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MicroRNA-Biogenesis and Pre-mRNA Splicing Crosstalk
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MicroRNAs (miRNAs) are often hosted in introns of protein-coding genes. Given that the same transcriptional unit can potentially
give rise to both miRNA and mRNA transcripts raises the intriguing question of the level of interaction between these processes.
Recent studies from transcription, pre-mRNA splicing, and miRNA-processing perspectives have investigated these relationships
and yielded interesting, yet somewhat controversial findings. Here we discuss major studies in the field.
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1. Transcription, Pre-mRNA Splicing, and
miRNA Biogenesis

The gene expression pathway initiates at nuclear transcrip-
tion generating a pre-mRNA, which very often undergoes
splicing, post-transcriptional regulation, and then transla-
tion into a protein. During the pre-mRNA splicing process,
introns are removed and exons are joined in order to generate
the mature mRNA [1–3]. The highly coordinated splicing
event takes place in a large complex called the Spliceosome.
The formation of this functional megacomplex is an orches-
trated assembly of proteins and RNA that requires identi-
fication of exon-intron boundaries [4]. Exons are regularly
alternatively spliced, meaning that they are either included
or excluded from the final mature mRNA transcript. A
recent comprehensive sequencing study observed that more
than 90% of the genes undergo alternative splicing [5]. This
vastly increases the transcriptome repertoire, and emphasizes
both the significance of splicing and the requirement for its
accurate execution.

In addition to protein coding genes, noncoding genes are
transcribed. microRNAs (miRNA), the most comprehensive
noncoding group, are a class of ∼22 nt noncoding RNAs
that inhibit gene expression through binding to the 3′

UnTranslated Region (UTR) of target mRNA transcripts
[6, 7]. There are hundreds of unique miRNAs in a given
species [8], each predicted to regulate a plethora of target
genes [9–13]. In fact, computational predictions indicate that

miRNAs may regulate 60% of all human protein coding
genes [14]. Therefore, it came as no surprise that miRNAs
were linked to many cellular processes such as differentiation,
growth, and apoptosis [15], while miRNA perturbations
were associated with numerous diseases, including cancer
[16, 17]. In the past few years, the pivotal role played
by miRNAs in gene regulation has been recognized [18–
20].

miRNAs are processed through a series of post-
transcriptional biogenesis steps. The canonical maturation
pathway, similar to protein-coding genes, initiates at tran-
scription (mostly by RNA polymerase II) generating a
primary (pri-) miRNA. The pri-miRNA is characterized by
a hairpin RNA structure recognized by the nuclear RNAse-
III enzyme Drosha, and its cofactor DGCR8 [21]. These
proteins work in a complex of several proteins, known as
the Microprocessor. The Microprocessor cleaves the pri-
miRNA to generate a shorter hairpin of about 70 nt length—
the pre-miRNA. This intermediate miRNA is exported from
the nucleus to the cytoplasm via Exportin-5 where the
RNase III endonuclease Dicer generates the final mature
miRNA. This short RNA loses one of its strands (the com-
plementary miRNA∗ strand) while the other is loaded onto
an Argonaute-containing RNA-induced silencing complex
(RISC) which mediates gene silencing. Once the miRNA
binds to its target gene, regulation takes place mainly through
mRNA degradation or translation inhibition [22, 23] (see
Figure 1). For simplicity, the widely used term “miRNA
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biogenesis” hereafter refers to the initial step of miRNA
excision from its RNA transcript.

miRNAs can be located inter- or intragenically. When
intergenic, their expression is coordinated with other miR-
NAs as a cluster [25, 26]. When intragenic, namely, posi-
tioned within a protein-coding gene (almost exclusively in
introns), they are often expressed from the same strand as
their host-gene [27–30] and at correlated levels [31]. Given
that both coding mRNAs and miRNAs are generated from
the same transcriptional unit, and that they cooccur in
close cellular proximity, it would be puzzling if these events
exhibited total independence. Recent studies, from transcrip-
tion, miRNA-processing, and splicing oriented perspectives,
have investigated these fascinating interactions and yielded
interesting, yet somewhat controversial findings.

2. Intronic miRNA Biogenesis in Light of
Pre-mRNA Splicing

Relationships between intronic miRNAs and the processing
events of their host mRNA, namely, transcription and
splicing have been addressed. Here we outline the major
studies in the field.

