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Finite-temperature scaling of trace
distance discord near criticality in
spin diamond structure
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Published: 15 February 2017 In this work we explore td]e quantur.n co.rrelatlor_1 quantlﬁe.d by trace distance dIS(.ZOI’d as a measure to
analyze the quantum critical behaviors in the Ising-XXZ diamond structure at finite temperatures. It

is found that the first-order derivative of the trace distance discord exhibits a maximum around the
critical point at finite temperatures. By analyzing the finite-temperature scaling behavior, we show
that such a quantum correlation can detect exactly the quantum phase transitions from the entan-
gled state in ferrimagnetic phase to an unentangled state in ferrimagnetic phase or to an unentangled
state in ferromagnetic phase. The results also indicate that the above two kinds of transitions can be
distinguished by the different finite-temperature scaling behaviors. Moreover, we find that the trace
distance discord, in contrast to other typical quantum correlations (e.g., concurrence, quantum discord
and Hellinger distance), may be more reliable to exactly spotlight the critical points of this model at

finite temperatures under certain situations.

For a quantum many-body system, the ground state properties may undergo qualitative and dramatic changes
owing to quantum fluctuations at zero temperature. This phenomenon, known as a quantum phase transition
(QPT), is attributed to the interplay between the different orders associated with competing interactions in the
Hamiltonian'. However, the QPT can also emerge and be observed at sufficiently low temperature if thermal
fluctuations are not sufficient to drive the system away from its ground state to excited states. In the other words,
the quantum fluctuations still dominate at these temperatures. Recently, the finite-temperature properties of QPT
have been attracting attention due to the fact that all experiments are confined to finite temperature®*. Thus, an
understanding of only the zero-temperature properties of a quantum system is not sufficient from the perspective
of experimental results.

On the other hand, quantum correlations among the subsystems of a many-body system are closely related
to the emergence of the QPT. In recent years, such relationships have been studied from many different perspec-
tives in varies quantum systems®~*%. For instance, entanglement has been widely employed to identify QPT with
great success’*’. However, entanglement may fail to measure the quantum correlations for a state in some spe-
cific cases (e.g., the case with remote spin pairs in a spin chain system?®). That’s to say, there exist other quantum
correlations which can not be grasped by entanglement. In addition, entanglement might signal a pseudo tran-
sition point'®. These facts stimulate many works to classify and quantitate the quantum correlations from other
perspectives in order to avoid this disadvantage?*-%. In particular, Ollivier and Zurek introduced the so-called
quantum discord (QD), which is based on the fact that two equivalent ways to define the mutual information in
classical world turn out to be inequivalent in the quantum ones, in order to quantify all nonclassical correlations
among quantum systems?. And QD has been attracted much attention in many branches of physics. One impor-
tant aspect is the relationship of QD with QPT?'-*%. Moreover, Werlang et al. found that QD can characterize
exactly the critical points of the XXZ Heisenberg chain even at finite temperatures, while entanglement seems
not®. Unfortunately, an analytical solution to QD is known only for typical two-qubit states. Subsequently, many
distance-based quantum correlation measures have been proposed, such as geometric quantum discord defined
via the Hilbert-Schmidt distance®* (which may be changed by trivial local actions on the unmeasured party*)
and its modified version via the Hellinger distance?®?’. Another important version is the trace distance discord?,
which is defined through the Schatten one-norm. This quantum correlation exhibits some attractive features, and
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Figure 1. The schematic picture of Ising-XXZ diamond chain. The solid (dash) lines denote the Heienberg
XXZ (Ising) interactions between two spins. The red (oliver) circles denote the Ising (Heisenberg) spins.

thus can be a physically meaningful measure. For instance, the trace distance obeys a contractive property, owing
to the definition in terms of the Schatten one-norm, and this property is invariant under the unitary transforma-
tion. Recently, Ciccarello ef al. showed that the trace distance discord can be analytically obtained for an arbitrary
X state?. Taking account of the great success and flaw of previous quantum correlations in detecting QPT, it is
meaningful to investigate the behavior of the trance distance discord for a typical quantum critical system, so that
the capability and advantages of this measure to detect the QPT can be tested.

