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ABSTRACT

The three-dimensional (3D) organization of the
genome is intimately related to numerous key bi-
ological functions including gene expression and
DNA replication regulations. The mechanisms by
which molecular drivers functionally organize the 3D
genome, such as topologically associating domains
(TADs), remain to be explored. Current approaches
consist in assessing the enrichments or influences
of proteins at TAD borders. Here, we propose a TAD-
free model to directly estimate the blocking effects
of architectural proteins, insulators and DNA motifs
on long-range contacts, making the model intuitive
and biologically meaningful. In addition, the model
allows analyzing the whole Hi-C information content
(2D information) instead of only focusing on TAD bor-
ders (1D information). The model outperforms multi-
ple logistic regression at TAD borders in terms of
parameter estimation accuracy and is validated by
enhancer-blocking assays. In Drosophila, the results
support the insulating role of simple sequence re-
peats and suggest that the blocking effects depend
on the number of repeats. Motif analysis uncovered
the roles of the transcriptional factors pannier and
tramtrack in blocking long-range contacts. In human,
the results suggest that the blocking effects of the
well-known architectural proteins CTCF, cohesin and
ZNF143 depend on the distance between loci, where
each protein may participate at different scales of the
3D chromatin organization.

INTRODUCTION

In higher eukaryotes, chromosomes are packed in three
dimensions and form complex structures (1). Such three-
dimensional (3D) structure has recently been investigated
by chromosome conformation capture combined with high-
throughput sequencing technique (Hi-C) at an unprece-
dented resolution (2–4). Hi-C experiments reveal multiple
levels of genome organization including compartments A/B

(5) and topologically associating domains (TADs) (2,3).
Most notably, TADs are relatively constant between dif-
ferent cell types and are highly conserved across species.
These TADs play important roles in key cell processes
such as long-range regulation of genes by enhancers (4) or
replication-timing regulation (6).

The identification of architectural proteins and func-
tional elements involved in shaping the genome in 3D repre-
sents an intensive field of research (7). Seminal works using
enhancer-blocking assays (EBAs) revealed that functional
elements called insulators (or boundary elements) can sup-
press the activation of a promoter by a distant enhancer
when interposed (8,9). Multiple evidence actually supports
the role of insulator binding proteins (IBPs) such as CTCF,
and co-factors like cohesin, as mediators of long-range
chromatin contacts (3,10–13), which may in turn result in
blocking enhancers from contacting promoters by forming
alternative DNA loops. In mammals, high-resolution map-
ping of long-range contacts has recently revealed that loops
occur at domain boundaries and bind CTCF in a conver-
gent orientation where cohesin is recruited (12,14). Deple-
tion of CTCF and cohesin decreased chromatin contacts
(13). However, the impact of those depletions was limited
suggesting that other proteins might be involved in shaping
the chromosome in 3D. Accordingly, other IBPs, co-factors
and functional elements were also shown to colocalize at
TAD borders (11,15).

A classical approach to identify proteins involved in shap-
ing the 3D genome structure consists in assessing their en-
richments at TAD borders (2,3,12). Among a set of enriched
proteins, multiple logistic regression (MLR) can be further
used to characterize which proteins are more likely to influ-
ence the presence of borders (15). However, an important
drawback of the enrichment test and MLR is that they rely
on accurate TAD mapping, which is problematic for multi-
ple reasons: (i) TAD mapping strongly depends on the al-
gorithm used (16), (ii) TADs only capture a fraction of the
information from Hi-C data, and other important 3D do-
mains including A/B compartments (5), loop domains (12)
and subTADs (4) were discovered and (iii) TAD borders are
blurry (11).

Here, we propose a model named ‘blocking model’, to
systematically analyze the roles of architectural proteins
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and functional elements in blocking long-range contacts
between loci. The proposed model does not rely on TAD
mapping from Hi-C data. Thus, the model’s outcome is
not affected by the blurriness of borders. Instead of testing
the enrichment/influence of protein binding at TAD bor-
ders, the model directly estimates the blocking effect of pro-
teins on long-range contacts between flanking loci, mak-
ing the model intuitive and biologically meaningful. The
model only depends on a simple biological parameter: the
distance between insulated loci. The model directly ana-
lyzes the Hi-C contact matrix, thus taking advantage of the
whole Hi-C information content (2D information) instead
of only focusing on TAD borders (1D information). More-
over, the model successfully predicts in silico the outcomes
from low-throughput enhancer blocking assays, thus en-
abling genome-wide analyses. Using recent Drosophila and
human Hi-C data at high resolution, combined with a large
number of ChIP-seq and DNA motif data, we revealed nu-
merous combinations of proteins, functional elements and
DNA motifs that block long-range contacts depending on
scale and synergistic/antagonistic effects.

