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Abstract 

The retina, as the only visually accessible tissue in the central nervous system, has attracted significant attention for 
evaluating it as a biomarker for neurodegenerative diseases. Yet, most of studies focus on characterizing the loss of 
retinal ganglion cells (RGCs) and degeneration of their axons. There is no integrated analysis addressing temporal 
alterations of different retinal cells in the neurovascular unit (NVU) in particular retinal vessels. Here we assessed 
NVU changes in two mouse models of tauopathy, P301S and P301L transgenic mice overexpressing the human tau 
mutated gene, and evaluated the therapeutic effects of a tau oligomer monoclonal antibody (TOMA). We found that 
retinal edema and breakdown of blood–retina barrier were observed at the very early stage of tauopathy. Leukocyte 
adhesion/infiltration, and microglial recruitment/activation were constantly increased in the retinal ganglion cell layer 
of tau transgenic mice at different ages, while Müller cell gliosis was only detected in relatively older tau mice. Con-
comitantly, the number and function of RGCs progressively decreased during aging although they were not consider-
ably altered in the very early stage of tauopathy. Moreover, intrinsically photosensitive RGCs appeared more sensitive 
to tauopathy. Remarkably, TOMA treatment in young tau transgenic mice significantly attenuated vascular leakage, 
inflammation and RGC loss. Our data provide compelling evidence that abnormal tau accumulation can lead to 
pathology in the retinal NVU, and vascular alterations occur more manifest and earlier than neurodegeneration in the 
retina. Oligomeric tau-targeted immunotherapy has the potential to treat tau-induced retinopathies. These data sug-
gest that retinal NVU may serve as a potential biomarker for diagnosis and staging of tauopathy as well as a platform 
to study the molecular mechanisms of neurodegeneration.
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Introduction
Tau is a member of the microtubule-associated proteins 
family, which is mainly expressed by neurons, espe-
cially in their axons where it controls the polymeriza-
tion and stabilization of the microtubules and regulates 
axonal transport. Tauopathies, characterized by abnor-
mal intracellular accumulation of aggregated and/or 

hyperphosphorylated tau within neurons, is a hallmark of 
Alzheimer’s disease (AD) and a number of other disor-
ders including frontotemporal dementia with parkinson-
ism-17 (FTDP-17), Pick disease, progressive supranuclear 
palsy and corticobasal degeneration [5, 21]. Tauopathies 
are among the most crippling conditions that affect our 
rapidly growing aging population. Due to the lack of 
effective diagnostics and treatments, these diseases sig-
nificantly impair the daily life of patients and markedly 
impose financial costs to them, their family members and 
society.
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The retina comprises several cell types including retinal 
neurons, vascular cells, microglia and glial cells. It is an 
extension of the neural network of the brain and shares 
many similar pathophysiological changes and underly-
ing mechanisms with the brain during neurodegenera-
tive diseases including AD [8, 12, 17, 18, 20, 25, 33–35, 
47, 57, 64]. Since the retina is not wrapped by the skull, it 
is much easier to observe the retina than the brain non-
invasively. Additionally, due to the anatomical and func-
tional characters, the pathological changes in the retina 
may precede those in the brain. These features make the 
retina an appealing source of noninvasive biomarkers as 
well as an alternative platform to study neurovascular 
coupling in tauopathy [64]. Although previous studies 
have some exploration of retinal abnormality in different 
AD-related models [8, 12, 18, 20, 25, 33, 47, 58, 61], reti-
nal vascular changes in this process are largely unknown; 
and quantitative and temporal analyses for the alterations 
of different retinal cell types are missing.

P301S and P301L tau gene mutations are two of 
the most frequently studied tau mutations linked to 
FTDP-17 [24, 65]. P301S and P301L  transgenic  mice 
closely recapitulate many features of human tau-associ-
ated  pathology including the formation of filamentous 
tau lesions, synapse loss and neurodegeneration [31, 38, 
65]. Therefore, these mouse strains have been widely 
used as models to study mechanisms and treatments of 
tauopathy including AD [4, 10, 37, 60, 65]. Here we uti-
lized P301S and P301L mice to perform comprehensive 
and longitudinal analyses of changes in the retinal neu-
rovascular unit (NVU) during tauopathy. We found that 
retinas underwent vascular inflammation and barrier 
breakdown, retinal ganglion cell (RGC) dysfunction and 
degeneration, and Müller cell gliosis, associated with 
the progression of tau pathology. Moreover, vascular 
inflammation and barrier breakdown even occurred in 
1-month-old P301S mice, which preceded manifest neu-
ron degeneration. More importantly, retinal pathology in 
P301L mice was attenuated by the treatment with a tau 
oligomer monoclonal antibody (TOMA) which has been 
used to treat tauopathy in the brain [10], further support-
ing the notion that the retina and brain share common 
pathological mechanisms during tauopathy.

Materials and methods
Animals
C57BL/6J wild type (WT) mice (Stock No: 000664) were 
originally obtained from the Jackson Laboratory (Bar 
Harbor, ME) and subsequently bred in the animal care 
facility at the University of Texas Medical Branch. P301S 
hemizygous mice on a C57BL/6J and C3H/HeJ mixed 
background (Stock No: 008169) were purchased from 
the Jackson Laboratory and bred with C57BL/6J mice to 

generate P301S and WT littermates. Cx3cr1GFP/+mice 
(Stock No: 005582) were from the Jackson Laboratory 
and maintained by crossing with C57BL/6J mice. To gen-
erate P301S; Cx3cr1GFP/+ mice, P301S mice were crossed 
with Cx3cr1GFP/+  mice. P301L homozygous mice on a 
C57BL/6, DBA/2, SWR/J mixed background (Model 
2508) were purchased from Taconic Biosciences (Rens-
selaer, NY) and crossed with C57BL/6J mice for two gen-
erations. Then hemizygous P301L mice were intercrossed 
to generate homozygous P301L and background-matched 
WT mice. The homozygous and its corresponding WT 
colonies were maintained by incrossing homozygotes and 
WT mice, respectively. Since many transgenic mice used 
to study tauopathy or AD pathology are on a mixed back-
ground potentially bearing inherited retinal degenera-
tion mutations [11], tail snips from founder mouse lines 
(P301S, Cx3cr1GFP/+ and P301L) were sent to GenoTyp-
ing Center of America (Waterville, ME) to perform sin-
gle nucleotide polymorphism (SNP) before using them 
to set up colonies to produce mice used for the experi-
ments. SNP analysis demonstrated these mice did not 
bear Pde6brd1 mutation which is often associated with 
C3H and SWR background and Crb1rd8 mutation which 
is often associated with C57BL/6N background.