Regrading the QPT itself, the low-dimensional frustrated quantum spin models with competing interactions
have attracted considerable attention due to their attractive quantum critical behaviours. For instance, the spin-
1/2 quantum Heisenberg model with diamond chain structure is actively engaged in the investigations of geomet-
ric frustration**~*. Interestingly, this quantum spin model can be employed to explain the properties of some real
materials such as azurite which has the 1/3 magnetization plateau and exhibits the double peaks in both magnetic
susceptibility and specific heat**. On the other hand, the Ising-XXZ diamond model can also provide an excellent
ground for rigorous study of pairwise quantum correlations at finite temperature in an infinite chain structure.
The goal of this work is to check whether the trance distance discord as a measure can be used to describe the
quantum critical behaviors in the spin diamond structure at finite temperature. The main properties of the quan-
tum criticality(e.g., the finite-temperature scaling behavior, universality and critical exponents) will be visited
both numerically and analytically.

Results

Ising-XXZ model and ground state phase diagram. The Ising-XXZ model with interstitial anisotropic
Heisenberg spins and mixed nodal Ising spins on a diamond-structure chain in the presence of an external mag-
netic field is illustrated in Fig. 1. The Hamiltonian operator can be expressed as follows*0-#4;

L
h
H= Z](Sa,i» Spidy +11(Sai + Sp) (o + 0iy) = ho(Sg; + Sp0) — E(Ui + 04 )

here, (S, ;> Sy.1) , = SiiSu; + S3:S); + AS;;S; ; denotes the Heisenberg dimer interaction, A is the anisotropy
parameter, S, ; dtands for the quantum Helsenberg spin operators of the i-th cell along the chain, & =a,b numbers
the two sites of the Heisenberg dimer, S}, .S} ; and S7 ; are three components of the Pauli operator, respectively.
;= +1 denotes the classical Ising spin, while & and h0 are the external magnetic fields acting on Ising spins and
Helsenberg spins, respectively. The parameters J; and J correspond to the coupling constants of Ising interaction
and XXZ interaction, respectively. For convenience, we set J; =1, J=1 and h,= h throughout this work. L is the
number of cells in the chain and will be treated as infinite. The Heisenberg spin coupling can be expressed using
matrix notation as following,

é 0 0 0
4
0 — % % 0
(Sa,i’ Sb,i)A = .
o L _4
2 4
0 0 0 é
4 (2)
By fixing the values for 0, and o, |, we can obtain the eigenstates in terms of basis {|T1), [T1), |1 1), |1 1)} given
by,
1) = [11), (3a)
) = —=([T1) + 11)
4= > (3b)
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Figure 2. (a) The trance distance discord D, and (b) its first-derivative dD,/d A with respect to A and h under
temperature T=0.1. In the ENQ phase, the value of D, almost equals to one and it approaches asymptotically to
zero in the UFI and UFM phases at low temperature. Around the critical lines, A =1(h < 2.0) and

A —2h+3=0(h>2), and then the first-derivative dD,/d A exhibit a maximal, marking a QPT at finite
temperature.

_ 1 _
|¢3) - «E(‘Tl) |lT))’ (3¢)

1Y) = [L1) (3d)

And the corresponding eigenvalues are X (0, 0,,,) = % +(1 - g (0; 4+ o) —h Moy o, )=

A h A h A
-2 (ot o, N0, 0,)= — -2 5(0i+ o and N (o, 00) =7 — gl + g)(ai +o)+h

2 4 2 2 4
respectively. In earlier work, three magnetic phases were observed (frustrated ph?ise, errimagnetic phase and
ferromagnetic phase) for the system®. In the present study, we take the tactic proposed by Rojas et al., to
re-arrange these phases into two main regions (entangled and unentangled)*, which are closely related to the
above three different magnetic phase, i.e., entangled state in the frustrated phase, [ENT) = [TY [V3), ® 1),
unentangled state in the ferrimagnetic phase| UFI) = [[X , 1), ® | — ), and unentangled state in the ferromag-
netic phase|UFM) = [[N| |¥). ® | + ) Here, | ¢); stands for an arbitrary value (= +1/2) of the nodal spin in
the ith block. According to the Bell states given in Eqs (3b) and (3¢), at zero temperature the entangled state in the
frustrated state is fully spanned at zero magnetic field, while the ferrimagnetic and ferromagnetic state are
spanned by the unentangled states, respectively. The eigenvalues for the UFM is given by E gy =1+ A/4 —3h/2
and the eigenvalue for UFI state is Eyp;= —1 4 A/4 — h/2. The entangled state (quantum ferrimagnetic state),
denoted by |ENQ) = [T¥, [1h3), ® | + ), has its eigenvalue Egyo= —1/2 — A/4 — h/2. Thus, the boundary
between these critical phases at zero temperature can be exactly figured out according to these eigenvalues.