MATERIALS AND METHODS

Hi-C data

For Drosophila data analysis, we used publicly available
high-throughput chromatin conformation capture (Hi-C)
data of embryonic Kc167 cells from Gene Expression Om-
nibus (GEO) accession GSE62904 (17). We also used Kc167
Hi-C data from GEO accession GSE89112 (18). Hi-C data
were binned at 1, 2 and 5 kb resolutions.

For human data analysis, we used publicly available Hi-
C data of lymphoblastoid GM12878 cells from GEO acces-
sion GSE63525 (12). We used Hi-C data binned at 10, 40
and 100 kb resolution.

ChIP-seq data

For Drosophila data analysis, we used publicly available
protein-binding profiles of Kc167 cells (except for Pnr
whose data were from 6–8 h embryos). ChIP-seq data
for CP190, Su(Hw), dCTCF and BEAF-32 were obtained
from GEO accession GSE30740 (19). ChIP-seq data for
Barren (condensin I), Cap-H2 (condensin II), Chromator,
Rad21 (cohesin), GAF and dTFIIIC were obtained from
GEO accession GSE54529 (11). ChIP-seq data for Fs(1)h-L
were obtained from GEO accession GSE42086 (20). ChIP-
seq data for Ttk69k were obtained from GEO accession
GSE34698 (21). ChIP-seq peak calling was done using
MACS 2.1.0 with default parameters for all proteins (https:
//github.com/taoliu/MACS). ChIP-chip peaks for Pnr were
directly downloaded from (22).

For human data analysis, we used publicly available bind-
ing peaks of 73 chromatin proteins (Rad21, CTCF, YY1,
ZBTB33, MAZ, JUND, ZNF143, EZH2, ATF2, ATF3,
BATF, BCL11A, BCL3, BCLAF1, BHLHE40, BRCA1,
CEBPB, CFOS, CHD1, CHD2, CMYC, COREST, E2F4,
EBF1, EGR1, ELF1, ELK1, FOXM1, GABP, IKZF1,
IRF4, MAX, MEF2C, MTA3, MXI1, NFATC1, NFE2,
NFIC, NFKB, NFYA, NFYB, NRF1, NRSF, P300, PAX5,
PBX3, PML, POL2, POL3, POU2F2, RFX5, RUNX3,

RXRA, SIN3A, SIX5, SMC3, SP1, SPI1, SRF, STAT1,
STAT3, STAT5, TBLR1, TBP, TCF12, TCF3, TR4, USF1,
USF2, WHIP, ZEB1, ZNF274 and ZZZ3) of GM12878
cells from ENCODE (23). We downloaded peaks that were
uniformly processed (Uniform Peaks).

DNA motifs

To scan the genome for motif occurrences, we used Find
Individual Motif Occurrences (FIMO) with default param-
eters and with position-specific priors (PSPs) to improve
the identification of true motif occurrences (24). GM12878
DNase data from ENCODE were used as PSPs (23). The
motif information was taken either from the litterature (us-
ing consensus motif) or from JASPAR database (http://
jaspar.genereg.net/).

For Drosophila data analysis, we used transcription
factor-binding site (TFBS) motifs from the JASPAR
database. For some proteins, we used instead motif con-
sensuses from the litterature: BEAF-32 (CGATA) (25),
dCTCF (AGGTGGCG) (26), Su(Hw) (TGCATATTT)
(27), GAF (GAGAGA) (28), ZW5 (GCTGMG) (29),
DREF (TATCGATA) (30), M1BP (GGTCACACT) (31),
Ttk69k (GGTCCTGC) (32), dTFIIIC A box (TGGN
NNAGNNG), Pita (GGTTNNNNNNNNNGCT) (29),
ZIPIC (AGGGNTG) (29), Ibf (ATGTANAA) (33), Elba
(CCAATAAG) (34) and Zelda (CAGGTAG) (35).

For human data analysis, we also used TFBS motifs from
the JASPAR database. In human, motifs with <2000 occur-
rences were removed from the analysis to reduce uncertainty
in the � estimation.

The blocking model

To illustrate the blocking model, we first plotted the exam-
ple of a Drosophila genomic region with embryonic Kc167
cell Hi-C heatmap and ChIP-seq peaks of well-known ar-
chitectural proteins (Figure 1A). We observed that all ar-
chitectural proteins BEAF-32, dCTCF, dTFIIIC, GAF and
Su(Hw) accumulated on a specific locus (green frame) that
acted as an insulator of long-range contacts between flank-
ing regions. This observation suggested that the binding
of those proteins blocked long-range contacts (Figure 1B),
thereby contributing to the formation of 3D domains.

