̇T into two components that are parallel and perpendicular to
the gradient at time 0, when error information was supplied to
the network (Fig. 3B),

ω̇T =−γ1∇F̂ [w(0)]+ γ2n̂2,

where γ1 is the component of synaptic change that projects
onto the error gradient direction and γ2 is the component
perpendicular to the gradient direction, with n̂2 denoting the
unit vector in this direction. We call these two components, γ1
and γ2, the task-relevant plasticity and task-irrelevant plasticity,
respectively.

Note that a learning rule could theoretically induce task-
relevant synaptic changes in a direction that is not parallel to
the gradient,∇F [w(0)], if information on the Hessian∇2F [w(0)]
were available. However, as mentioned previously we are assum-
ing that such information is not available biologically and the best
the network can do is follow the gradient. In fact, the results
of this paper can be generalized to eliminate this assumption
(SI Appendix, Task-Relevant Plasticity) but this complicates the
presentation without adding insight.

There are several sources of task-irrelevant plasticity. First,
there can be inherent imperfections in the learning rule: Infor-
mation on task error may be imperfectly acquired and transmit-
ted through the nervous system. Second, as we have emphasized

above, the process of integrating feedback error and convert-
ing it into synaptic changes takes time. Therefore, any learning
rule will be using outdated information on task performance,
implying that the gradient information will have error in gen-
eral, unless it is constant for a task. This is illustrated in
Fig. 3A, where we see that during learning, the local informa-
tion used to modify synapses leads to a network overshooting
local minima in the error surface. Third, in a general biologi-
cal setting, synapses will be involved in multiple task-irrelevant
plasticity processes that contribute to γ2 (Fig. 1A). For instance,
the learning of additional, unrelated tasks may induce con-
current synaptic changes; so too could other ongoing cellular
processes such as homeostatic plasticity. The common feature
of all these components of task-irrelevant plasticity is that they
are correlated across the network, but uncorrelated with learning
the task.

We now consider the impact of intrinsic noise in the synapses
themselves. Synapses are subject to continuous fluctuations due
to turnover of receptors and signaling components. Some com-
ponent of this will be uncorrelated across synapses so we can
model these sources of noise as additional, independent white-
noise fluctuations at each synapse with some total (per-synapse)
variance γ3T over the interval [0,T ]. Because this noise is inde-
pendent across synapses, the total variance in the network will
scale with the number of synapses. This gives another expression
for synaptic weight change:

w(T )−w(0)=−γ1T∇F̂ [w(0)]+ γ2T n̂2 + γ3
√
T
√
N n̂3

=T

(
−γ1∇F̂ [w(0)]+ γ2n̂2 + γ3

√
N

T
n̂3

)
. [4]

Note that γ3 describes the average degree of intrinsic noise per
synapse, whereas γ1 and γ2 describe components of synaptic
change over the entire network. This in turn gives the follow-
ing expression for the average weight velocity over the learning
interval:

ω̇T =−γ1∇F̂ [w(0)]+ γ2n̂2 + γ3

√
N

T
n̂3. [5]

Note that the per-synapse fluctuation due to the γ3 term is
independent of network size. This is because ‖n̂3‖=1, which
implies that the expected magnitude of the i th component of n̂3

is
√

1
N

. If we assume that each component is independent (see
SI Appendix, Decomposition of Local Task Difficulty for justifica-
tion), we can also write the magnitude of total synaptic rate of
change across the network in a convenient form:

‖ω̇T‖22 = γ2
1 + γ2

2 + γ2
3
N

T
. [6]

We see that the γ3 term, which is a measure of per-synapse
fluctuation magnitude, scales with the number of neurons.
This stands in contrast to γ1 and γ2, which measure fluc-
tuation sources over the network. Eqs. 5 and 6 allow us to
rewrite Eq. 2:

E[k ] =
−‖∇F [w(0)]‖2

F [w(0)]

[
−γ1 +GF [ ˙̂ωT ]‖ω̇T‖22T

]
+O(T 2).