To study the effects of TOMA treatment, mouse 
TOMA (MABN819, MilliporeSigma, Burlington, MA) 
or IgG isotype control (31903, ThermoFisher Scientific, 
Waltham, MA) were injected to P301L mice (i.v., 30 μg/
mouse) [10] at 1  month of age and 1  week before sam-
ple collection at 3 months of age. Mice were maintained 
on a 12:12 light/dark cycle with food and water avail-
able ad  libitum. All experiments procedures and use of 
animals were approved by the Institutional Animal Care 
and Use Committee of the University of Texas Medical 
Branch.

High resolution spectral domain optical coherence 
tomography (SD‑OCT)
P301S, P301L mice and age- and strain-matched WT 
mice were examined by OCT before sacrifice. Briefly, 
mice were anesthetized via intraperitoneal injection 
with a combination of ketamine (100  mg/kg) and xyla-
zine (10 mg/kg). Mouse eyes were topically dilated with 
one drop of tropicamide and phenylephrine. Eyes were 
imaged using Spectral Domain Ophthalmic Imaging 
System (Envisu R2200, Bioptigen Inc., NC) as described 
previously [41–43]. Annular scans consisted of 1000 
A-scans × 100 B-scans covering a donut-shaped area 
centered at the optic nerve disc were performed in order 
to remove variance of optic nerve head measurement. 
The inner and outer radiuses of the donut-shaped area 
were 200 and 700 μm from the center of the optic nerve 
disc, respectively. Then OCT depth thickness report and 
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analysis were generated from Bioptigen’s automated seg-
mentation algorithm developed for the murine eye. The 
thickness of each retinal layer presented in the report 
for each eye was an average of 100,000 measurements 
(A-scans) in the donut-shaped area, which accurately 
measured retinal thickness and excluded the necessity 
to register and quantify the same anatomical landmark 
between different animals. The ganglion cell complex 
(GCC) includes all three innermost layers: the nerve fiber 
layer (NFL), the ganglion cell layer (GCL) and the inner 
plexiform layer (IPL).

In vivo imaging by scanning laser ophthalmoscopy (SLO)
Mice were anesthetized via intraperitoneal injection with 
a combination of ketamine (100  mg/kg) and xylazine 
(10  mg/kg). After eyes were topically dilated with one 
drop of tropicamide and phenylephrine, mice were prop-
erly located on the platform. The Heidelberg Spectralis 
HRA system (Heidelberg Engineering, Franklin, MA) was 
used to image GFP+ cells within the context of the retinal 
tissue at 488-nm excitation wavelength for GFP fluores-
cence [26].

Dark‑adapted electroretinography (ERG) analysis
ERG analysis was performed as described previously 
[26, 41, 43]. Briefly, mice were dark-adapted over-
night  and anesthetized via intraperitoneal injection with 
a mixture of ketamine (100 mg/kg) and xylazine (10 mg/
kg). Mouse pupils were topically dilated with a mixture 
of atropine and phenylephrine and the corneas were kept 
moist with the application of Celluvisc. Next, mice were 
placed on a self-heating platform to maintain a constant 
body temperature of 37.0  °C, gold ring electrodes were 
placed on the surface of the cornea, and ERG responses 
were measured using the Espion system (Diagnosys LLC, 
Lowell, MA). pSTRs were recorded in response to a 
series of white flashes with intensities ranging from − 4.3 
to − 3.2  log  cd  s/m2. Each record was an average of at 
least 50 responses.

Leukostasis
Retinal leukostasis assay, labeling adherent leukocytes to 
retinal vasculature, was performed as described previ-
ously [41, 43]. Briefly, at 1, 3, 8 months of age, mice were 
anesthetized via intraperitoneal injection with a mix-
ture of ketamine (100  mg/kg) and xylazine (10  mg/kg). 
After the chest cavity was opened and a 20-gauge per-
fusion cannula was introduced to the left ventricle, the 
right atrium was cut open for outflow. Phosphate-buff-
ered saline (PBS) was perfused through left ventricle to 
remove erythrocytes and nonadherent leukocytes, which 
was followed by perfusion with rhodamine-coupled con-
canavalin A (ConA) lectin (40  μg/mL in PBS, pH 7.4; 

Vector Laboratories, Burlingame, CA) to label adherent 
leukocytes and vasculature. Subsequently, PBS was per-
fused again to remove residual unbound Con A. After 
eyeballs were collected and fixed with 4% paraformalde-
hyde (PFA) overnight, retinas were dissected and stained 
with anti-CD45 antibody (1:400, 550539, BD Biosciences, 
San Jose, CA). Leukocytes inside the blood vessels (leu-
kostasis) are ConA+CD45+ (red and green fluorescence), 
while leukocytes outside the blood vessels (leukocytes 
infiltrated into the retina) are ConA−CD45+ (only green 
fluorescence). The total number of adherent leukocytes 
per retina and leukocytes infiltrated into the retina per 
retina were counted [41, 43]. Of note, although sub-
optimal concentration of CD45 antibody was used for 
staining (1:400 dilution rather than 1:10–1:50 dilution 
recommended by the company) and only cells with round 
shape were counted, there was possibility that very few 
microglia that had relative high CD45 expression and 
were round might be counted as infiltrated leukocytes.