By integrating Hi-C data with ChIP-seq data or DNA
motif data, we propose to model the blocking effects of pro-
tein bindings with a generalized linear model:

log
(
E

[
y|d, B, I

]) = β0 + βdd + βBB − β II (1)

where, variable y denotes Hi-C count for any pair of bins on
the same chromosome. The log-distance variable d accounts
for the background polymer effect (power law decay rela-
tion between distance and Hi-C count modeled by a log–
log linear relation) (36). Bias variables B = {len, GC, map}
are known Hi-C biases including fragment length (len), GC-
content (GC) and mappability (map) that are computed as
in (37). Including those bias variables into the model allows
correcting for biases in Hi-C data. Note that bias variables
do not need to be included in the model if Hi-C counts
were previously normalized by matrix balancing (38). Vari-
able set I = {i1, ..., ip} represents the p blocking variables

https://github.com/taoliu/MACS
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Figure 1. Illustration of the blocking model. (A) Example showing that the accumulation of insulator-binding proteins (IBPs) is associated with a blocking
effect of long-range contacts between flanking loci in Drosophila (see green frame). (B) Schema representing the blocking effect of protein binding on long-
range contacts between two loci, such as between an enhancer and a promoter.

of interest. A blocking variable stores a value correspond-
ing to a ‘blocking region’ (Figure 1B), which is the region
in-between two bins whose Hi-C contacts are measured.
For ChIP-seq data, a blocking variable is defined as the av-
erage of the base coverage computed from the log2 fold-
enrichments of peaks found into the blocking region di-
vided by the length of the blocking region. A base within a
peak has a coverage value equal to the log2 fold-enrichment
of the peak and a base outside a peak has a coverage value
equal to zero. For DNA motif data, a blocking variable
is defined as the number of motif occurrences found into
the blocking region divided by the length of the blocking
region. The corresponding �i parameter value reflects the
blocking effect of the protein on Hi-C counts. A positive
value (�i > 0) reveals a blocking effect on long-range con-
tacts. Conversely, a negative value (�i < 0) shows a facilitat-
ing effect on contacts. A null value (�i = 0) means that the
protein does not have any effect in blocking or facilitating
contacts.

Using the model, one can also assess the co-blocking ef-
fects of two or more proteins using statistical interaction
terms:

log
(
E

[
y|d, B, i1, i2

]) = β0 + βdd + βBB

−βi1 i1 − βi2 i2 − βi12 i1i2 (2)

where, variables i1 and i2 are two blocking variables. The
product i1i2 is a second-order statistical interaction. The
corresponding parameter βi12 reflects the co-blocking effect
of the two proteins on contacts. A positive value (βi12 > 0)
reveals a synergistic effect of the two proteins in blocking
contacts. Conversely, a negative value (βi12 < 0) shows an
antagonistic effect of the two proteins in blocking contacts.
In equation (2), a second-order interaction was included,
but higher-order interactions (products of more than two
variables) can be included to model co-blocking effects of
more than two proteins.

The model only depends on a single parameter: the dis-
tance range between insulated loci. This parameter has a
strong biological meaning since it reflects the analysis scale
of hierarchical 3D genome organization. For instance, in
Drosophila, we will focus on Hi-C data for 20–50 kb dis-
tances which are below the median size of TADs (median
size of 60 kb (3)), therefore allowing TAD-scale analyses.
But we will also vary the scale of analysis in human (see be-
low).

In some situations, we standardize the blocking variables
before computing the model. Standardization allows to re-
duce the effect of very large differences in the blocking vari-
ables between different proteins when estimating the �s and
makes the latter more comparable in magnitude. In fact,
these blocking variable differences might be due to very
large differences in the ChIP-seq signal and the number of
peaks that might not be linked to the real blocking activ-
ity of proteins. For instance, when analyzing human ChIP-
seq data, we found that the highest �s were often associated
to proteins with few binding sites when no standardization
was used, and that these �s were strongly reduced after stan-
dardization (see below).

Because of Hi-C count overdispersion, we use negative
binomial regression as the most appropriate specification
of the generalized linear model. However, Poisson regres-
sion with lasso shrinkage can also be used. We believe that
the choice between both depends mainly on the number of
variables to analyze. On the one hand, if there are a few can-
didate variables (<10), it is interesting to estimate � param-
eters together with corresponding P-values to assess sig-
nificance using negative binomial regression. On the other
hand, if there are a large number of variables (10 or more),
it is more convenient to use Poisson lasso regression in or-
der to select the key variables and to account for correla-
tions among the variables (frequent in ChIP-seq and motif
occurrence data).
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The model is available in the R package ‘HiCblock’
which can be downloaded from the Comprehensive R
Archive Network (https://cran.r-project.org/web/packages/
HiCblock/index.html). For the negative binomial regres-
sion, model �s are learned by iterative weighted least
squares (glm.nb function from MASS R package with
default parameters). For the Poisson lasso regression,
model �s are learned by cyclical coordinate descent
and lambda parameter is estimated with 10-fold cross-
validation (cv.glmnet function from glmnet R package with
default parameters).