[7]

For given values of the γi and T , we see from Eq. 7 that
GF controls the learning rate of a network: A higher value of
GF [ ˙̂ωT ] leads to slower or negative learning. For this reason,
we refer to GF as the local task difficulty. Again, the O(T 2)
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term may not be small. However, as mentioned, it is reason-
able to assume this term cannot be controlled by the learning
rule because it depends on higher-order derivatives of F that
synapses are unlikely to be able to compute. Therefore, we
can reasonably say that learning requires the first term of Eq.
7 to be negative and ceases to occur when this term is zero.
This implies

GF [ ˙̂ωT ]≤
γ1

T
(
γ2
1 + γ2

2 + γ2
3
N
T

). [8]

This inequality relates the intrinsic “learnability” of a task (local
task difficulty, GF ), the rate of information on task error (T ),
the quality of the learning rule (relative magnitudes of γ1
and γ2), the network size (N ), and the intrinsic noisiness of
synapses (γ3).

If inequality Eq. 8 is broken, then learning stops entirely.
At some point in learning, this breakage is inevitable: As F [w]
approaches a local minimum, the gradient ∇F [w] approaches
zero, and the Hessian ∇2F [w] is guaranteed positive semidefi-
nite. At a precise minimum of error, GF becomes unbounded.
This means that for a nonzero T , cessation of learning is pre-
ceded by an increase in local task difficulty, and learning stops
just as inequality 8 above is broken.

To validate our analysis we numerically computed the quanti-
ties in Eq. 7 in simulations (Fig. 4). In the case of a linear network
with quadratic error the O(T 2) terms disappear, allowing us to
verify that equality in Eq. 8 indeed predicts the steady-state value
of GF . This agreement is confirmed in Fig. 4A.

For more general error functions, we have observed that
Eq. 8 is always conservative in numerical simulations: Learn-
ing stops before local task difficulty reaches the critical value,
implying that theO(T 2) term of Eq. 7 is usually negative. This is
demonstrated in Fig. 4 A and B.

In summary, we have shown that local task difficulty GF

determines the learning rate as well as the steady-state learning
performance of a network.

Note that in Fig. 4 (as well as in subsequent numerical sim-
ulations) we define the entire distribution of input–output pairs
to be a finite set or “batch” generated from a fixed, random set
of inputs. This a technical necessity that allowed us to numer-
ically calculate true task error (i.e., the error over all inputs)
and the true task gradient ∇F [w(0)] and thus define specific
values of γi when applying the update of Eq. 5. We emphasize
that this finite batch is considered to be the entire distribu-
tion, not a sample from a true (unknown) distribution. It is
not possible to numerically specify the γi in the simulations of
Fig. 2, because we cannot explicitly calculate the true gradi-
ent in this case. Instead, learning occurred online by a single
sample from an infinite number of potential inputs, producing
a stochastic gradient estimate. Fortunately, conclusions drawn
from the both simulation paradigms are interchangeable. Online
learning using a stochastic gradient is mathematically equiva-
lent to adding task-irrelevant (γ2) plasticity to the batch learning
setup of Figs. 4 and 6. The amount by which γ2 is increased
depends on the task, but not the network size/architecture (see
SI Appendix, Online Learning and Generalization Error for further
details).

Local Task Difficulty as a Function of Network Size. We next show
precisely how network size influences the local task difficulty
and thus learning rate and steady-state performance when other
factors such as noise and the task itself remain the same.