Western blot
Whole retinas were homogenized and lysed for 30  min 
on ice in lysis buffer (50 mM Tris–HCl, pH 7.4, 150 mM 
NaCl, 0.25% deoxycholic acid, 1% NP-40, and 1  mM 
EDTA) supplemented with Complete Protease and Phos-
phatase Inhibitors (Roche Applied Science, Indianapolis, 
IN). After retinal lysates were centrifuged (14,000  rpm, 
15  min, 4  °C), protein concentration was assessed with 
Pierce BCA Protein Assay Kit (Pierce, Rockford, IL). 
10  μg protein per sample was electrophoresed in a 10% 
SDS-PAGE gel, and electroblotted onto nitrocellulose 
membranes. After blocking, the membranes were incu-
bated with primary antibody against tau (Tau-5, ab80579, 
Abcam, Cambridge, MA) overnight at 4 °C. After washes, 
the membranes were incubated for 1 h at room tempera-
ture with HRP-conjugated secondary antibody (1:2000; 
Cytiva, Marlborough, MA). After washing, proteins were 
detected by enhanced chemiluminescence (Pierce) using 
Bio-Rad ChemiDoc XRS + (Bio-Rad Laboratories, Her-
cules, CA).

Immunostaining
For retinal flatmounts, eyeballs were fixed in 4% PFA at 
4 °C overnight. Retinas were then dissected, washed with 
PBS, and blocked and permeabilized with PBS containing 
5% normal goat serum and 0.3% Triton-X-100 for 3 h. For 
occludin and VE-Cadherin, eyeballs were fixed in 4% PFA 
for 30 min at room temperature, and retinas were treated 
with methanol for 20 min at − 20 °C. After blocking, reti-
nas were incubated with antibodies against Iba1 (1:200, 
019-19741, FUJIFILM Wako Chemicals, Richmond, VA), 
Tuj1 (1:400, 801202, BioLegend, San Diego, CA), Opsin 
4 (1:200, PA1-780, Invitrogen, Carlsbad, CA), occludin 
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(1:200, 71-1500, ThermoFisher Scientific) or VE-Cad-
herin (1:200, 550548, BD Biosciences) at 4  °C overnight. 
After washing, retinas were incubated with Alexa Fluor 
488 or 594-conjugated secondary antibodies (1:400, Inv-
itrogen) at 4 °C for 4 h. Finally, retinas were mounted, and 
images were taken by confocal microscopy (LSM 800, 
Carl Zeiss Inc, Thornwood, NY). For cell counting, eight 
non-overlapping images were taken at the peripheral or 
middle region of each retinal flatmounts at 200 × magni-
fication, then cells were manually counted and averaged 
for each sample. Microglial soma size and roundness and 
nearest neighbor distance (NND) were quantified using 
methods and formulas developed by Davis et al. [15].

For retinal cryosections, immunostaining was per-
formed as described previously [41, 43]. The following 
antibodies were used: anti-phospho-tau (Thr231) mono-
clonal antibody (AT180) (1:500, MN1040, Invitrogen), 
anti-phospho-tau (Ser202, Thr205) monoclonal antibody 
(AT8) (1:500, MN1020, Invitrogen), anti-tau polyclonal 
antibody (1:800, A002401-2, Agilent Technologies, Santa 
Clara, CA), anti-GFAP (1:500, Z033401-2, Agilent Tech-
nologies). Cells were counterstained with DAPI. Fluores-
cent images were taken by confocal microscopy.

Permeability assay to measure vascular leakage
Leakage of albumin into the retina was measured as 
reported previously [39] with some modifications. 
Briefly, after mice were anesthetized via isoflurane, mice 
were injected with FITC-bovine serum albumin (BSA) 
(i.v., 100  mg/kg body weight, Sigma-Aldrich, St. Louis, 
MO). After circulation for 1 h (whole retina) and 20 min 
(retinal sections), mice were euthanized. To assess reti-
nal vascular leakage in whole retina, whole blood was 
obtained from the right ventricle and centrifuged at 
2000g for 15 min for plasma, which was diluted 100 times 
with 1 × PBS. Next, mice were perfused via the left ven-
tricle with PBS to remove intravascular blood. The whole 
retinas were isolated from eyeballs carefully to avoid con-
tamination of aqueous humor, homogenized with RIPA 
lysis buffer (20-188, MilliporeSigma, Burlington, MA), 
and centrifuged at 16,600g  for 15  min. Subsequently, 
fluorescence intensity in the supernatant from the reti-
nal homogenate and diluted plasma were measured by 
Synergy H1 Hybrid Multi-Mode Reader (BioTek,  Win-
ooski, VT) with excitation at 485  nm and emission at 
528  nm. Retinal homogenate and diluted plasma from 
mice without FITC-BSA injection were used as blank. 
Finally, fluorescence intensity in the retina was adjusted 
by retinal weight and the fluorescence of the plasma and 
normalized to retinas from WT mice. To assess vascu-
lar leakage in retinal sections, eyeballs were fixed in ice-
cold 4% PFA for 1 h and then dehydrated in 30% sucrose 
4° C  overnight, finally, embedded in optimal cutting 

temperature compound. Retinal cryosections were cut 
and images were taken by fluorescence microscopy [1]. 
Leakage of albumin was quantified by measuring the 
fluoresce intensity of FITC-BSA from the inner plexiform 
layer (IPL), inner nuclear layer (INL), and outer plexiform 
layer  (OPL) of the neural retina using ImageJ (National 
Institutes of Health, Bethesda, MD).

Statistics
Data were presented as mean ± standard error of mean 
(SEM) and analyzed by Student’s t-test. Statistical anal-
ysis was conducted using GraphPad Prism program 
(GraphPad Software Inc., La Jolla, CA). A p value < 0.05 
was considered statistically significant.

