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ABSTRACT 

The somatic cell hybridization technique for gene mapping depends on assembling 

panels of rodent-human hybrid clones containing random subsets of the human chro- 

mosomes. Such panels should be as informative as possible and permit error detection and 

error correction for assays of the human gene in the various clones. We derive estimates of 

the number of randomly generated clones required to be reasonably confident of accurately 

and unambiguously assigning a gene to a particular human chromosome. The collection of 

clones in such a random panel is contrasted with minimal panels suggested by algebraic 

coding theory. To approximate minimal panels we suggest the method of simulated 

annealing for selecting small, informative panels from larger existing collections of clones. 

These theoretical insights emphasize the need for more collaboration and coordination 

among gene mapping groups so that optimal clone panels can be assembled, stored, and 

distributed. 

1. INTRODUCTION 

Human gene localization by somatic cell hybridization has been actively 
applied for two decades since the pioneering work of Weiss and Green [43]. 
In brief outline, the method involves the formation of interspecies hybrid 
cells by fusing normal diploid human somatic cells with permanently trans- 
formed rodent cells-usually mouse or Chinese hamster [6, 181. The result- 
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ing hybrid somatic cells retain all of the rodent chromosomes while losing a 
random subset of the human chromosomes. A few generations after fusion, 
clones can be identified with stable subsets of the human chromosomes. All 
chromosomes, human and rodent, normally remain functional. With a broad 
enough collection of different hybrid clones, it is possible to establish a 
correspondence between the presence or absence of a given human gene and 
the presence or absence of each of the 24 distinct human chromosomes. 
From this pattern one can infer the particular chromosome on which the 
gene resides. With the above outline in mind, it is of interest to determine 
the minimal number of distinct hybrid clones required to accurately and 
unambiguously assign a gene to a particular human chromosome. Such 
collections or panels of hybrid clones ideally should be designed to detect 
and correct a small number of errors in assays for the human gene or its 
protein product. By using some ideas from algebraic coding theory and 
probability, we contrast such minimal panels with the random panels typi- 
cally generated by molecular geneticists. 

In developing some of the logical and mathematical consequences of the 
somatic cell hybrid technique, it seems prudent to state explicitly its underly- 
ing assumptions. Some violations of these assumptions will be noted below. 
The major assumptions are: 

(a) The human gene G to be mapped is present on exactly one chro- 
mosome. 

(b) Any rodent analogue of G is distinguishable from G at either the 
protein or the DNA level. 

(c) Each of the 24 distinct human chromosomes (22 autosomes and the X 
and Y sex chromosomes) is either absent from a clone or is cytologically or 
biochemically detectable in the clone. 

(d) All cells within a clone share the same chromosome constitution. 
(e) The presence or absence of G can be accurately detected in each 

clone. 

Although assumption (a) is generally satisfied, a few human genes are 
scattered at multiple dispersed sites within the human genome; the gene 
encoding ribosomal RNA is a case in point [9]. Assumption (b) can be 
fulfilled if the human gene G and its rodent analogue are distinguishable by 
either electrophoresis of their gene products or by hybridization of an 
appropriate human DNA probe. Assumption (c) is easily met because 
human chromosomes can be accurately identified by a combination of 
human specific isozyme marker assays and karyotypic analysis using stan- 
dard banding procedures. Violations of this condition usually result from the 
presence of unrecognized chromosomal aberrations such as insertions, dele- 
tions, translocations, and fragmentations. However, such chromosome aber- 
rations are often intentionally employed for the regional mapping of genes 
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on a specific chromosome. Assumption (d) can be violated if some of the 
cells in a clone continue to undergo human chromosome loss. For this reason 
several cells from a clone should be karyotyped. It is the maximal subset of 
human chromosomes in the clone which is relevant to gene localization. As a 
safeguard, ambiguous clones should be disregarded. The last assumption, (e), 
causes the most trouble. For instance, ambiguities can arise when phenotypic 
polymorphism in structural genes cannot be distinguished from phenotypic 
polymorphism in associated regulatory genes [6]. In addition, not all genes 
are constitutive in the sense that they are expressed at all times in all cell 
types [32]. Use of DNA probes to detect the human gene neatly circumvents 
both of these problems. Finally, laboratory error can enter into both enzyme 
and probe hybridization assays. 