Recall that n2 represents the direction in which synapses are
perturbed due to error in the learning rule and other task-
irrelevant changes that affect all synapses. Meanwhile n3 repre-
sents the direction of weight change due to intrinsic white-noise
fluctuations at each synapse. For arbitrary tasks, networks, and
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Fig. 4. Numerical validation of learning-rate calculations in simulated neu-
ral networks. (A) Local task difficulty and mean squared error over time
for a linear network (Left) with quadratic error function and a nonlin-
ear network (Right). Local task difficulty is low when the networks are in
an untrained state. As performance improves, it rises, until reaching some
steady-state level (black dashed lines). We can predict this steady state a
priori, exactly for the quadratic error, and conservatively for the nonlinear
error, using Eq. 8. Both networks are trained using a corrupted learning rule
(γ̄= [0.2, 1, 0], T = 2; Materials and Methods). Network sizes are 200 synap-
tic weights (linear) and 220 synaptic weights (nonlinear, one hidden layer).
(B) We use the same linear (Left) and nonlinear (Right) networks as in A.
We compare the predicted value of the learning rate kpred (using Eq. 7 and
γ= γ̄) with the actual value, under low-noise (Top, γ̄= [1, 0.05, 0.05]) and
high-noise (Bottom, γ̄= [0.2, 0.5, 0.1]) conditions. Dashed lines represent
k = kpred. Density plots of {k, kpred} are shown. Two sources of discrep-
ancy exist. First, kpred is calculated from the mean values γ̄ (Materials and
Methods). Transient correlations between task-irrelevant sources of plas-
ticity and the gradient lead to unbiased fluctuations of γ around γ̄. This
is the only source of discrepancy in the linear case (Left). Thus, the den-
sity distributes equally on either side of the dashed line. In the nonlinear
case (Right), there is an unknown, nonzero O(T2) term (Eq. 7) unaccounted
for in calculation of kpred. This term almost always decreases learning
rate, as kpred now consistently overestimates k. Thus, predicted steady-state
local task difficulty (e.g., A, Bottom Right, dashed line) is consistently an
overestimate.

learning trajectories we can model these terms as coming from
mutually independent probability distributions that are indepen-
dent of task error F [w] and its derivatives. Thus, we assume
E[nT

2 n3] = 0, which allows us to write an expression for expected
local task difficulty:

E
[
GF [ ˙̂ωT ]

]
‖ω̇T‖22 = γ2

1G1
F [w(0)]+

Tr(∇2F [w(0)])
2‖∇F [w(0)]‖2

[
γ2
2

N
+
γ2
3

T

]
,

[9]
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where

G1
F [w(0)]=

1

2‖∇F [w(0)]‖2

〈
∇F̂ [w(0)],∇2F [w(0)]∇F̂ [w(0)]

〉
.

[10]

This expression for the local task difficulty explicitly incorporates
N , the number of synaptic weights. So too does the learning rate
Eq. 7, as we see by substituting into it the expanded form of
E
[
GF [ ˙̂ωT ]

]
‖ω̇T‖22.

We can gain intuition into how Eq. 9 is derived without going
through additional technical details (SI Appendix, Decomposition
of Local Task Difficulty). Suppose that the weights were per-
turbed by a randomly chosen direction n over the time interval
[0,T ]. This gives

F [w(T )]=F [w(0)+ n] =

F [w(0)]+ 〈∇F [w(0)], n〉+ 1

2
〈n,∇2F [w(0)]n〉+O(‖n‖22).

[11]

If the direction n is drawn independently of task error and its
derivatives, then

E[〈∇F [w(0)], n〉] = 0.

Therefore, it is the quadratic term of Eq. 11 that determines the
effect of the perturbation on task error. Its contribution is

E[〈n,∇2F [w(0)]n〉] = ‖n‖22E[〈n̂,∇
2F [w(0)]n̂〉]

= ‖n‖22
Tr(∇2F [w(0)])

N
.

So the effect of random perturbations on learning grows with
the ratio of Tr(∇2F [w(0)]) to the number of synapses, N . Eq.
9 tells us explicitly how local task difficulty (and thus expected
learning rate and steady-state performance) can be modified by
changing the size of a network, provided the size change leaves
G1

F [w(0)] and Tr(∇2F [w(0)])
2‖∇F [w(0)]‖2

unchanged. For different network
architectures there are many possible ways of adding neurons
and connections while satisfying these constraints. This explains
why the naive size increases in Fig. 2C generically increased
learning performance and provides a general explanation for
enhanced learning performance in larger networks.

Network Expansions That Increase Learning Performance. We next
give detailed examples of network expansions that increase
learning rate and use the theory developed so far to compute
the optimal size of a network when intrinsic noise is present. We
first analyze a linear network and then apply insights from this to
a more general nonlinear feedforward case.