Simulation of random protein-binding sites and motif occur-
rences

For Poisson lasso regression in human, we simulated pro-
tein binding sites by randomly drawing genomic regions
from the genome whose numbers and fold-enrichments
were similar to those observed from real proteins. We then
used these random proteins to compute associated � coeffi-
cients with the Poisson lasso regression. We expected these
�s to be close to zero but with a certain standard devia-
tion σ̂ . We then used this standard deviation to compute a
confidence interval as 0 ± 1.96 × σ̂ under the null hypothe-
sis that a random protein did not have any blocking or fa-
cilitating effect on long-range contacts. For DNA motifs,
we used a slightly different approach. We randomly draw
14 base DNA sequences (random motifs) whose number of
occurrences over the genome were similar to those of real
DNA motifs. We scanned the genome for random motif oc-
currences. Then, we used these random motif occurrences to
compute associated � coefficients with the Poisson lasso re-
gression. As for random proteins, we used these �s to com-
pute a confidence interval under the null hypothesis.

RESULTS

Model validation with enhancer-blocking assays

We first sought to validate our model using EBAs from
Drosophila. EBA is a classical low-throughput method that
can be used to show the ability of an insulator sequence to
block the activation of a promoter by a distant enhancer
when interposed between them (39) (Figure 2A). We used
the model to predict the blocking effect of an insulator re-
gion depending on protein binding. For this purpose, we
used a compilation of EBA results from (11). It consisted
of 32 regions with varying reported insulating activity (15
regions with insulating activity and 17 regions with no in-
sulating activity). In the first benchmark, we selected the
15 regions with insulating activity (positive class). In or-
der to have a large set of regions with no insulating activ-
ity, we generated >100 control regions (negative class) by
randomly drawing from the Drosophila genome with sizes,
GC and repeat contents similar to those of the abovemen-
tioned 15 regions (40). For each region, we computed block-
ing variables I = {i1, ..., ip} using p ChIP-seq data from
Kc167 cells. We also used β̂I = {β̂i1 , ..., β̂i p } model parame-
ters independently learned from Kc167 Hi-C data from Li
et al. (17) at 2 kb resolution and for 20–50 kb distances,
for which Hi-C coverage was high. Model parameters were

Figure 2. Validation of the model with enhancer-blocking assays (EBAs)
from Drosophila and human. (A) Illustration of the EBAs. (B) ROC curves
of the prediction of insulating regions (positives) as compared to randomly
drawn regions (negatives) in Drosophila. Area under the ROC curve (AUC)
is plotted. (C) ROC curves of the prediction of insulating regions (pos-
itives) as compared to non-insulating regions (negatives) in Drosophila.
(D) Blocking effects of GATA SSRs depending on the repeat count in
Drosophila. (E) Blocking effects of GATA SSRs depending on the repeat
count in human.

not learned from EBA assays to prevent overestimation of
predictive performance. We predicted insulating activities of
the regions by the matrix product β̂I I. We then assessed the
accuracy of our model’s predictions using receiver operat-
ing characteristic (ROC) curve and the area under the ROC
curve (AUC). We found that predicted insulating activity
was very close to the observed insulator activity from EBA
(AUC = 0.981; Figure 2b). In the second benchmark, we
did not use generated controls but instead the 17 regions re-
ported to have no insulating activity as negative class. We
again predicted insulating activity, and found that predic-
tions were still good (AUC = 0.808; Figure 2C). We found
that changing Hi-C data resolution to 1 or 5 kb only slightly
affected predictions for the two benchmarks (Supplemen-
tary Figure S1). In the third benchmark, we assessed the
blocking effect of simple sequence repeats (SSRs) of GATA
that were shown to have an insulating activity by EBAs
in both drosophila and human (41). In drosophila, we esti-
mated a blocking effect for SSRs that comprised >4 repeats
(Figure 2D and Supplementary Table S1). In particular, we

https://cran.r-project.org/web/packages/HiCblock/index.html


PAGE 5 OF 10 Nucleic Acids Research, 2018, Vol. 46, No. 5 e27

Figure 3. Analysis of IBPs in Drosophila. (A) Enrichment of IBPs at TAD
borders, depending on the TAD mapping algorithm used. (B) Blocking
effect (�) estimated separately. (C) Blocking effect (�) estimated jointly.
(D) MLR �s estimated from TAD borders (15). (E) Parameter estimation
accuracy of the proposed model compared to MLR.

found a significant blocking effect for SSRs with five to six
repeats (β̂ = 0.046, P = 2 × 10−8). SSRs with >6 repeats
were too few to detect any significant blocking effect (only
8 SSRs with 7 to 8 repeats and 9 SSRs with >11 repeats).
In human, we detected significant blocking effects for all
GATA repeat counts (P < 10−20) at short distances (100–
250 kb at 10 kb resolution; Figure 2E and Supplementary
Table S2). Most notably, we found the highest blocking ef-
fects for SSRs with 9 to 10 repeats (β̂ > 0.07, P < 10−20),
revealing that the blocking effect depends on the number of
repeats. For larger distances (950–1000 kb), we could only
detect a slight blocking effect for eight repeats, suggesting
that SSR blocking effect acted at short distance (Supple-
mentary Figure S2 and Table 3). Using EBAs, we thus con-
cluded that the model was successfully validated.