Results
Characterization of tau accumulation in the retinas 
of P301S mice
Tau P301S transgenic mice overexpress human tau 
with a P301S mutation in exon 10 [56, 65]. In the 
retina of P301S mice from the PS19 line, human tau 
protein overexpression was examined by western blot 
using Tau-5 antibody (Fig.  1a). There was a remark-
able increase of total tau expression in transgenic mice 
compared with WT mice. To investigate the location 
of phosphorylated tau in the retinas of WT and P301S 
mice, we performed immunostaining with antibod-
ies against tau phosphorylation at Thr231 (AT180) 
and Ser202/Thr205 (AT8), which are critical for tau’s 
hyperphosphorylation and aggregation [30, 40, 49]. We 
observed that phosphorylated tau, localized in differ-
ent retinal layers, was significantly increased in the ret-
ina of P301S mice. While the pattern of AT180 staining 
was slightly changed between 1- and 8-month-old 
P301S retinas, AT8 staining was robustly increased in 
the outer nuclear layer (ONL) and photoreceptor inner 
segment (IS) of 8-month-old P301S retinas, suggesting 
the progression of tauopathy during aging (Fig. 1b, c).

Retinal edema and vascular leakage in the retinas of P301S 
mice
To characterize retinal abnormality during the early 
stage of tauopathy, we analyzed the changes of reti-
nal structure of P301S  mice compared with WT lit-
termate controls at 1  month of age. We used optical 
coherence tomography (OCT) to non-invasively 
measure the thickness of each retinal layer in live 
mice, and found the thickness of total retina and gan-
glion cell complex (GCC) of P301S mice was thicker 
than that of age-matched WT mice (Additional file 1: 
Fig. S1 and Fig.  2a). The increase of retinal thick-
ness observed in OCT was likely caused by retinal 
edema due to increased vascular leakage. To test 
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this possibility, we performed permeability assay by 
injecting FITC-BSA and measured albumin leakage 
from vessels to the neural retina (Fig.  2b). We found 
that FITC-BSA fluorescence intensity was signifi-
cantly increased in the retinas of P301S mice. Since 
vascular integrity and permeability barrier function is 
greatly dependent on the dynamics of cell–cell adhe-
rens and tight junctions between endothelial cells, 
we performed immunostaining for VE-cadherin, a 
component of endothelial cell–cell adherens junc-
tions, and tight junction protein occludin, in retinal 

flatmounts of both P301S and WT littermates. We 
observed that WT mice exhibited strong, sharp and 
continuous staining of VE-Cadherin and occludin in 
retinal vessels, whereas P301S mice exhibited weaker, 
more diffuse and discontinuous staining at cell mar-
gins in retinal vessels (Fig.  2c–f ). These results 
indicate that the integrity of retinal vasculature is dis-
rupted in tauopathy, leading to breakdown of blood–
retinal barrier which occurs as early as 1  month of 
age.
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Fig. 1  Total and phosphorylated tau are increased in the retina of P301S mice. a Retinal lysates from 3-month-old WT and P301S mice were blotted 
with anti-tau (Tau-5) for total tau. GAPDH was used as internal control. Graph represents densitometric analysis of tau protein normalized to GAPDH. 
n = 3/group. b Retinal sections from 1 and 8-month-old WT and P301S mice were stained with AT180 and AT8 antibodies for phosphorylated 
tau (green). Arrowheads indicate non-specific staining. c Quantification of fluorescence intensity of AT180 and AT8 in individual retinal layers. 
Non-specific staining was removed when performing quantification. Scale bar: 50 µm. n = 4/group. *p < 0.05; **p < 0.01; ***p < 0.001; ****p < 0.0001 
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(See figure on next page.)
Fig. 2  Blood–retina barrier integrity is impaired in the retina of P301S mice. a Bar graph represents the OCT analysis of thickness of total retina and 
individual retinal layers. n = 22/group. b Permeability assay. FITC-BSA was intravenously injected into 1-month-old WT and P301S mice. 1 h after 
injection, blood from circulation was removed by PBS perfusion, and albumin leakage from vessels to neuronal retina was measured by quantifying 
the fluorescence intensity in retinal homogenates and normalized to that of in the plasma. The normalized fluorescence intensity in WT mice 
was used as the reference. n = 8–10/group. c, d Representative images of the adherens junction protein VE-Cadherin and tight junction protein 
occludin in retinal flatmounts from WT and P301S mice at 1 month of age. Squares in the upper panel of images are zoomed in to show vascular 
integrity. Scale bar: 20 μm. n = 4/group. e, f Quantification of fluorescence intensity of VE-Cadherin and occludin. *p < 0.05; **p < 0.01; ***p < 0.001; 
****p < 0.0001 versus WT. GCC​ ganglion cell complex, including all three innermost layers: nerve fiber layer, ganglion cell layer and inner plexiform 
layer, INL inner nuclear layer, OPL outer plexiform layer, ONL outer nuclear layer, IS inner segment, OS outer segment



Page 6 of 16Xia et al. acta neuropathol commun            (2021) 9:51 

0

50

100

150

Artery CapillaryVein

WT
P301S

0

50

100

150

Artery CapillaryVein

WT
P301S

ba

*

*
Permeability

***

yrallipaCnieVyretrA

WT P301S WT P301S WT P301S

c

Total GCC INL OPL ONL+IS OS
0

50

100

150

200

250 WT
P301S

d yrallipaCnieVyretrA

WT P301S WT P301S WT P301S

VE-Cadherin

occludin

fe

WT P301S
0

200

400

600

800

VE-Cadherin occludin

**** ****
**

**** ****
****



Page 7 of 16Xia et al. acta neuropathol commun            (2021) 9:51 	

Increased vascular inflammation in the retinas of P301S 
mice
Vascular inflammation plays a key role in vascular leakage 
and tissue swelling. We then quantified leukocytes adhe-
sion to the wall of retinal vessels, which is the first step 
of inflammation, by leukostasis assay in WT and P301S 
mice at different ages. In this assay, we used concanava-
lin A (Con A) to perfusion-label vessels and leukocytes 
attached to vessels (Additional file 1: Fig. S2). Quantifica-
tion of adherent leukocytes in retinal flatmounts showed 
significant differences between WT and P301S mice at 
all analyzed time points (Fig.  3a), suggesting that vas-
cular inflammation is developed in the retina of P301S 
mice. With the progression of the disease, the extent of 
vascular inflammation became severer as indicated by 
increased fold-change of adherent leukocytes at 3 and 
8  months of age (2.3 fold at 1  month of age, 3.2 fold at 
3 months of age, and 4.2 fold at 8 months of age) (Fig. 3a). 
In the meanwhile, we stained the retina with CD45 anti-
body to identify infiltrated leukocytes and found that its 
number was also significantly increased in P301S mice at 
1 and 3 months of age (Fig. 3b).