The method of in situ hybridization carries the technique of human probe 
hybridization one step further. If a human cell is karyotyped and radioactive 
grains corresponding to the hybridized probe cluster predominantly on a 
given chromosome, then the gene is declared to reside on that chromosome. 
In practice, the independent results of somatic cell hybridization and in situ 

hybridization tend to reinforce each other [22]. 
In the current paper we will be concerned solely with issues of re- 

dundancy and efficiency in the somatic cell hybrid method. It has long been 
appreciated that certain redundancies in panels of somatic cell hybrid clones 
can self-detect and self-correct phenotyping errors representing violations of 
assumption (e) [17]. We will attempt to explain the utility of these error 
detection and correction capabilities as well as the amount of effort neces- 
sary to generate at random panels of clones for such purposes. These 
randomly generated panels we contrast with minimal panels suggested by 
algebraic coding theory. We also provide a practical solution to the combina- 
torial problem of selecting small, informative panels from larger existing 
collections of clones. As examples, we select good panels of sizes 5 through 
20 clones from 189 published clones. 

2. MATHEMATICAL MODELS FOR THE DESIGN AND 
GENERATION OF HYBRID CLONE PANELS 

To model mathematically the design of hybrid clone panels, we borrow 
and reinterpret some concepts from communications engineering. A mod- 
icum of notation is required. Let n denote the number of distinct hybrid 
clones in a panel. Since in females the 22 autosomes and the X chromosome 
occur in homologous pairs, and since the Y chromosome bears few genes of 
interest, we focus on clones derived from human female cells. We may 
construct a karyotype matrix K consisting of n rows and 23 columns. The 
entry in row i and column j of K is 1 if clone i contains chromosome j; 
otherwise it is 0. See Figure 1 for an example. Note that the X chromosome 
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01010001000000101101111 
10101100100001001010111 
01111010000010011011011 
11100110010100011100101 
00011110001111101000110 
01111111111000001000000 
00101011011100001111100 

00010111000101111010101 
10001100010110101011001 

FIG. 1. An example of an optimal karyotype matrix K with every column at least a 
distance 3 from every other column. The rows correspond to clones, and the columns 
correspond to chromosomes. 

is counted as chromosome number 23. A convenient means of comparing 
two columns c, and c, of K is provided by the Hamming distance p(c,, c,) 
[14, 201. This is defined as the number of entries in which c, and ct differ. 
For instance in Figure 1, p(c,, c2) = 5 and p(ci, c~) = 4. It is easy to check 
that p satisfies the mathematical conditions for a metric, namely 

P(Cs,C,) =dc,,cs), 

p(c,,c,) =0 ifandonlyif c,=c,, 

n(c,,c,) GP(c,,cS)+P(cS,c,) (triangle inequality). 

Besides comparing columns of K, it is appropriate to compare the 
columns of K with the results of testing for a given gene G in the different 
hybrid clones. We can construct a phenotype wlur~ vector p whose ith 
entry is 1 when the ith hybrid clone contains G; otherwise it is 0. From the 
assumptions (a) through (e) of the introduction, G can reside on chro- 
mosome r only if p = cr. If c, is distinct from all other columns of K, then G 
can be assigned to chromosome r. In terms of the Hamming distance, this is 
equivalent to the two conditions p(p, c,) = 0 and p(c,, c,) > 0 for all s # r. 

As the number n of randomly generated clones increases, satisfying these 
two conditions for unique chromosome assignment becomes more likely. 