Consider a linear network (i.e., a linear map, as shown in
Fig. 5A) that transforms any input u into an output y =Wu for a
matrix W ∈Roi of synaptic weights. The input-dependent error
of the network is taken as a simple mean square error,

F [W ] =

∫
F [W , u]P(u) du =

∫
‖y∗(u)−Wu‖22P(u) du,

where the input vectors are drawn from some distribution P(u)
(e.g., a Gaussian) and y∗(u) is a target output generated by a
linear mapping of the same rank and dimension.

We next embed this network in a larger network with c1i
inputs, c2o outputs, and a synaptic weight matrix W ′, for some
integers c1, c2> 1. We define the total number of weights as
Ñ = c1ic2o. We take the transformation u ′=Bu ∈Rc1i , where
B ∈Rc1i×i is an arbitrary semiorthogonal matrix. (i.e., it satisfies
BTB = Ii). Geometrically, B therefore represents the composi-
tion of a projection into the higher-dimensional space Rc1i with

intrinsic synaptic noise (    )
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Fig. 5. Optimal network size for linear and nonlinear networks in the pres-
ence of intrinsic synaptic noise. (A) Network expansion for a linear network,
given by an embedding into a larger network, followed by a rotation of the
weight matrix. This corresponds to transforming inputs u by a projection B
and outputs y by a semiorthogonal mapping D. (B) Plots show the depen-
dence of Nopt in linear and nonlinear networks using Eqs. 17 and 19. In both
cases the learning rule has γ1 = 0.01 and T = 2. Low task-irrelevant plasticity
corresponds to γ2 = 0.05, while high task-irrelevant plasticity corresponds
to γ2 = 1.

a rotation. Note that this is an invertible mapping: If u ′=Bu ,
then BTu ′= u . Similarly, we can take y ′

∗
(u ′)=Dy∗(u)∈Rc2o ,

where DTD = Io . This is illustrated in Fig. 5A.
The expanded neural network with weights W ′ ∈Rc2o×c1i has

to learn the same mapping as the original, but with respect
to the higher-dimensional inputs. So the network receives
inputs u ′ ∈BU and transforms them to outputs y ′=W ′u ′, with
input-dependent error

F ′[W ′, u ′] = ‖y ′∗(u ′)−W ′u ′‖22
= ‖Dy∗(u)−W ′Bu‖22
= ‖y∗(u)−DTW ′Bu‖22. [12]

For some weight configuration W ′ in an expanded network, Eq.
12 tells us that if these weights are related to the original network
weights by W =DTW ′B ∈Roi , then we have

F ′[W ′] =F [W ].

Explicit differentiation of F ′[W ′] (see SI Appendix, Learning in
a Linear Network) yields:

‖∇F ′[W ′]‖2 = ‖∇F [W ]‖2

Tr(∇2F ′[W ′])= 2c2o

∫
u∈U
‖u‖22 P(u)

= c2Tr(∇2F [W ]). [13]

We now rewrite the weight matrices W ′ and W as vectors w′ ∈
RÑ and w∈RN .
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We will assume that ∇F̂ ′[w′] (which is a normalized vector)
projects approximately equally onto the different eigenvectors
of ∇2F ′[w′]. The latter is constant, whereas the former is a lin-
ear function of the (randomly chosen) W ′, which justifies this
assumption. In this case, Eq. 13 implies

∇F̂ ′[w′]T∇2F ′[w′]∇F̂ ′[w′]≈

c2∇F̂ [w]T∇2F [w]∇F̂ [w].
[14]

Bringing together Eqs. 13 and 14 and the formula Eq. 10 for
G1

F , we see that
G′1F ′ [w

′]≈ c2G1
F [w], [15a]

and similarly

Tr(∇2F ′[w′])
‖∇F ′[w′]‖2

≈ c2
Tr(∇2F [w])
‖∇F [w]‖2

. [15b]

We can therefore write local task difficulty of the expanded
network in terms of quantities of the smaller network:

E
[
G′F ′ [ ˙̂ω

′
T ]
]
‖ω̇′T‖

2

2≈ c2GF [w] + c2
Tr(∇2F [w])
2‖∇F [w]‖2

[
γ2
2

Ñ
+
γ2
3

T

]
.