Activation of microglia in the retinas of P301S mice
In addition to leukocytes, microglia play an important 
role in retinal inflammation by functioning as resident 
innate immune cells. In the brain, microglia-mediated 
neuroinflammation is a key player in neuronal injury 
in neurodegenerative diseases including tauopathies. 
Therefore, we subsequently investigated changes of 
microglia in P301S and age-matched WT mice at dif-
ferent stages of tauopathy. Retinal flatmounts from 
WT and P301S mice were labeled with anti-Iba1 anti-
body and analyzed for alterations of average number 
and morphology (Fig.  3c, d; Additional file  1: Fig. S3). 
In both WT and P301S mice, the cell bodies of micro-
glia were distributed in three different layers in the 
inner retina: nerve fiber layer (NFL)-GCL, IPL and 
OPL. In the NFL-GCL of WT retina, microglia existed 

in a resting state with a highly ramified morphology. 
In contrast, as early as 1  month of age, the microglia 
in the NFL-GCL of P301S retina underwent morpho-
logical shift, transforming from a resting state into an 
activated state [15], characterized by process retraction 
and thickening, soma enlargement with an amoeboid 
shape (reduced roundness) (Fig.  3c, d). Moreover, the 
average number of microglia located in the NFL-GCL 
was significantly increased, accompanied by decreased 
nearest neighbor distance (NND) in P301S retinas com-
pared with their age-matched WT retinas at both 1 and 
3 months of age (Fig. 3c, d). Of interest, in P301S ret-
ina, more microglia tended to adhere to vessels without 
obvious change in the morphology of vessels (Fig. 3e). 
In contrast to the microglia in the NFL-GCL, most of 
microglia in the IPL and OPL were ramified, and the 
number and morphology of them were indistinguish-
able between P301S mice and age-matched WT mice 
(p = 0.1660 and 0.6366 for 1  month of age; p = 0.6843 
and 0.6549 for 3 months of age) (Additional file 1: Fig. 
S3). Overall, these data indicate that microglial recruit-
ment and activation occur in the retina of P301S mice 
as early as at 1 month of age.

The significant change of microglia in the NFL-GCL 
of P301S mice prompted us to test the feasibility of 
examining early retinal change during tauopathy by 
non-invasive imaging. Cx3cr1GFP transgenic mice were 
generated by inserting an enhanced green fluorescent 
protein (GFP) gene into exon 2 of the Cx3cr1 gene, 
therefore GFP is highly expressed on microglia [29]. 
We crossed this strain with P301S mice to label micro-
glia with green fluorescence and used confocal scan-
ning laser ophthalmoscope (SLO) to examine microglia 
in the retina of live mice. Consistently, SLO imaging 
revealed a significant increase in microglial number in 
the P301S retina (Additional file 1: Fig. S4). This result 
suggests that non-invasive imaging of microglia could 
be potentially used to diagnose early tauopathy.

Fig. 3  Leukocyte adhesion/infiltration, microglial recruitment/activation and gliosis are increased in the retina of P301S mice. a WT and P301S 
mice were subjected to leukostasis assay at various ages. Bar graph represents the number of leukocytes adherent to the retinal vasculature per 
retina. n = 5–15/group. b Leukocytes were stained with anti-CD45 antibody in retinal flatmounts of WT and P301S mice, and infiltrated leukocytes 
in the retina were quantified. n = 5–7/group. c Microglia were stained with anti-Iba1 antibody (purple) at 1 and 3 months of age. Images were 
taken at the NFL-GCL by confocal microscopy. Squares in the upper panel of images are zoomed in to more clearly show microglial activation. d 
Bar graphs represent the quantification of morphological parameters of microglia at the NFL-GCL, including soma size and roundness, number and 
nearest neighbor distance (NND). n = 4–8/group. e Microglia were stained with anti-Iba1 antibody (green) and vasculature was co-labeled with 
ConA-lectin at 1 month of age. Images were taken at the NFL-GCL by confocal microscopy to show the relationship of microglia and vasculature. 
Arrows indicate those microglia close to vessels. n = 3/group. f The activation of Müller cells was assessed by immunostaining with antibody against 
GFAP (red) in retinal sections. Arrowheads indicate activated Müller cells. Blue staining indicates nuclei. n = 3–5/group. Scale bar: 50 µm. *p < 0.05; 
**p < 0.01; ***p < 0.001; ****p < 0.0001 versus WT. GCL ganglion cell layer, IPL inner plexiform layer, INL inner nuclear layer, OPL outer plexiform layer, 
ONL outer nuclear layer

(See figure on next page.)
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Müller cell gliosis in the retinas of P301S mice
Müller cells span all retinal layers, constitute the princi-
pal glial cells of the retina and provide support to reti-
nal neurons. Müller cell gliosis, indicated by increased 
expression of glial fibrillary acidic protein (GFAP), is an 
indicator of retinal injury [7]. To examine Müller cell gli-
osis in relation to tauopathy, we assessed GFAP expres-
sion in retinal sections at 1, 3 and 8  months of age. At 
1 and 3 months of age, GFAP expression was restricted 
to astrocytes and Müller cell end feet in the NFL in both 
WT and P301S mice, and there was no significant differ-
ence in the expression of GFAP between these two strains 
of mice (p = 0.4496 and 0.0954) (Fig. 3f; Additional file 1: 
Fig. S5A). However, at 8 months of age, the expression of 
GFAP in P301S mice was no longer limited to astrocytes 
and the end feet of Müller cell in the NFL but extended 
throughout the whole length of Müller cells (Fig. 3f ) and 
the number of activated Müller cells was significantly 
increased (Additional file 1: Fig. S5A). These results sug-
gest that Müller cell gliosis occurs at a relative later time 
point during tauopathy. Interestingly, phosphorylated tau 
was observed in activated Müller cells (Additional file 1: 
Fig. S5B, C), suggesting phosphorylated tau was uptaken 
by glial cells.