In practice, errors can occur in detecting G in the various hybrid clones. 
These errors affect p and are probably more common than errors affecting 
the definition of the karyotype matrix K. (Karyotype errors are considered 
in the discussion.) Let pobs represent the observed phenotype test results for 
the different hybrid clones. The number of phenotyping errors is p( p, pobs). 
Some of these errors will be false positives in detecting G, and some will be 
false negatives. If p and pobs are identical, then there are no phenotyping 
errors. 
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Sufficient redundancy in K can compensate for a limited number of 

errors in pobs, as two well-known propositions from coding theory demon- 
strate [14]. The first deals with the ability to detect errors. Suppose G lies on 
chromosome r and we know apriori that the number of errors p( p, pobs) < m 
for some positive integer m. If the minimal Hamming distance to column c,. 

satisfies 

minp(c,,c,) > m, 
S#r 

then the fact there are errors in pobs is detectable. The idea of the proof 
consists in showing that pobs is incompatible with G residing on any 
chromosome if p( c,, pobs) > 0. Indeed, consider any chromosome s different 
from r. Then by the triangle inequality and the condition (l), 

P(P0bS,CS) ~P(~~~~s)-P(~~~Pobs) 

=d%7C3)-dP~PotJs) 
>m-m 
= 0. 

Hence, pobs cannot coincide with any column, and there must be at least one 
error. 

Although error detection can alert us to inconsistencies, it will not remedy 
them. For error correction, suppose we know a priori that the number of 
errors p( p, pobs) < m for some positive integer m. Assuming again that G 
resides on chromosome r, the more stringent condition 

minp(c,,c,) >2m, (2) 
S#r 

permits error correction. To prove this proposition one needs to argue that 
p( p, c,) > 0 for any chromosome s different from r. By the triangle in- 
equality and the condition (2), 

P(P,c,)‘P(c,,c,)-P(c,,P,,,)-P(P,,,,P) 

>2m-m-m 
= 0. 

As a consequence one can infer that G resides on r. 
Because we do not know in advance what chromosome G lies on, it is 

useful to construct karyoty-pe matrices for which the condition (1) or (2) 
holds for all possible columns r. The matrix K in Figure 1 furnishes some 
examples. The first five rows alone permit correct gene placement in the 
absence of errors, since all columns are distinct. In fact, these columns just 
represent the binary expansions of various numbers between 0 and 31. The 
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first six rows of Figure 1 have all column pairs a distance 2 or more apart. 
Hence, these six rows permit detection of one error regardless of which 
chromosome G lies on. The sixth row was constructed by forcing the column 
sums of the first six rows to be even. The pairwise column distances for the 
whole matrix in Figure 1 are always at least 3. Hence, all nine rows permit 
the correction of a single phenotyping error. There are no simple algorithms 
to construct this and more complicated examples, but many such matrices 
have been published in the coding theory literature [27, 36, 421. 

The karyotype matrix in Figure 1 has much better error detecting and 
correcting properties than most random karyotype matrices of the same size. 
Our next aim is to investigate the number of random clones a laboratory 
geneticist would have to generate to achieve comparable results. To facilitate 
our analysis we require some more definitions and the introduction of 
simplifying assumptions. To begin with, we now view the intercolumn 
distances p( c,, c,) as random variables X,,; the number of clones is still fixed 
at n. The joint distribution of the X,, over all column pairs {s, t } can be well 
approximated under the following assumptions: 

(f) Human chromsomes are lost independently of one another during the 
formation of a stable clone. 

(g) The probability that at least one member of a homologous pair of 
human chromosomes is retained by a clone is ). 

(h) The chromosome complements of different clones are independently 
determined. 

These assumptions are almost certainly false in any strict accounting [33]. 
However, they are conservative assumptions in the sense that departures 
from them will result in panels with less information content on the average. 
In other words, generating good random panels is more difficult if they are 
violated. Assumption (g) represents a compromise motivated by the range of 
chromosome retention probabilities of .07 to .75 published by Rushton [33]. 
Assumption (h) can be almost guaranteed if different clones are generated 
by fusing different parental cell lines. 