[16]

As long as the ratio c2
c1

is fixed, we can rewrite Ñ in terms of
c2 and alter c2 as an independent parameter in Eq. 16. Indeed
this allows us to optimize the steady-state error of the network
by changing N . To see how, recall that

E[k ] =
−‖∇F [w(0)]‖2

F [w(0)]
[−γ1 + δ]+O(T 2),

where δ=GF [ ˙̂ωT ]‖ω̇T‖22T ,

with O(T 2)≡ 0 for quadratic error. Suppose the network has
reached steady-state error; i.e., E[k ] = 0. If we decreased δ, then
E[k ] would also decrease, and the network would learn further.
Therefore, to derive the optimal N ∗, we should minimize the
expression for δ in N (or equivalently, c2). We differentiate δ
in c2 and note that a single stationary point exists, satisfying the
equation

N ∗=
γ2
2

Cγ2
1 +

γ2
3
T

where C =
〈∇F̂ [w(0)],∇2F [w(0)]∇F̂ [w(0)]〉

Tr(∇2F [w(0)])
.

Note that C is unknown in general because it depends on the
weight configuration of the network. However, we can take the
heuristic C ≈ 1

N∗ , since if the gradient∇F̂ [w(0)] is uncorrelated
with the Hessian ∇2F̂ [w(0)], then it would project equally onto
each of the eigenvectors of the latter, and thus the numerator of
C would be the mean eigenvalue, i.e., Tr(∇2F̂ [w(0)])

N
. This results

in an approximate expression for N ∗, the stationary point of
δ in N :

N ∗≈ Tγ2
2

γ2
3

(
1− γ2

1

γ2
2

)
. [17]

Since limÑ→∞ δ=∞, we have that δ(Ñ ) is monotonically
increasing in Ñ , for Ñ ≥N ∗. So if N ∗<N , the size of the
original network, then any extra redundancy hurts learning per-
formance. If N ∗>N , then the optimal network size Nopt satis-
fies Nopt =N ∗. Our formula is verified numerically in Fig. 6A,

A

B

Fig. 6. Testing analytic prediction of optimal network size for linear and
nonlinear networks. (A and B) Linear (A) and nonlinear (B) networks of
different sizes are trained for 1,500 learning cycles of length T = 1. Mean
steady-state error over 12 repeats is plotted against network size. Error bars
denote ±1 SEM. Colored lines represent a priori predicted optimal network
sizes using Eqs. 17 and 19 for the linear and nonlinear examples, respectively.
(A) Linear networks all have a 2:1 ratio of inputs to outputs. On each repeat,
networks of all considered sizes learn the same mapping, embedded in
the appropriate input/output dimension (detailed in SI Appendix, Learning
in a Linear Network). The learning rule uses γ̄= [0.07, 1, 0.03] (low intrin-
sic noise), γ̄= [0.06, 1, 0.04] (medium intrinsic noise), and γ̄= [0.05, 1, 0.05]

(high intrinsic noise). (B) Nonlinear networks have sigmoidal nonlineari-
ties at each neuron and a single hidden layer (Materials and Methods).
All networks have 10 input and 10 output neurons and learn the same
task. The number of neurons in the hidden layer is varied from 5 to 120.
The learning rules all use γ̄1 = 0.04 and γ̄2 = 1.5. The value of γ̄3 is set
respectively at 0.03, 0.04, and 0.05, in the low, medium, and high intrinsic
noise cases.

by evaluating the learning performance of transformed neural
networks of different sizes, with different γi values.

This estimate of the optimal network size is plotted in Fig. 5B,
which shows the dependence on intrinsic synaptic noise levels.
As noise decreases to zero, we see that the optimal network size
grows arbitrarily. In addition, the optimal network size is smaller
for a lower amount of task-irrelevant plasticity (i.e., a “better”
learning rule). We validate the optimal network size estimate in
Fig. 6A in simulations.
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We next consider nonlinear multilayer, feedforward networks.
Again, we use the student–teacher framework to generate learn-
ing tasks. We consider learning performance of a nominal and
an expanded network, both with l layers, and both using the
same learning rule. The only difference between the two net-
works is the larger number of neurons in each hidden layer of
the expanded network. We will use our theory to predict an
optimal number of synapses (and consequently optimal hidden
layer sizes) for the transformed network. As before, this size
will depend on the learning rule used by the networks, which is
defined by levels of task-relevant plasticity, task-irrelevant plas-
ticity, per-synapse white-noise intensity, and frequency of task
error feedback. Our predictions are validated in simulations
in Fig. 6B.