Analysis of insulator proteins and comparison with current
approaches

A major problem of testing protein enrichment at TAD bor-
ders is that different algorithms have been developed for
TAD mapping which can yield large differences of enrich-
ments for the same protein (42). Accordingly, we observed
that the enrichments of BEAF-32, dCTCF, dTFIIIC, GAF
and Su(Hw) could greatly vary depending on the TAD al-
gorithm used in Drosophila (Figure 3A). For instance, GAF
presented an odds ratio (OR) of 4.3 with HiCseg (43), an
OR of 4 with Arrowhead (12), whereas it only showed an
OR of 2.5 with TopDom TADs (16). Conversely, dCTCF

presented an OR of 3.7 with HiCseg, and ORs around 5
with Arrowhead and TopDom.

Instead of testing protein enrichments at TAD borders,
we used our model to directly assess the blocking effect of
protein binding on long-range contacts. We first estimated
separately the blocking effects of IBPs, by including only
one IBP in the model at a time. This allowed to compare
with previous enrichments. We used Kc167 Hi-C data from
Li et al. (17) at 2 kb resolution and focused on 20–50 kb dis-
tances. Using our model, we found that BEAF-32, dCTCF
and dTFIIIC showed the strongest blocking effects (Fig-
ure 3B), which was similar to the enrichments observed at
TAD borders (Figure 3A) and previously observed by Sex-
ton et al. (3). Because the blocking effect might be influ-
enced by the number of protein-binding sites, we sampled
different numbers of peaks from BEAF-32 and estimated
the corresponding �s. As expected, we found that � accu-
racy was lower for smaller number of peaks (Supplementary
Figure S3). We also observed that the blocking effect was in-
flated, but such inflation remained reasonable (+63%), even
for 1000 sampled peaks which represented only 15% of all
BEAF-32 peaks.

Because IBPs often colocalize linearly (e.g. correlate) on
the chromosome, one might estimate a blocking effect for
a protein, although the protein does not directly impede
long-range contacts (15). Hence, we re-estimated blocking
effects of IBPs jointly (e.g. by including all IBPs within the
same model). BEAF-32 presented the highest blocking ef-
fect (β̂ = 0.86, P < 10−20) compared to the other proteins
(Figure 3C), similarly to previously published MLR analy-
sis at TAD borders (15) (Figure 3D). Our model also esti-
mated a negative � for dTFIIIC, suggesting that the protein
could in fact facilitate long-range contacts between flanking
regions, contrary to what is found by the separate estima-
tion (previous paragraph). This meant that dTFIIIC block-
ing effect estimated by separate estimation was in fact due
to the colocalization (correlation) of dTFIIIC with other
IBPs such as BEAF-32 (correlation between dTFIIIC and
BEAF-32 blocking variables equals 0.59, P < 10−20). Our
model outperformed MLR in terms of parameter estima-
tion accuracy. Standard errors of beta parameters were dra-
matically lower than the ones from MLR, revealing the
higher performance of our model in assessing blocking ef-
fects of proteins (Figure 3E). To further compare our new
model with MLR, we assessed the ability to discriminate
between known architectural proteins (11 true positives in-
cluding IBPs and co-factors) and random protein peaks
(200 false positives) using ROC curves (Supplementary Fig-
ure S4). Based on the absolute values of �s, we found that
our blocking model was highly accurate (AUC = 0.991) and
performed better than MLR (AUC = 0.827). Moreover, we
performed the joint analysis of IBPs for different binning
resolutions (1 and 5 kb) and found similar results with 2 kb,
revealing that the resolution did not have a big impact on
the estimation of blocking effects (Supplementary Figure
S5). In addition, we analyzed recent Hi-C data with higher
coverage from Eagen et al. (18) at 1 kb resolution and ob-
tained results that were close to those obtained from Li et al.
data (Supplementary Figure S6). Thus, by processing the
whole Hi-C matrix information, instead of focusing only on
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Figure 4. Analysis of protein binding DNA motifs in Drosophila. (A)
Blocking effect (�) in function of motif abundance (|β̂| > 0.2 are shown in
red; known architectural proteins are written in blue). (B) Example show-
ing the accumulation of M1BP motifs and DNase I hypersensitive sites
between 3D domains. (C) Example showing the accumulation of Pita and
Pnr motifs between 3D domains. (D) Example showing the accumulation
of Ttk69k motifs between 3D domains.