As a consequence of assumptions (f) through (h), the entries of the 
karyotype matrix K are independent random variables equally likely to take 
the values 0 or 1. From this, it is evident that each random distance X,, 
follows a binomial probability distribution 

P(X,,=m)=(;)($)m($)n-m 
n ( 10 1 n 

=m 2. 

Due to the central limit theorem, X,, will be approximately normally 
distributed even for n as small as 10 [lo]. Less obvious is the fact that the X,, 
are uncorrelated. If collectively the X,, actually followed a multivariate 
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normal distribution, lack of correlation among the X,, would imply they 
were independent [29]. We will exploit this near-independence momentarily. 
Returning to the problem of showing that they are uncorrelated, we note 
that when two pairs {s, ‘} and { u, v} do not overlap, it is intuitively obvious 
that X,, and X,, are independent. Independence is a stronger property than 
lack of correlation. If the pairs {s, r} and {u, v} share one column in 
common, say t = u, then X,, and X,, are still independent. This becomes 
clear when one conditions on the outcome of column c,. It must be 
emphasized here that assumption (g) is critical. Only a retention probability 
of $ is consistent with independence. Even larger subsets of the X,, are 
independent. For instance, the collection of random distances from column 

r, {X,: s # r and r fixed}, is independent. Again this follows by condition- 
ing on column c,. However, it is false that the whole collection of X,, is 
independent. This subtlety enormously complicates the exact calculation of 
probabilities. 

With these preliminaries, it is possible to approximate the probability 
distributions of two important random variables. N; denotes the random 
number of clones required for a fixed column r of K to be a distance d or 
greater from all other columns of K. Nd is the random number of clones 
required for all pairs of columns to be a distance d or greater apart. Nd is 

more relevant than NA when a laboratory group intends to map a large 
number of different genes using the same panel. N& is appropriate for 
mapping a single gene. 

The distributions of N& and Nd can be derived using the random 
variables X,,. Thus, 

(3) 

where c = 23 is the number of columns. The formula (3) is exact. The 
approximate distribution of Nd is 

(4) 
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TABLE I 

Summary Statistics for N; a 

Percentiles 

d Mean SD. 50th 95th 99th 99.9th 

1 5.8 1.8 6 9 12 15 

2 9.0 2.1 9 13 16 19 

3 11.9 2.4 12 16 19 23 

4 14.7 2.6 14 19 22 26 

5 17.4 2.7 17 22 25 30 

6 19.9 2.9 20 25 28 33 

7 22.5 3.0 22 28 31 36 

‘N; denotes the random number of distinct hybrid clones required to 

achieve a karyotype matrix with column r at least a distance d from all 

other columns. Because N& is discrete, we define the oth percentile as the 

first integer n such that P( N& < n) > o/100. 

where 

( 1 5 
c( c - 1) =- 

2 

is the number of pairs of columns. We have derived a number of upper and 
lower bounds for P( Nd Q n) which lend support to the approximation (4), 
but the derivations of these bounds are too involved to present here. 

The moments of NJ and Nd can be computed from the formula 

E(Z”)= f [(n+l)“l-n”]P(Z>n) 
n=O 

for the mth moment of a random variable in terms of its right tail 
probabilities [lo]. Tables 1 and 2 display the mean, standard deviation, and 
representative percentiles for N; and Nd. Also recorded are some theoretical 
lower bounds for Nd given in the coding theory literature [2]. d is the 

obvious lower bound for N&. 
One of the side effects of employing panels with large numbers of clones 

is that we increase the expected number of gene detection errors. A rigorous 
analysis of the chances for correct gene placement should take this fact into 
account. To model errors in the phenotype column vector pobs, suppose they 
occur independently in the various clones and have common rate q. The 
total number of errors will then be binomially distributed. If there are m 
such errors, and G resides on chromosome r, then we can correct the errors 
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TABLE 2 