Trace distance and QPT at finite temperature. It is noted that the thermal entanglement for such a
model on different critical phases was once discussed in the previous works*-*4. The results showed that the
entanglement may disappear as temperature exceeds a threshold T,, making the entanglement fail to characterize
the critical points above the critical temperature. Here we focus on the relationship between the trace distance
discord and the quantum critical phenomenon at finite temperature. Without loss of generality, we plot the D, as
a function of A and h for a fixed finite temperature T=0.1 as an example in Fig. 2(a). Obviously, one can see that
the UFI and ENQ regions (or phases) are separated by line A =1 with s < 2, and the UFM and ENQ regions (or
phases) are separated by line A — 2k + 3 =0 with /& > 2. The trance distance discord almost equals to one in the
ENQ region and approaches to zero in the other two regions. Around the boundary between the unentangled
state and entangled one, the trace distance discord falls quickly and approaches to zero asymptotically. Here it
should be mentioned that the quantum state for Heisenberg dime is the unentangled state |1, ) and thus all quan-
tum correlations(concurrence, quantum discord, trance distance discord, etc.) equal to zero when the system is
in the UFI or UFM phase. In the other words, these is no change for these correlations when the system goes
across the critical line between the two phases. In Fig. 2(b), we plot the first-derivative of D, with respect to A for
the fixed finite temperature T=0.1. Again and obviously, the maximal appears around the critical lines. It is
known that the first-derivative with respect to the driving parameter shows an extremal behavior near these crit-
ical lines and will be divergent in the thermodynamic limit T— 0.

To this stage, one is convinced that these properties of the trance distance discord indeed can reveal the critical
regions at finite temperature for this model. In the following, we shall proceed to perform quantitative analysis on
the D, around the critical lines at finite temperature.

Quantum criticality from ENQ to UFIl.  Given the discussion above, it is clear that there exists a transition
from ENQ phase to UFI phase around line A =1 with i <2. In Fig. 3(a) is plotted the the density of D, as a func-
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Figure 3. (a) The trance distance discord D, as a function of T'and A. (b) The trance distance discord D, as a
function of T at different values of parameter A.
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Figure 4. The calculated D, (a) and its first-derivative dD,/d A (b) as a function of parameter A around the
critical point A =1.0. (c) The peak position A,, can be regarded as a pseudo-critical point which shifts with
increasing temperature T following relationship log(A, — A,,) = kll + const in approaching to the critical
point A. This behavior implies that A, — A_as T— 0. (d) The maximum value of dD,/d A at the pseudocritical
point A, as a function of T.

tion of T'and A for a fixed h = 1. Clearly D, does not equal to zero over the whole parameter region and it is finite
even at high temperature where the entanglement may disappear**4. As addressed above, the reason is that D,
can measure the total quantum correlations of a state p while the entanglement can only reflect part of them. This
property of D, makes it possible to detect the quantum critical point at finite temperature. We also note that D,
may increase with temperature in a given region, which is very similar to QD in the Heisenberg XYZ model“.
Naturally, this character tends to disappear as temperature goes too high. In Fig. 3(b), D, as a function of temper-
ature T for several different values of A are plotted. Obviously, for A > 1, D, decreases monotonically with
increasing T'and approaches to zero asymptotically in the high temperature region. However, for A <1, D, almost
equals to zero in the low temperature region, and then increases up to a maximal before going down to zero
asymptotically as T increases further. These results also indicate that there indeed exists a transition when the
system goes across A =1.

To explore the effect of finite-temperature on D,, we present the calculated D, as a function of A at several
temperatures T around the point A = 1.0 in Fig. 4(a). D, increases monotonically with increasing A and this
trend becomes more significant as temperature T is lower. We plot the first-derivative of D, with respect to A in
Fig. 4(b) to reflect such trend. The dD,/dA exhibits a clear singularity around the critical point A =1.0 in the
limit T— 0. Generally speaking, the appearance of nonanalytic behavior of a physical quantity is fundamentally
a feature of QPT. It is accompanied with a scaling behavior due to the divergency of the correlation length.
Fig. 4(b) shows the shift of the anomaly position, marked by the sharp peak, and the peak height with increasing
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Figure 5. Several typical quantum correlations, (a) concurrence C, (b) Hellinger distance D,, () quantum

discord D, and (d) trance distance discord D, as a function of parameter A around the points(A,h) = (1,0) at
q

various temperatures T, respectively. Obviously, they are all smooth functions of A. However, the first-

derivatives for C, D, and D, would exhibit an unexpected discontinuity point A, which is unfortunately not a

real critical point except normal discontinuity point A, for the QPT.