We first describe the nominal network architecture. Given a
vector h(k−1) of neural activities at layer k − 1, the neural activity
at layer h(k) is

h(k) =σ(W (k)h(k−1)).

Here, W (k) is the matrix of synaptic weights at the k th layer.
The concatenation of the synaptic weight matrices across all
layers is denoted W and has N elements. We interchange-
ably denote it as a vector w∈RN . The function σ passes its
arguments elementwise through some nonlinearity (sigmoidal
in simulations; Materials and Methods). The first layer of neu-
rons receives an input vector u in place of neural activities h(0).
The output y(W , u) is defined as neural activity at the final
hidden layer.

For any given state w of the nominal network, we can construct
a state φ(w) of the expanded network with the same input–
output properties; i.e., y(w, u)= y ′(φ(w), u), where y ′ denotes
expanded network output. We do this by setting synaptic weights
of the added neurons in the expanded network to zero, so the
neurons do not contribute at state φ(w). Nevertheless the extra
neurons can affect expanded network behavior because once
they are perturbed by the learning rule they contribute to the
error gradient and higher derivatives.

Suppose the nominal network is at state w(0), and a learn-
ing rule picks the direction ω̇T for weight change over the time
interval [0,T ]. This direction will have some local task difficulty
GF [ ˙̂ωT ]. If we map the state w(0) and the direction ω̇T to the
transformed network via the transformation φ, then we can esti-
mate local task difficulty G′F [φ( ˙̂ωT )] of the transformed network
(see SI Appendix, Learning in a Nonlinear, Feedforward Network
for additional details). We get

E[G′F ′ [φ( ˙̂ωT )]]‖φ(ω̇T )‖22

≈
√

N

Ñ
γ2
1G1

F [w(0)]+

√
Ñ

N

Tr(∇2F [w(0)])
2‖∇F [w(0)]‖2

[
γ2
2

Ñ
+
γ2
3

T

]
.

[18]

We can use Eq. 18 to minimize

δ=G′F ′ [ ˙̂ωT ]‖ω̇T‖22T

in Ñ , the number of synapses. There is a single global minimum
of δ in Ñ , for Ñ > 0. It satisfies

N ∗≈ Tγ2
2

γ2
3

[
γ2
1

γ2
2

N

N ∗
+1

]
. [19]

This gives an optimal size of the transformed network for
minimizing steady-state task performance (validated in Fig. 6B).
Note the dependence of N ∗ on N , the number of weights in the
nominal and the teacher networks. The teacher networks can

generate arbitrary nonlinear mappings whose complexity grows
with N . In this way Eq. 19 reflects the intrinsic difficulty of
the task.

Discussion
It is difficult to disentangle the physiological and evolutionary
factors that determine the size of a brain circuit (33–35). Pre-
vious studies focused on the energetic cost of sustaining large
numbers of neurons and connecting them efficiently (2, 34–36).
Given the significant costs associated with large circuits (3),
it is clear that some benefit must offset these costs, but it is
currently unclear whether other inherent tradeoffs constrain
network size. We showed under broad assumptions that there
is an upper limit to the learning performance of a network
which depends on its size and the intrinsic volatility of synaptic
connections.

Neural circuits in animals with large brains were presumably
shaped on an evolutionary timescale by gradual addition of neu-
rons and connections. Expanding a small neural circuit into a
larger one can increase its dynamical repertoire, allowing it to
generate more complex behaviors (37, 38). It can improve the
quality of locally optimal behaviors arrived at after learning (39,
40). Less obviously, as we show here, circuit expansion can also
allow a network to learn simpler tasks more quickly and to
greater precision.