Summary Statistics for Nd ’ 

209 

Percentiles 

d Mean S.D. Min. 50th 95th 99th 99.9th 

1 9.3 1.9 5 9 13 15 18 

2 13.1 2.1 6 13 17 19 23 

3 16.4 2.2 9 16 20 23 21 

4 19.5 2.4 10 19 24 27 31 

5 22.4 2.5 11 22 27 30 34 

6 25.3 2.6 12 25 30 33 37 

7 28.1 2.7 15 28 33 36 4 

’ Nd denotes the random number of distinct hybrid clones required to achieve a 

karyotype matrix with every column at least a distance d from every other column. 

Because Nd is discrete, we define the crth percentile as the first integer n such that 

P(N,<n)>a/lOO. 

provided 

min X,, > 2m. 
SfT 

This is just the condition (2). Thus the probability of correct gene placement 
given n clones reduces to 

P( correct gene placement 1 n clones) 

with c = 23. Figure 2 plots this probability versus n for various values of q. 
For instance, with q = 0.01, about 12 randomly generated clones suffice to 
place a given gene with 95% certainty. Also, for absurdly large q, e.g., 
q = 0.5, the probability of correct gene placement diminishes as more ran- 
domly generated clones are added. 

As a final comment, we note that all the above mathematical results 
continue to hold when hybrid clones are cultured in a selective medium 
which promotes the retention of a particular human chromosome. For 
example, if the parental rodent cells are deficient in the enzyme thymidine 
kinase and if hybrid cells are cultured in HAT medium, then only those 
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hybrid cells which carry the gene encoding thyxnidine kinase on chromosome 
17 will survive. In this case, column 17 of the karyotype matrix is prede- 
termined to be a column of 1’s. Thus, the distribution of N& and Nd must be 
calculated conditional on a column of 1’s. However, it is intuitively clear 
from symmetry considerations that the two events A = {a given column 
contains all l’s} and B = { N& 6 n } or B = { Nd < n } are independent. This 
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translates into 

211 

P(N;~nlcolumnofl’s) =P(N,‘<n), 

P(N,gn~columnofl’s)=P(N,~n). 

3. SELECTION OF GOOD HYBRID PANELS 

Given an existing collection of clones, there are two prerequisites for 
choosing a subset of them to form a small, informative panel. First, some 
criterion of merit must be established for measuring the information content 
of each panel. As we have attempted to demonstrate, one reasonable 
criterion is the minimum Hamming distance between the column pairs of a 
panel. A refinement of this criterion is to take into account the number of 
column pairs which attain this minimum distance. Thus, we will adopt the 
criterion 

E(u) =4+$$ 
( 1 2 

(5) 

where u is a given panel of clones, d is the minimum Hamming distance for 
u, k is the number of column pairs attaining this minimum distance, and 

= 253 

is the total number of pairs. The best panels have a low value for E. Because 
of the scaling of the second term in (5), a panel with a higher d will always 
be preferred to a panel with a lower d. Note that a fixed panel size n is 
implicit in the definition (5). 

Having decided on the criterion E, the next problem is to find a panel 
which furnishes a minimum or near-minimum of E. Exhaustive enumeration 
of all possible panels is infeasible. For instance, with 50 clones and a panel 
size of 12, there are 

50 ( 1 12 
= 1.2 x 1o22 

possible panels. Since no good deterministic algorithms exist for finding the 
minimum of E, we will describe three random sampling techniques. All three 
are implemented by a random exchange mechanism. Given an existing 
panel, a random clone currently in the panel is selected for exchange with a 
random clone outside the panel, but in the existing collection of clones. The 
first and most naive algorithm is to always exchange the two clones, 
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producing a new panel with exactly one new member. As the exchange 
progress, a record is kept of the best panel encountered. This simple 
algorithm basically amounts to random sampling from the collection of all 
possible panels. 