RGC degeneration and dysfunction in the retinas of P301S 
mice
RGCs, the only output neurons of the retina, receive 
visual information from photoreceptors via bipolar cells 
and amacrine cells and send it to the brain through their 
long axons. To quantitatively determine the loss of RGCs 
in mouse models of tauopathy, retinas from P301S mice 
at 1, 3 and 8  months of age were collected and stained 
with the RGC-specific marker anti-Tuj1 to assess RGC 
density (Fig.  4a). P301S mice displayed no significant 
loss of RGCs compared with WT mice at 1 month of age 
(p = 0.4031). However, with the development of tauopa-
thy, P301S mice underwent detectable and more dra-
matic decreases in total RGC number at 3 and 8 months 
of age. In addition, in the retinas of 8-month-old P301S 
mice, the soma size of RGCs was reduced dramatically, 
indicating that the remaining RGCs in P301S mice might 
be in a vulnerable situation.

To assess the function of RGCs during the develop-
ment of tauopathy, we used dark-adapted (scotopic) ERG 
to record positive scotopic threshold response (pSTR) 
that reflects the functions of RGCs [26, 41]. This analy-
sis showed that the amplitudes of pSTR were significantly 
reduced in P301S mice at 3 and 8  months of age com-
pared with WT mice (Fig.  4b), which is consistent with 
the aforementioned alterations of RGCs in terms of cell 
number and morphology, suggesting RGCs are undergo-
ing dysfunction/degeneration during tauopathy.

Loss of ipRGCs in the retinas of P301S mice
Intrinsically photosensitive RGCs (ipRGCs), as non-rod 
and non-cone photoreceptors, account for approximately 
1% of RGCs in mouse retina [16]. ipRGCs can sense the 
light due to self-carried melanopsin and play a main role 
in synchronizing circadian rhythms. Since the progres-
sion of AD is often associated with circadian dysfunction 
[48], we wondered if ipRGCs behaved differently com-
pared to total RGC population. To examine ipRGCs in 
tauopathy, retinas from WT and P301S mice at 1, 3 and 
8 months of age were collected and stained with an anti-
body against ipRGC-specific marker melanopsin (Fig. 4c; 
Additional file 1: Fig. S6). We observed that the density 
of ipRGCs was higher in the peripheral area than in the 
middle area of both WT and P301S retinas. At 1 month 
of age, although the density of ipRGCs in the peripheral 
retina of P301S mice was indiscernible from that of WT 
littermates (Fig. 4c , p = 0.0639), their density was signifi-
cantly decreased in the middle area of the retina of P301S 
mice (Additional file  1: Fig. S6). At 3 and 8  months of 
age, both the middle and peripheral area of P301S reti-
nas showed significant loss of ipRGCs (Fig. 4c; Additional 
file 1: Fig. S6). Most importantly, the loss of ipRGCs was 
more robust than the loss of Tuj1-stained RGCs at both 3 
and 8 months of age, suggesting ipRGCs are more vulner-
able to tau accumulation than other RGCs in the retina.

Retinal pathology in P301L mice
To further confirm our findings in P301S mice, we ana-
lyzed retinal pathologies in P301L mice that carry a 
transgene of human tau with the P301L mutation, which 
is another mutation causing tauopathy [31, 38]. With 
immunostaining, we demonstrated that human P301L 
tau was overexpressed in different retinal layers (Fig. 5a). 
Similar to P301S mice, the thickness of total retina and 
GCC, which was examined by OCT, was increased in 
P301L mice (Fig. 5b). Retinal vascular leakage determined 
by FITC-BSA permeability assay (Fig.  5c), inflammation 
assessed by leukostasis (Fig.  5d) and microglial activa-
tion/recruitment in the NFL-GCL but not in the IPL 
and OPL (p = 0.8678 and p = 0.9378) (Fig. 5e; Additional 
file 1: Fig. S7A) were significantly increased in 3-month-
old P301L mice, while the numbers of RGCs and ipRGCs 
were significantly decreased (Fig. 5f; Additional file 1: Fig. 
S7B), associated with impaired RGC function (Fig.  5g). 
These data indicate that retinal vascular and neuronal 
pathological changes also occur in P301L mice at the 
early stage of tauopathy.

TOMA attenuated retinal pathologies in P301L mice
Many studies suggest that tau oligomers (soluble and 
intermediate tau aggregates) but not neurofibrillary 
tangles (NFTs) formed by the deposition of aggregated 
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tau are the main toxic tau species in tauopathies [23, 
27], and systemic administration of TOMA reversed 
neurodegenerative phenotypes in the brain of aged 
P301L tau transgenic mice [9, 10, 22]. Since tau oli-
gomers are present in the retina and the brain in P301L 
mice [51], we examined the effect of TOMA treatment 
on retinal pathology in P301L mice. We intravenously 
injected TOMA to mice at 1 month of age and 1 week 
before sample collection at 3  months of age, and ana-
lyzed retinal vascular and neuronal changes. Our study 
showed that TOMA treatment significantly attenuated 
retinal vascular permeability (~ 7.4-fold increase in 
P301L-IgG vs WT, ~ 4.1-fold increase in P301L-TOMA 
vs WT) and leukostasis (Fig.  6a, b). Immunostaining 