TAD borders, the proposed model was more accurate than
MLR.

Numerous protein-binding DNA motifs act as blockers

We next sought to analyze the blocking effects of protein-
binding DNA-motifs (Figure 4A and Supplementary Table
S4). Interestingly, our model found motif 1-binding pro-
tein (M1BP) as the motif with the strongest blocking ef-
fect (β̂ = 1.46), which was recently found to be enriched at
TAD borders during development (35) and was implicated
in transcriptional pausing of genes (31). Such transcrip-
tional pausing was recently shown to be involved in long-
range contacts (44). When we looked at Hi-C heatmaps,
we observed that M1BP motifs accumulated at the bor-
ders of 3D domains (Figure 4B; DNase I hypersensitiv-
ity is shown to represent the potential activity of the mo-
tifs). We also identified other motifs with strong blocking
effects including bcd (β̂ = 0.65), Pita (β̂ = 0.63), vis (β̂ =
0.60), Pnr (β̂ = 0.59) and Ttk69k (β̂ = 0.55). Among those

proteins, Pita was a recently discovered insulator protein
able to target CP190 to chromatin (45) and was found at
3D domain borders (Figure 4C). When we used Ttk69k
ChIP-seq and Pnr ChIP-chip data, we found that both
Ttk69k and Pnr colocalized at or near architectural pro-
tein peaks (Supplementary Figure S7a). For instance, Pnr
was enriched at condensin I (Barren), CP190, BEAF-32
and Chromator peaks (Supplementary Figure S7b). Inter-
estingly, Ttk69k was mostly enriched near architectural pro-
teins but did not overlap them, except for condensin I, sug-
gesting that Ttk69k might participate to the formation of
3D domains in a very specific way (Supplementary Fig-
ure S7c). Accordingly, we found numerous Pnr and Ttk69k
motifs located between 3D domains (Figure 4C and D).
We also identified architectural proteins ZW5 (β̂ = 0.33),
dCTCF (β̂ = 0.32) and Ibf (β̂ = 0.29). Of note, Ibf was
shown to be a novel CP190 interacting protein with in-
sulating activity (33). When we compared with MLR, we
also found that M1BP presented a very high positive in-
fluence on TAD borders (β̂ = 8.65; Supplementary Table
S5). However another motif, Zelda, presented the highest
positive influence (β̂ = 9.32), whereas the same motif was
identified as a long-range contact facilitator with the block-
ing model (β̂ = −0.41; Supplementary Table S4). This sug-
gests that the blocking model can capture effects on long-
range contacts that could not be assessed by the analysis at
the TAD border level. Using the blocking model, we could
conclude that many proteins including pannier, a transcrip-
tional regulator involved in several developmental processes
(46) and tramtrack 69k, a widely expressed transcriptional
factor (TF) related to cell fate specification, cell prolifer-
ation and cell-cycle regulation (47), might represent novel
candidate architectural proteins in Drosophila.

Co-blocking effects of insulator-binding proteins and co-
factors

Long-range contacts not only involve IBPs but also co-
factors that regulate or stabilize them (11,12,48). Hence, we
sought to analyze potential effects of IBPs and co-factors in
co-blocking long-range contacts. We first modeled the co-
blocking effects of protein pairs using second-order statis-
tical interactions (for every protein pair, we estimated a co-
blocking effect). We detected 38/55 significant interactions
after Bonferroni correction. Among the significant interac-
tions, the model identified 19 positive co-blocking effects
(β̂ > 0), reflecting protein pairs that synergistically blocked
long-range contacts (Supplementary Table S6). We repre-
sented these synergistic blocking effects by a network of
proteins (Figure 5A). In agreement with (49), CP190 co-
blocked contacts with BEAF-32 (β̂ = 0.76, P < 10−20) and
with GAF (β̂ = 0.67, P < 10−20). Interestingly, we found
that Condensin II (Cap-H2) played a central role in help-
ing other proteins to block contacts, including dCTCF (β̂ =
1.33, P = 4 × 10−13), Barren (β̂ = 0.78, P < 10−20), dT-
FIIIC (β̂ = 0.70, P = 10−6) and GAF (β̂ = 0.68, P = 2
× 10−10). dTFIIIC also represented an important protein
for co-blocking effects. Conversely, Fs(1)h-L had only one
co-blocking partner, dTFIIIC. The model also estimated
19 negative co-blocking effects (β̂ < 0), reflecting protein
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Figure 5. Effects of IBPs and co-factors in co-blocking long-range con-
tacts. (A) Synergistic blocking effects estimated by positive second-order
interaction �s. An edge between two protein nodes i and j means β̂i j > 0.5.
(B) Antagonistic blocking effects estimated by negative second-order inter-
action �s. An edge between two protein i and j nodes means β̂i j < 0.5. Blue
cross: physical interaction reported in Flybase.