A second and more directed algorithm is to make an exchange only if the 
value of E2 for the new panel is at least as low as the value of El for the 
current panel. We will call this the random downhill algorithm. It wastes no 
time taking poor steps, but it potentially can get trapped at a local mini- 
mum. 

Our third algorithm, the method of simulated annealing, represents a 
compromise between the first two algorithms [28, 191. The early stages of 
simulated annealing resemble random sampling; later stages resemble the 
random downhill algorithm. Simulated annealing is motivated by the ob- 
servation that a liquid cooled very slowly from a high temperature to a low 
temperature will crystallize in a state of minimum energy. To implement 
simulated annealing a parameter T analogous to temperature is gradually 
reduced to 0. The objective function E to be minimized is termed energy. In 
the present context simulated annealing can be realized as follows: Suppose 
a current panel with energy El exists. Generate a new random panel with 
energy E2 by the exchange step. Move to this new panel if E2 Q El. If 
E2 > E,, then move to the new panel with the Boltzmann probability 
exp[ - (E, - E,)/T]. As T tends to 0, this probability tends to 0 also. Thus, 
fewer and fewer unfavorable steps are taken as T approaches 0. As with the 
other two algorithms, a record is kept of the best panel encountered. 

To illustrate the above three algorithms for panel design we have amassed 
189 different hybrid clones from several published articles [37,11, 23, 25, 31, 
24, 15, 39, 45, 44, 7, 8, 26, 16, 4, 30, 21, 1, 38, 5, 34, 35, 411. Table 3 lists an 
appropriate identification code for each clone. We have omitted duplicate 
clones found in more than one reference and clones having ambiguous 
human chromosome complements. Table 4 presents the best panels resulting 
from the application of the three algorithms. The total number of iterations 
for each panel size ranged from 55,000 to 75,000 and was determined by the 
convergence criterion for simulated annealing. See [28] for a detailed descrip- 
tion of how simulated annealing is implemented. Listed in Table 4 are the 
panel composition, the minimum Hamming distance, and the number of 
pairs of columns attaining this distance. 

Table 4 makes it clear that random sampling is not a contender for panel 
design. The best panels are relatively rare and can only be identified by some 
type of directed search. Both the random downhill algorithm and simulated 
annealing produce excellent panels. Simulated annealing performs better, 
particularly for panel sixes n -12, 17, and 19. In these three cases the best 
simulated annealing panels have a higher minimum Hamming distance than 
the best random downhill panels. As expected, random downhill typically 
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TABLE 4 
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Best Panels Achieved by the Three Algorithms 

Random Random Simulated 

Panel Sampling Downhill Annealing Simulated Annealing 

Size Energy a Energy a Energy a Panel Compositionb 

5 (072) (1,431 (1,38) {6,78,79,92,151} 

6 (1,231 (1,131 (1,121 {29,56,73,78,90,167) 
7 (1*8) (133) (l,ll (19,46,52,56,67,80,151] 

8 (173) (2,401 (2327) (4,43,50,67,90,113,177,186} 

9 (230) (2,5) (2361 (3,10,14,43,50,58,80,105,131} 

10 (2,71 (3937) (3,241 (12,28,29,73,79,80,90,92,140,179} 

11 (2>3) (3.71 (3,3) {3,4,29,38,43,53,73,74,79,90,181} 

12 (2*21 (371) (4,431 {14,36,58,63,71,78,79,105,131,144,179,189} 

13 (3,131 (4,271 (4,121 {6,12,23,27,28,36,42,51,79,81,90,105,141} 

14 (3?3) (4>3) (491) (7,31,36,42,59,74,79,81,90,92,104,106,123,149) 

15 (3,l) (5,301 (539) (3,6,29,36,39,49,53,59,61,73,78,79,90,146,154} 

16 (4>51 (537) (5.2) {21,23,27,28,49,56,73,78,79, 

106,124,130,144,151,179,183) 