with anti-Iba1  antibody revealed that the retina from 
TOMA-treated P301L mice exhibited a decreased 
number of microglia in the NFL-GCL in comparison 
to that from IgG-treated P301L mice, and microglia 
morphology changed from amoeboid to a more rami-
fied shape after TOMA treatment (Fig.  6c; Additional 
file  1: Fig. S8). The numbers of RGCs and ipRGCs 
were also higher in the retina of TOMA-treated P301L 
mice than control IgG-treated mice (Fig.  6d, e; Addi-
tional file  1: Fig. S9) and almost back to normal levels 
of WT retinas. Taken together, these results suggested 
that TOMA can be used to effectively attenuate retinal 
pathology during tauopathy.
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Discussion
The NVU is a complex structure consisting of endothe-
lial cells, mural cells (pericytes, smooth muscle cells), 
astrocytes, neurons and microglia [28, 50]. NVU injury 
and dysfunction are recognized as a key player in neu-
rodegenerative diseases such as AD, frontotemporal 
dementia, amyotrophic lateral sclerosis and dementia 
with Lewy Bodies [28]. The retina, as the only visually 
accessible tissue in the central nervous system (CNS), 
is an excellent platform to study NVU alterations in 
diseases and has attracted much interest to evaluate 
its potential use as a biomarker for neurodegenerative 
diseases. While these studies have found significant 
RGC loss, dysfunction and optic nerve degeneration 
in patients or animal models of neurodegenerative 
diseases and a few studies suggest microglial and glial 
activation in the retina at the early stage of the diseases 
[8, 12, 18, 20, 25, 35, 47, 64], retinal vascular changes 
are less known and there is a gap in conducting an inte-
grated analysis addressing temporal alterations of dif-
ferent retinal cells in the NVU in these diseases. Since 
tau phosphorylation and aggregation is one of the 
major causes of neurodegeneration and correlates more 
closely with dementia status than Aβ deposition does 
[6], we systemically determined alterations of NVU in 
the retina using histological and non-invasive imaging 
and functional tests in two transgenic mouse models of 
tauopathy (P301S and P301L mice) at different stages 
of disease progression. Our studies unravel several 

NVU changes in the retina which were unappreciated 
previously.

RGCs are the only retinal neurons that directly connect 
to other neurons in the brain. They share more common 
features and pathological mechanisms with brain neu-
rons than other retinal neurons and are affected during 
many neurodegenerative diseases in the CNS [35, 64]. 
P301S mice used in our study carry human tau gene with 
the P301S mutation, which is driven by the mouse prion 
promoter [65]. These mice develop microglial activa-
tion, synapse loss and impaired synaptic function in the 
hippocampal region at 3 months of age. However, there 
is no obvious reduction in the number of hippocampal 
neurons in 6-month-old P301S mice although severely 
impaired synaptic plasticity is observed at this stage 
[65]. In the retina of P301S, we found significant RGC 
loss and dysfunction have occurred at 3  months of age. 
This result is consistent with other AD-relevant mouse 
model in which RGC loss occurs earlier than neuronal 
loss in the brain [25]. One possibility is that the anatomi-
cal and metabolic features of RGCs may condition these 
cells more sensitive to aggregated proteins than neurons 
in the brain. Another possibility is that since the retina is 
a transparent tissue and RGCs are localized in the inner 
retina, it is much easier to accurately quantify the num-
ber of RGCs than that of brain neurons, which makes it 
possible to identify cell loss even when it is not dramatic. 
Interestingly, compared with total RGCs, the loss of 
ipRGCs was more prominent and occurred earlier. Since 
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ipRGCs sense the light and play a major role in synchro-
nizing circadian rhythms, it is possible that early loss of 
ipRGCs may at least partially attribute to circadian dys-
function seen in AD patients [36, 48]. Moreover, 20–30 
subtypes of RGCs have been proposed based on their 
differences in physiological, morphological and molecu-
lar properties [46, 55]. A recent single cell transcriptome 
profiling further classifies RGCs into 40 subtypes using 
clustering algorithms [53]. Our data suggest that certain 
RGC subtypes may be preferentially affected by stresses 
induced by tauopathy, which is similar to the selec-
tive vulnerability in the nervous system that has been 
noticed in the brain during AD [19]. Future studies using 
immunolabeling with multiple markers, RNA in  situ 
hybridization, and single-cell genomic and molecular 
profiling approaches are necessary to characterize differ-
ential actions of RGC subtypes in tauopathy. Consider-
ing the relatively simple neuronal network in the retina 
vs. brain, it makes the retina an appealing platform to 
understand the fundamental mechanisms underlying the 
selective vulnerability in the nervous system during neu-
rodegenerative diseases. Of note, while previous stud-
ies using a Thy-1 promotor driven-P301S mouse strain 
showed a reduction of anterograde axonal transport in 
the optic nerve at 3 months of age and RGC dysfunction 
at 5  months of age [8, 20, 47], RGC loss was not obvi-
ous in this mouse strain [20]. One possibility is that the 
mouse prion promotor is stronger than the Thy-1 pro-
motor and therefore P301S mice used in our study have 
more severe phenotype. Another possibility is that we 
used RGC-specific antibodies to specifically analyze RGC 
changes while Gasparini et  al. used an antibody against 
NeuN [20] which is expressed on other neurons beside 
RGCs.

The non-neuronal cells in the NVU are critical for the 
survival and homeostasis of neurons and maintenance 
of their functions. In the CNS, neurons and vessels are 
functionally integrated, and neural activity and vascular 
dynamics are tightly coupled to meet the high demands of 
oxygen and glucose of neurons [3]. The tightly controlled 
blood–brain barrier (BBB) or blood–retina barrier (BRB) 
selectively moves molecules, ions, and cells between the 
blood and the CNS to ensure a homeostatic environment 
for proper neuronal function and protect them from tox-
ins, pathogens and inflammation [3, 13]. BBB breakdown 
often occurs in neurodegenerative diseases including 
AD and contributes to neuronal dysfunction and degen-
eration [13]. BRB breakdown is a major cause of vision 
loss in diabetic retinopathy. Nevertheless, alterations  of 
BRB integrity under AD-related conditions including 
tauopathy have not been investigated. Using FITC-BSA 
which is a more sensitive tracer than Evans blue, we pro-
vided the first evidence that increased vascular leakage 

occurred in the retinas of P301S and P301L mice. Analy-
sis of VE-Cadherin and occludin in retinal vessels further 
revealed adherens and tight junctions were impaired in 
P301S mice. These studies demonstrated that loss of BRB 
integrity occurred at the very early stage of tauopathy 
(1 month of age), and such change appeared earlier than 
RGC loss and was associated with increased vascular 
inflammation as demonstrated by increase in leukocyte 
attachment to the vessels. Nonetheless, our OCT analy-
sis did not find subretinal fluid accumulation which usu-
ally occurs when protein and fluid leaking from retinal 
or choroidal vessels overweighs fluid removal [14, 44], 
suggesting that the fluid drainage function of the retina 
is still intact in these animals. Overall, our study together 
with a recent report that pericyte loss is detected in the 
retinas from AD patients [59] highlights the similarity 
between the retina and the brain in which vascular path-
ological change is an early event in tauopathy. As vessels 
play a critical role in tau clearance during AD [62, 63], 
the abnormal vascular network may impair clearance of 
retinal tau and further accelerate retinal neuronal injury.