pairs that had antagonistic effects in blocking long-range
contacts (Figure 5B and Supplementary Table S6). Most
notably, we found numerous antagonistic effects of CP190
in blocking contacts with other proteins, such as dTFIIIC
(β̂ = −2.33, P < 10−20), Su(Hw) (β̂ = −1.78, P < 10−20),
Chromator (β̂ = −1.68, P < 10−20), dCTCF (β̂ = −0.87,
P < 10−20) and Fs(1)h-L (β̂ = −0.53, P = 4 × 10−6). In-
terestingly, Su(Hw) had a slight blocking effect on long-
range contacts (β̂ = 0.20, P < 10−20; Figure 3C), but when
combined with CP190, they presented a strong antagonis-
tic effect which reduced its blocking effect (β̂ = −1.78, P
< 10−20; Figure 5B). Among the synergistic and antago-
nistic effects, we found that many corresponded to physical
interactions reported in Flybase and previous studies (49),
supporting the idea that physical interactions may account
for some of them. Analysis of second-order interactions
thus revealed the complexity behind the establishment of
3D domains. This may notably depend on numerous syner-
gistic and antagonistic effects of IBPs with key architectural
co-factors such as structural maintenance complex (SMC)
family of proteins including cohesin and condensin (50,51).

Analysis in human

We then analyzed blocking effects of proteins and DNA
motifs in human, depending on the scale of 3D genome or-
ganization. For this purpose, we used GM12878 Hi-C data
for varying distance ranges: [200–400 kb], [400–600 kb],
[600–800 kb], [800–1000 kb], [1000–1300 kb], [1700–2000
kb], [2700–3000 kb], [2700–3000 kb], [3700–4000 kb] and
[4700–5000 kb]. We performed analyses at 40 kb resolution
to have sufficient coverage at long distance (even though for
short distance higher resolution could be used). By varying
the distance range, we could assess blocking effects at dif-
ferent scales, thus allowing the analysis of the well-known
hierarchical nature of 3D domains (52). Because of the large
number of variables (>50), we used Poisson lasso regres-
sion. Moreover, for ChIP-seq data analysis, we scaled the
blocking variables because the ChIP-seq peak numbers and
fold-enrichments greatly varied between proteins and that
prevented further comparison of �s. For each analysis, we

Figure 6. Analysis of protein binding and DNA motif in human. (A)
Blocking effects of architectural proteins depending on the distance be-
tween loci. (B) Blocking effects of TFs depending on the distance between
loci. (C) Blocking effects of protein binding motifs depending on the dis-
tance between loci. For all three subfigures, we also plotted confidence in-
tervals under the null hypothesis that a random protein or DNA motif did
not have any effect on long-range contacts.

also computed confidence intervals under the null hypoth-
esis that a protein or DNA motif did not have any block-
ing or facilitating effect on long-range contacts (see ‘Mate-
rials and Methods’ section, simulation of random protein-
binding sites and motif occurrences).

We first focused on known architectural proteins CTCF,
Rad21 (cohesin subunit) and ZNF143. Remarkably, we ob-
served that the blocking effects of architectural proteins
strongly depended on the distance between loci (Figure
6A and Supplementary Table S7), a question that could
not be addressed by previous enrichment or MLR analy-
ses at TAD borders. For instance, CTCF blocking effects
peaked around 3 Mb. Interestingly, the main looping part-
ner of CTCF, cohesin, had a blocking effect that peaked at
a lower distance, from 1000 to 2000 kb. Another partner
of CTCF, ZNF143, also showed a different blocking effect
that strikingly peaked at 800–900 kb. This means that al-
though CTCF, cohesin and ZNF143 were known to act to-
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gether in establishing chromatin loops (7), they might par-
ticipate at different scales. We next studied the blocking
effects of TFs (Figure 6B and Supplementary Table S7).
Compared to architectural proteins, TFs were less abundant
over the genome (around few thousands peaks, compared
to tens of thousands of peaks for architectural proteins).
Among the strongest blockers, we found ATF2, FOXM1,
PML and POU2F2, whose effects also depended on dis-
tance. POU2F2 effect peaked at 3800 kb, and FOXM1
and PML both peaked at 3 Mb. Interestingly, some TFs,
such as ATF2, presented high blocking effects for very
large distance (>5 Mb). Thus, although TFs were less fre-
quent over the genome than architectural proteins, they
might collectively contribute significantly to the establish-
ment or maintenance of 3D organization. Lastly, we ana-
lyzed protein-binding DNA motifs (Figure 6C and Supple-
mentary Table S8). CTCF motif showed a strong blocking
effect that peaked from 1000 to 2000 kb, at a shorter dis-
tance than found using ChIP-seq data. However, another
motif, TFAP2C, presented the strongest blocking effect, es-
pecially at long distance. TFAP2C has been implicated in
breast cancer oncogenesis, and was previously shown to be a
collaborative factor in estrogen-mediated long-range inter-
action and transcription (53). We also identified ELK4 and
PAX1 as strong blockers at long distance. ELK4 is a mem-
ber of the Ets family of transcription factors, and PAX1, is
essential during fetal development. We thus concluded that
architectural proteins, but also transcription factors, shaped
the 3D human genome at different genomic scales.