By directly analyzing the influence of synaptic weight configu-
rations on task error we derived a quantity we called “local task
difficulty” that determines how easily an arbitrary network can
learn. We found that local task difficulty always depends implic-
itly on the number of neurons and can therefore be decreased by
adding neurons according to relatively unrestrictive constraints.
In simple terms, adding redundancy flattens out the mapping
between synaptic weights and task error, reducing the local task
difficulty on average. This flattening makes learning faster and
steady-state task error lower because the resulting error surface
is less contorted and easier to descend using intermittent task
error information. Biological learning rules are unlikely to explic-
itly compute gradients. Regardless, any learning rule that uses
error information must effectively approximate a gradient as the
network learns.

As an analogy, imagine hiking to the base of a mountain
without a map and doing so using intermittent and imperfect
estimates of the slope underfoot. An even slope will be easier
to descend because slope estimates will remain consistent and
random errors in the estimates will average out over time. An
undulating slope will be harder to descend because the direc-
tion of descent necessarily changes with location. Now consider
the same hike in a heavy fog at dusk. The undulating slope
will become far harder to descend. However, if it were possible
to somehow smooth out the undulations (that is, reduce local
task difficulty), the same hike would progress more efficiently.
This analogy illustrates why larger neural circuits are able to
achieve better learning performance in a given task when error
information is corrupted.

In specific examples we show that adding neurons to inter-
mediate layers of a multilayer, feedforward network increases
the magnitude of the slope (gradient) of the task error function
relative to its curvature. From this we provide a template for scal-
ing up network architecture such that both quantities increase
approximately equally. This provides hypotheses for the organiz-
ing principles in biological circuits which, among other things,
predict a prevalence of apparently redundant connections in net-
works that need to learn new tasks quickly and to high accuracy.
Recent experimental observations reveal such apparently redun-
dant connections in a number of brain areas across species (26,
27, 41, 42).

Even if neurons are added to a network in a way that obeys
the architectural constraints we derive, intrinsic synaptic noise
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eventually defeats the benefits conferred to learning. All
synapses experience noisy fluctuations due to their molecular
makeup (23–25, 43–45). These sources of noise are distinct from
shared noise in a feedback signal that is used in learning. Such
independent noise sources accumulate as a network grows in
size, outcompeting the benefit of size on learning performance.
An immediate consequence is an optimal network size for a given
task and level of synaptic noise.

Furthermore, our results show that different noise sources in
nervous systems impact learning in qualitatively different ways.
Noise in the learning rule as well as external noise in the task
error, which may arise from sensory noise or fluctuations in the
task, can be overcome in a larger circuit. On the other hand,
the impact of intrinsic noise in the synaptic connections only
worsens as network size grows. Our results demonstrate the
intuitive fact that insufficient connections impair learning per-
formance. Conversely, and less obviously, excessive numbers of
connections impair learning once the optimal network size is
exceeded. This provides a hypothesis for why abnormalities in
circuit connectivity may lead to learning deficits (18–21).

Our analysis allowed us to predict the optimal size of a net-
work in theoretical learning tasks where we can specify the levels
of noise in the learning rule and in synapses. Fig. 5 shows that
the optimal network size decreases rapidly as the intrinsic noise
in synapses increases. We speculate that the emergence of large
neural circuits therefore depended on evolutionary modifica-
tions to synapses that reduce intrinsic noise. In particular, opti-
mal network size increases explosively as intrinsic synaptic noise
approaches zero. An intriguing and challenging goal for future
work would be to infer noise parameters in synapses across dif-
ferent nervous systems and test whether overall network size
obeys the relationships our theory predicts.

Materials and Methods
Full details of all simulations are provided in SI Appendix. We provide an
overview here. Code related to paper is publicly accessible in ref. 46.

Network Architectures. All tested neural networks have fully connected
feedforward architectures. Unless otherwise specified networks are nonlin-
ear with multiple hidden layers. Each neuron in these networks passes inputs
through a sigmoidal nonlinearity σ :R→R of the form σ(x) = 1

1+exp(−x) .