We also studied microglial and glial changes in the 
retina. Microglial activation has been observed in 3xTg 
mice that express three AD-related mutated genes 
(PS1M146 V, APPSwe, and P301L tau) [25, 54]. Using 
retinal flatmount staining that allows observing micro-
glial changes more clearly than using retinal sections, 
together with co-staining with vessels, we discovered 
several new features that have not been previously 
described. We found that tauopathy itself was sufficient 
to drive microglial morphological changes in the retina 
in the absence of amyloidosis. Moreover, microglial 
recruitment and activation occurred at the very early 
stage of tauopathy and was associated with early vascu-
lar pathological changes. While microglia are present in 
three retinal layers, only cells located in the NFL-GCL 
exhibited changes in cell number and morphology, sug-
gesting cells located in this layer are more sensitive 
to tauopathy. An increase in the interaction between 
microglia and vessels during tauopathy may reflect 
recruitment of microglia during vascular inflamma-
tion. Meanwhile, microglia may contribute to vascular 
inflammation and BRB breakdown by crosstalking to 
inflammatory cells [52] and vascular cells. In contrast 
to microglia, gliosis occurred at a relative late stage, 
similar to what occurs in the brain. Overall, the simi-
lar changes in vessels, microglia and glia between the 
retina and the brain strongly support the notion that 
the retina can be used as a “window” for early diagno-
sis of neurodegeneration in the brain during tauopathy 
since the optical clearance of retina offers it as an excel-
lent platform for non-invasive imaging. This possibility 
was supported by our OCT analysis showing increase 
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in the thickness of GCC likely reflecting increased vas-
cular leakage in P301S and P301L mice as well as by the 
feasibility to examine microglial actions with non-inva-
sive SLO after labeling them with fluorescent probes 
[32]. Certainly, as one biomarker is usually not suffi-
cient for disease diagnosis, it is necessary to combine 
other approaches (e.g. analyzing tau oligomers and Aβ 
peptides in the plasma for AD, measuring intraocular 
pressure to exclude glaucoma, and measuring drusens 
under the retina to exclude age-related macular degen-
eration) to enhance the sensitivity and specificity of 
prediction when using retinal imaging to diagnose and 
monitor brain pathology in tauopathy. Of note, while 
the retina developed alterations  of non-neuronal cells 
in the NVU similar to those in the brain during tauopa-
thy, increased gliosis, leukocyte adhesion and infiltra-
tion, microglial recruitment and activation may not 
necessarily relate to vascular changes but rather con-
sequences of activation of other pathological pathways 
in particular the inputs from stressed neurons. Further 
studies of cell–cell crosstalk in the NVU will help to 
address the underlying mechanisms and better under-
stand this process.

Interestingly, while retinal neuronal injury has been 
noticed in tauopathy and other AD-related conditions, 
few studies have been performed to address this issue. As 
aggregated tau protein in particular the soluble tau oli-
gomers is toxic and tau immunotherapy has been shown 
to be beneficial in various animal models [2, 23, 27], we 
investigated the effects of TOMA on retinal NVU in 
P301L mice previously used to evaluated the therapeu-
tic effects of TOMA on neurodegenerative phenotypes 
in the brain, which allowed us to follow the treatment 
procedure of previous studies and also compare retinal 
changes to those changes reported in the brain [9, 10, 22]. 
Since TOMA provides protection on working memory 
for at least 2  months [10], we started to treat animals 
with TOMA at 1 month of age when RGC loss was not 
significant so that we could evaluate if it could prevent 
progressive RGC loss from 1 month of age to 3 months of 
age. To ensure effective treatment before sample collec-
tion, a second dose of TOMA was given at 7 days before 
sample collection. Our studies showed that TOMA 
treatment significantly attenuated retinal pathological 
changes, suggesting that tau immunotherapy could be 
potentially used to prevent vision loss in patients with 
tauopathy and improve their life quality considering that 
visual impairment, such as a decline in motion blindness, 
depth perception, color perception and contrast sensitiv-
ity, is common in AD patients [45]. Moreover, the com-
parable beneficial effects of TOMA on the retina and the 
brain [9, 10, 22] suggest that similar mechanisms of neu-
rodegeneration are operating in both organs. Therefore, 

the retina may serve as an alternative platform to study 
mechanisms of neurodegeneration of the brain and to 
evaluate efficacies of agents developed to treat tauopathy.

Conclusions
In summary, using mouse models of tauopathy, we dem-
onstrate that the retina develops a series of pathological 
changes in the NVU similar to those in the brain, includ-
ing RGC loss, vascular inflammation and barrier break-
down, and microglial and glial activation. Moreover, 
many of these changes appear earlier in the retina than 
those reported in the brain [65] and similar pathological 
mechanisms may be operating in both organs. A limita-
tion of this study is that we did not compare pathological 
changes of the NVU in the retina and the brain side-by-
side in the same mouse cohorts. Nonetheless, our results 
supports further investigation of using the retina as a 
potential site for the detection and quantification of sev-
eral key biomarkers for tauopathy in the brain, study of 
molecular mechanisms of neurodegeneration, and exam-
ination of the crosstalk between neurons and vessels dur-
ing tauopathy.
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