DISCUSSION

In this paper, we propose a model to comprehensively study
the roles of architectural proteins, insulators and DNA mo-
tifs in blocking long-range contacts between flanking loci at
different scales, thereby demarcating the genome into func-
tional 3D domains. The proposed approach is TAD-free: it
does not rely on any TAD mapping algorithm, it does not
focus on TADs but instead on all possible 3D domains at
all scales, and it is not affected by the blurriness of TAD
borders. The model is validated by numerous EBAs. It out-
performed previous MLR of TAD borders (15) in terms of
blocking effect estimation accuracy. The model is flexible
and can identify both synergistic and antagonistic effects of
architectural proteins depending on the presence of specific
IBPs and co-factors.

The proposed model also uncovers a number of results. In
Drosophila, we find that the blocking effect for the GATA
SSRs depends of the number of repeats, and in particular,
we estimate a significant blocking effect for 5–6 repeats. In
human, we find that GATA repeat effect peaks for 9–10 re-
peats. Moreover, analysis of motifs identifies pannier and
tram track as two novel candidate architectural proteins. In-
terestingly, the protein pannier is a member of the GATA
family known to bind to GATA motifs (46), which may ex-
plain the insulating activity of GATA repeats by recruiting
multiple pannier proteins contiguously to DNA. Moreover,
tram track has a homomeric dimerization BTB/POZ do-
main that could help bridging two distant proteins through
long-range contacts (54) and that is known to interact with
GAF (55). Analysis of co-blocking effects between archi-

tectural proteins further suggests a role for co-factor con-
densin II in helping other proteins to block contacts. Con-
versely, CP190 presents numerous antagonistic effects with
other proteins, meaning that it reduces their blocking activ-
ities. Such co-blocking analyses thus reveal the modulating
effects of specific proteins in blocking contacts with other
proteins. In human, analyses for varying distance ranges un-
cover strong distance-dependent blocking effects depending
on the protein or DNA motif, that could not be addressed
by enrichment test or MLR at TAD borders. For instance,
we find that CTCF, cohesin and ZNF143 blocking effects
peak at different distances, although the three proteins are
known to act together in establishing chromatin loops (7).
This suggests that they may participate at different 3D chro-
matin scales, or alternatively that their mechanisms of ac-
tion is not always associated with their binding. Support-
ing this idea, recent results showed that cohesin is recruited
at transcription start sites and positioned to CTCF sites by
transcription-mediated translocation (56). In addition, we
observed changes of the � sign depending on the distance.
For instance, ZNF143 presented a blocking effect at short
distance (<2500 kb) and a facilitating effect at longer dis-
tance. This can be due to ZNF143-mediated loops at short
distance that have allosteric effects on long distance inter-
actions (57).

There are different reasons why we restricted our analysis
within a limited distance range, e.g. 20–50 kb in Drosophila
(and not 20–1000 kb, for instance). First, at the high resolu-
tion of 2 kb, most of the Hi-C signal is observed within short
distance (20–50 kb). Second, our model assumes a power
law decay between Hi-C count and distance (equivalent to
a log–log linear relation between Hi-C count and distance)
which only holds for a limited distance range. Third, not
restricting the analysis to a limited distance range can lead
to heavy computational burden. One simple way to analyze
Hi-C data within a wider distance range would be to ana-
lyze data at 10–20 kb resolutions.

There are several limitations of the proposed approach.
First, model learning can be computationally demanding in
time and memory depending on the distance range or Hi-C
data resolution. New big data learning algorithms could be
used to process the data at a higher resolution that would al-
low in-depth analysis of 3D chromatin drivers (58). Second,
the model makes the assumption that the accumulation of
protein binding blocks long-range contacts, but other sce-
narios could explain the formation of borders. For instance,
attraction/repulsion forces between histone marks can pre-
dict the folding of chromatin (59). Third, in human, we ob-
served large changes of �s over distance, for instance for
protein ZNF143 and DNA motif TFAP2C(var.3). Because
lasso regression is not designed to estimate beta standard
deviations, the significance of the difference between two
�s obtained for two different distances cannot be tested.
Instead, one could use a standard regression with selected
variables to assess the significance.

AVAILABILITY

The model is available in the R package ‘HiCblock’
which can be downloaded from the Comprehensive R



PAGE 9 OF 10 Nucleic Acids Research, 2018, Vol. 46, No. 5 e27

Archive Network (https://cran.r-project.org/web/packages/
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