Expressed Sequence Tag (EST) libraries of expressed
mRNAs are derived from various cells and tissues. The ESTs
represent a snapshot of cellular transcripts at a particular
time point and thus display the given mRNA plethora and
its variety at a particular cellular state. Analysis of this data
revealed several chimeric transcripts containing miRNA and
part of the adjacent mRNA sequences [32]. At an early
stage of miRNA research this indicated the existence of a
shared RNA transcript. Notably, at a later stage, some of
these EST fragments were shown to be partially spliced, with
either 5′ or 3′ ends matching putative Drosha cleavage sites
[30]. These results strengthened the possibility that miRNAs
and mRNAs are processed from the same RNA substrate.
In addition, the correlated expression pattern of host-gene
transcripts and their miRNAs [31] suggested that miRNAs
have coevolved to use the same promoter for transcription
[26]. Along with this work, by comparing miRNA processing
in a construct containing only the intronic sequence versus
one that also includes the flanking exons, Pawlicki and Steitz
[33] found that the levels of pri-miRNA transcribed from
introns are increased in the presence of flanking exons, due
to prolonged retention at the site of transcription. This
supported the notion that flanking exons may facilitate
miRNA processing by increasing the time pri-miRNAs spend
tethered to the DNA template [33, 34]. Altogether, the data
indicates that intronic miRNA processing is enhanced by
physical proximity to the site of transcription, and possibly
also by splicing of the host gene. Several groups have isolated
and identified various proteins associated with the human
Microprocessor complex [35–37]. In these studies, numerous
Microprocessor-associated proteins were identified as splic-
ing factors (e.g., hnRNPH1; [37]) or involved in pre-mRNA
processing (e.g., DHX15; [38]).

Taken together, based on miRNA-mRNA transcriptional
(EST) evidence; shared promoters; facilitated biogenesis

when flanked by exons; and overlapping proteins between
the functional complexes, the data suggests that the Micro-
processor is potentially enhanced and present during tran-
scription and most likely also during splicing. If the same
RNA substrate is subjected to both host-gene and intronic
miRNA maturation, the intriguing question raised is how do
all these processes—transcription, pre-mRNA splicing, and
miRNA processing—crosstalk?

The complexity of the miRNA-host-gene interaction
model has increased recently when studies from the Proud-
foot Laboratory demonstrated that pre-miRNAs are gen-
erated through cotranscriptional cleavage by Drosha. Mor-
lando et al. [39] suggested that efficient clearance of intronic
sequences following Microprocessor (Drosha) cleavage may
act to enhance the splicing efficiency. This occurs both in
intergenic miRNAs and intronic miRNA genes [39]. These
researchers showed that the Microprocessor complex, as
well as 5′-3′ and 3′-5′ RNA exonucleases, are recruited
to chromatin associated with intronic miRNAs during
transcription of the host primary transcript, and that Drosha
cleavage occurs before host intron splicing. They found that
miRNA-harboring transcripts preferentially associated with
chromatin fractions, from which they concluded that both
pre-miRNA cleavage and intronic splicing must occur on the
same nascent transcripts. The rapid exonucleolytic removal
of intronic sequences may clear the proximal vicinity of RNA
processing for the purpose of efficiently completing the pre-
mRNA splicing task. The enhancement of splicing by the
Microprocessor does not agree with other studies [30, 40]
(discussed below) and does not concur with experiments in
yeast that showed enhanced processing for siRNA flanked
exons in splicing mutants [41].

A crosstalk between two physically overlapping RNA
transcripts is not unheard of. Dependencies are seen, for
example, during the biogenesis process of small nucleolar
RNA (snoRNA) [42–44]. In the process of snoRNA matu-
ration, functional links between intronic snoRNP assembly,
pre-mRNA synthesis and processing have been described
[45–47]. An antithesis to this dependency is the alternative
miRNA biogenesis pathway that bypasses the Microprocessor
via generation of “Mirtrons” [48, 49]. This mechanistically
distinct class of intronic miRNAs stem from very short
introns where splicing substitutes the first step of miRNA
biogenesis. In this case, splicing activities replace the require-
ments for a Microprocessor.

However, not all roads lead to the observed dependency
between microprocessing and splicing. Ying and Lin [50]
have designed an artificial intron containing a pre-miRNA
secondary structure. They used this construct to show that
the mature miRNA was released only from the spliced intron.
This suggested that spliced introns are subsequently used
by Drosha and argued against any physical link between
the Microprocessor and the transcriptional unit or between
the Microprocessor and the Spliceosome [50]. Dye et al.
[40] showed that exons of pre-mRNA are tethered to the
elongating RNA polymerase II either directly or indirectly
without affecting processing, indicating that cotranscrip-
tional cleavage of nascent intronic miRNA transcripts does
not affect splicing efficiency [40, 51]. Supporting the same
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Figure 1: The canonical miRNA biogenesis pathway and its affect on gene expression. Elaborated mechanisms and exceptions to this pathway
are reviewed in [24].
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Figure 2: Possible models for intronic miRNA biogenesis. Either both miRNA and mRNA are generated from one RNA transcript (left
scheme), or each is generated from an individual transcript (right scheme).