17 (4>61 (5.31 (6,381 {7,21,38,42,52,56,59,63,73, 

78,79,80,88,104,111,148,152) 

18 (4.2) (694) (6,131 (14,19,31,38,49,50,53,59,78, 

80,90,91,104,106,116,154,160,165} 

19 (5,101 (6,2) (7,321 {7,10,21,28,56,58,63,74,78,79, 

104,105,106,131,144,167,174,179,181} 

20 (5.5) (737) (7,171 (4,21,22,28,29,31,36,42,59,61, 

78,101,113,119,128,131,140,146,159,179) 

aThe first number listed is the minimum Hamming distance for the column pairs, and the 

second number is the number of pairs attaining this distance. 

bThe numbers in braces correspond to the clone numbers in Table 3. 

achieved its best panels in relatively few iterations, whereas simulated 
annealing often attained its best panels in the final stages of simulation. 

It is interesting to contrast Tables 2 and 4. For instance, under simulated 
annealing d = 6 is first reached for the panel size n = 17. The minimum n 
possible for this d is 13. The average n when panels are randomly generated 
is 25.3, with a standard deviation of 2.6. In other words, by pooling clones 
one is able to reach the level d = 6 much sooner than by assembling a 
sequence of panels from clones which are randomly generated one after 
another. Note that when d = 6, up to five assay errors can be detected and 
up to two can be corrected. 

4. DISCUSSION 

We have attempted to formalize some notions of redundancy, efficiency, 
error detection, and error correction for the somatic cell hybrid method. For 
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all practical purposes, it is clear that as the number of clones in a panel 
increases, the chance of correctly mapping a given gene also increases. Yet it 
is hardly economical to use large randomly constructed panels when small 
purposely designed ones will suffice. Even in the context of purely randomly 
generated panels, Figure 2 demonstrates a phenomenon of diminishing 
returns in adding further clones to an existing panel of hybrids. It is our 
contention that current laboratory practice encourages the use of random 
panels with two many hybrid clones. 

Little thought has been devoted to the engineering rather than intuitive 
construction of panels. (See [17] for a partial exception to this observation.) 
By applying some simple concepts from algebraic coding theory, rational 
construction of panels is feasible. We have focused on the minimum Ham- 
ming distance for a panel as a measure of its discriminatory power. Selection 
of nearly optimal panels by this criterion from existing collections of clones 
is practical using random sampling techniques and results in panels which 
are uniformly good for all chromosomes. The alternative of choosing good 
panels by visual inspection is not practical. Once again the method of 
simulated annealing has proved its versatility. Two other applications of 
simulated annealing in genetics appear in [13] and [40]. We conjecture that 
the combinatorial optimization problem of panel design is intrinsically hard 
in the precise technical sense of being NP-complete [12]. For problems of 
this category, like the traveling salesman problem, simulated annealing offers 
a practical, easy to implement approximate solution [3]. 

Partially on the basis of this study, we recommend more collaboration 
and coordination among gene mapping groups so that good panels can be 
assembled, stored, and distributed. Besides being more efficient, small panels 
with the same information content as large panels can actually reduce the 
number of assay errors. More systematic design and distribution of panels 
will also enhance the proper cytogenetic characterization of clones within the 
best panels. In fact, the error detection and correction capabilities of a good 
panel permit careful monitoring of it for corrupted clones and clones 
experiencing continued chromosome loss. The panels in Table 4 are not 
meant to be definitive. Some of the clones represented may no longer be 
available or have stable chromosome complements. However, our techniques 
for achieving maximal panel redundancy with minimal panel size offer the 
opportunity to design and disseminate good panels regardless of exactly 
what clones are currently available. 

Research supported in part by University of California, Los Angeles; USPHS 

Grant HL 07505; and NIH Grant AM 33329. 
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