Details of the Learning Tasks. All training tasks used in simulation use the
student–teacher framework. The basic setup is as follows: We first make
a teacher network, which has the same basic network architecture as the
student’s. We then initialize the teacher weights at fixed values, which
are generated as follows (unless otherwise specified): At the kth layer of
the teacher network, weights are distributed uniformly on the interval
[−ak, ak]. Here ak is set so that the SD of weights on the layer is 4√

i
, where i is

the number of inputs to the layer. This scaling with i ensures that the mag-
nitude of hidden layer outputs does not increase with the size of hidden
layer (47).

We then specify a set U consisting of 1,000 input vectors. We generate
each vector u∈U componentwise, randomly drawing each component ui

from the distribution ui ∼N (0, 1). Note that in Fig. 2 this acts as a test set,
which is not used when training the network (details in the next section).

The output vector of the teacher, given an input vector u, is denoted
y*(u). The task of the student network, with weights w, is then to match its
output to y*(u), for all u∈U . Therefore, the task error is

F[w] =
∑
u∈U
‖y*(u)− y(w, u)‖2

2, [20]

where y(w, u) denotes the output of the student given input u and
weights w.

For the linear networks studied at the beginning of the section Network
Expansions That Increase Learning Performance, the dimensionalities of the
input and output vectors differ between the teacher and the students. How-
ever, fixed matrix transformations lift the teacher inputs/outputs into the
appropriate dimensionality (Eq. 12). For all other networks, the number of
network inputs/outputs is shared between the students and the teacher.
Teacher and students also have the same number of hidden layers. At the ith
hidden layer, each student has at least as many neurons as the teacher. This
ensures that the teacher network forms a subset of each student network
and therefore that each student network is theoretically capable of exactly
recreating the input–output mapping y*(u) of the teacher.

Network Training. The theoretical analysis in this paper and the simulations
in Fig. 2 pertain to online learning, where training data are sampled contin-
uously from an (infinite) distribution defined by the input–output mapping
of the teacher networks. However, in cases where we needed to compute a
true gradient (specifically Figs. 4 and 6), we needed to define finite distribu-
tions to numerically evaluate the true gradient. Having the true gradient
allows us to precisely specify values of task-relevant and task-irrelevant
components of plasticity.

We emphasize (as we emphasized in the main text) that this differs from
treating the finite set as a sample—or batch—from an infinite distribu-
tion, which would incur generalization issues because any finite sample will
be necessarily biased. The relationship between the results of our paper
and the latter scenario is described in SI Appendix, Regularization and
Generalization Error.

In Figs. 4 and 6 learning is conducted on the finite input set U described
in the previous section. At each learning cycle, we apply the weight update

wt+T = wt − Tγ̄1∇F̂[wt] + Tγ̄2n̂t
2 +
√

NTγ̄3n̂t
3. [21]

The parameters {γ̄i}3
i=1 and T specify the quality of the learning rule, the

feedback delay, and the intrinsic, per-synapse noise (main text). N is the
number of synapses in the network. We calculate the gradient ∇F[wt] by
taking the gradient of Eq. 21 using backpropagation. The normalized vec-
tors n̂t

2 and n̂t
3 represent sources of task-irrelevant plasticity. The dynamics

of the unnormalized vector n2 satisfy nt+1
2 =

√
0.1n̂t

2 +
√

0.9ν̂, where ν is a
Gaussian random variable, normalized such that ‖ν‖2 = 1. n̂3, which models
intrinsic synaptic noise, is a Gaussian random variable, normalized so that
‖n̂3‖2 = 1.

The network in Fig. 2 C and D is conducted online from an infinite dis-
tribution. At each learning cycle, we randomly draw a single input vector u
of Gaussian components; i.e., ui ∼N (0, 1). We replace the term ∇F̂[wt] in
the weight update Eq. 21 with ∇F̂[w, u], the (normalized) stochastic gradi-
ent, where F[w, u] :=‖y*(u)− y(w, u)‖2

2. The overall error F[w] is then the
expected error on the next input; i.e.,

F[w] =

∫
Ω

F[w, u]P[u] du,

where P[u] is the componentwise Gaussian probability density function from
which u is drawn, with support Ω. We cannot exactly calculate F[w] in
this setting; we therefore use the error function described above, which is
constructed from 1,000 inputs, providing an estimate of F[w].
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