view, Kim and Kim [30] addressed miRNA biogenesis in
light of the splicing mechanism. They demonstrated that
cleavage of an intronic miRNA did not significantly affect the
production of mature mRNA and, conversely, the production
of mature miRNA was not significantly affected by splicing.
In their experiments, knockdown of Drosha, or mutations in
the miRNA hairpin, eliminated miRNA generation without
dramatically affecting mRNA splicing. This suggested that
miRNA biogenesis and splicing are coordinated but not
functionally linked or interdependent. Taking a closer look,

however, they also mention that Drosha knockdown led
to a modest increase in spliced mRNA production and so
did mutations in the miRNA hairpin. Their work showed
that the adjacent introns were spliced more rapidly than
miRNA-encoding introns, suggesting that binding of the
Microprocessor may eventually interfere with the splicing
to some extent. Taken together, Kim and Kim’s data [30]
imply mostly independent activities but cannot exclude the
possibility that the Microprocessor interferes, to some level,
with splicing.
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Figure 3: Possible crosstalk models between the miRNA biogenesis
process, carried out by the Microprocessor, and the pre-mRNA
splicing reaction, carried out by the Spliceosome.

Attempting to explain how both miRNA and mRNA
are generated from the same DNA locus, reconciling with
the studies described here, we come up with two distinct
models. The first envisions a single miRNA and mRNA
arising from the same RNA precursor. The second predicts
generation of an miRNA and mRNA products arising from
two independent RNA transcripts (see Figure 2). If the latter
scenario was true, microprocessing and splicing would be
independent of each other. The outcome would be either
no functional hindrance between the Microprocessor and
Spliceosome activities or a competition for available pre-
mRNA substrates. In the event that both RNA products
originate from the same precursor, it is conceivable that the
two processes happen consecutively. This would imply that
execution of one process would be a prerequisite for the
other to occur. Alternatively, miRNA processing and mRNA
splicing may be coordinated so that the Microprocessor
and Spliceosome interact with each other. This interaction
may be minimal, without affecting the amounts of miRNA
and mRNA produced—as was suggested recently [30], or
it may constitute a level of regulation. We note that these
events should always be looked at in the spatial-temporal
context meaning that the Microprocessor might act at an
independent rate prior to the Spliceosome assembly, and thus
their direct interaction would be prevented. Due to accu-
mulating evidence, both in favor and against dependencies
between splicing and microprocessing, further investigation
is necessary in order to uncover the full complexity of these
processes.

3. Coordinated Crosstalk

Cellular regulatory events are commonly embedded in
complex networks of interactions. The potential coor-

dinated activity between the Microprocessor and the
Spliceosome can be stratified into four possible relation-
ships. The Microprocessor can inhibit or activate the
Spliceosome, and the Spliceosome can inhibit or acti-
vate the Microprocessor (Figure 3). These relationships are
not mutually exclusive. For example, the Microprocessor
could activate the Spliceosome by recruiting splicing fac-
tors to intronic miRNAs, while at the same time the
Spliceosome could inhibit microprocessing. We cannot
rule out, however, that these relationships occur in one
large complex depending on the presence of particular
RNA processing proteins within the Microprocessor [37].
Many complex regulatory loops, both positive and neg-
ative, were seen in other cellular systems (e.g., see [52,
53]).

The Spliceosome is a mega complex of hundreds of pro-
teins and snRNPs [54]. Its assembly and dynamic structure
have been extensively studied [55, 56]. The Microprocessor,
on the other hand, is composed of a handful of proteins
[21, 36], minimally described as a two-protein complex
[24, 35] (alternatively, see [37]). It is hard to visualize these
two very differently-sized complexes aligned at the same
position, competing for the same substrate. Thus, a coor-
dinated processing and crosstalk seems necessary for these
complexes—the Microprocessor and the Spliceosome—to
be able to process the same transcript with intricate accu-
racy.

During the mRNA splicing process, the rate at which
transcription takes place may affect the transcripts’ pattern
of splicing [57]. Thus, kinetics of intron removal and exon
ligation may play a role in selecting particular spliced
isoforms. Given that some introns undergo miRNA excision,
unless the removal is extremely rapid, one can imagine
a possible effect on splicing outcome. Thus, from an
evolutionary perspective, an intronic miRNA might evolve
to participate in determining splicing kinetics. Consequently,
an evolutionary driving force may direct miRNA positioning
within the intron to prevent disruption of relevant splice
signals (also see [39]).

In summary, growing evidence indicates a complex
crosstalk between transcription and splicing. It is not
surprising then that microprocessing is also linked to these
events. Many questions still remained unanswered. Are these
processes coordinated by cis regulatory sequences or trans
acting factors? Does one process dominate over the other?
How widespread is the mechanism and does it govern
all intronic miRNAs? To date, not all Microprocessor and
Spliceosome crosstalk scenarios (as described in Figure 3)
have been identified. Yet, given the complexity of cellular
pathways, it is probably only a matter of time before their
elucidation.
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