temperature. In details, the peak position A, can be regarded as a pseudo-critical point which shifts with temper-
ature T following the scaling law:

1
log(A, — A,,) = k;,— + const.
The numerical results are plotted in Fig. 4(c), implying A,, — A as T— 0. On the other aspect, the value of the
derivative of D, is logarithmically divergent at the pseudo-critical point A, in the thermodynamic limit,

log(dD,/dA], ) = kz% + const. )

The numerical results are plotted in Fig. 4(d), suggesting that dD,/d A shows a singularity at the critical point
as temperature approaches to zero.

As a comparison, it is rather interesting to check the behaviors of some other typical quantum correlations
around the critical point. In Fig. 5(a), we plot concurrence C as a function of A at several different temperatures
T with h=0. Although the C ~ A curves are continuous, there would exist two points where the corresponding
first-derivative (dC/dA) is continuous instead of divergent. The discontinuity at A, =1 does indicate the QPT of
the present model. However, the unexpected discontinuity occurs at Aywhere entanglement C disappears, sug-
gesting that this is a false critical point. This behavior for entanglement C is very similar to the counterpart in the
XX spin model with multi-site interaction'®. It is known that the origin of nonanalyticity in the concurrence at
Ascomes from the requirement that the concurrence should be non-negative instead from the nonanalyticity of
p. Therefore, the discontinuity in dC/dA does not necessarily indicate the existence of QPT. In Fig. 5(b) and (¢),
dependences of Hellinger distance D), and quantum discord D, on A at several temperatures with =0 are plot-
ted. Obviously, both of them exhibit a cuspate behavior when the anisotropy parameter A increases. These phe-
nomena cannot appear under the influence of magnetic field. For the QD, such phenomena can be also observed
in other models*. Thus we see that the first derivative of these quantum correlations would show discontinuities
at both points A, =1and A,. The discontinuity at A= 1 does indicate the QPT of the present model. However,
the unexpected discontinuity point occurring at A, is not a real critical one. In comparison with the behaviors of
above typical quantum correlations, we also plot the trance distance discord in Fig. 5(d). Obviously, the D, ~ A
curve is continuous and smooth, and we can anticipate that there would be one point where the first derivative of
D, is discontinuous as temperature approaches to zero, marking the critical point exactly. Therefore, we can rea-
sonably state that the trace distance, in contrast to other quantum correlations (e.g., concurrence, quantum dis-
cord and Hellinger distance), may be more reliable to spotlight the critical points for this model under certain
situations at finite temperature.
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Figure 6. (a) The trance distance discord D, as a function of T'and A. (b) The trance distance discord D, as a
function of T at several different values of parameter A.
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Figure 7. (a) D, and (b) its first-derivative dD,/d A as a function of parameters A, respectively, around the
critical line A — 2h 43 =0. (¢) The peak position A,, can be regarded as a pseudo-critical point which shifts
with temperature T following relationlog(A, — A,,) = kzl + const in approaching to the critical point A.
This character implies A, — A as T— 0. (d) The maximal value of dD,/d A at the pseudocritical point A, as a
function of T. The scaling behavior is very different from the counterpart in the quantum criticality from ENQ
to UFL

Quantum criticality from ENQ to UFM.  Based on the above discussion, one understands that there exists
another transition from ENQ phase to UFM phase around critical line A —2h + 3 =0 with / > 2. Figure 6(a) and
(b) present the D, as a function of parameters A and T for a fixed external field h=2.5. The D, pattern is very
similar to the counterpart around critical line A =1 with h < 2. For instance, D, decreases monotonically with
increasing T and approaches to zero at high temperature when A > 2.0. For A < 2.0, D, is nearly zero in the low
temperature limit, but increases rapidly to a maximal and then falls gradually down to zero again with increasing
T. These results also suggest that the system undergoes a QPT as parameters A or h pass across the critical line
A —2h+ 3 =0 with 4> 2 at finite temperature.

To further understand the properties of D, around the critical line A — 2k 4 3 =0, we investigate the
finite-temperature scaling behavior quantitatively. In Fig. 7(a), we present D, with respect to A around the point
(A, h)=(2.0,2.5) at different temperatures T. D, increases monotonically with increasing A and this dependence
becomes more significant at lower temperature T. To characterize this dependence, we also plot the first-derivative
of D, with respect to A in Fig. 7(b), and a singularity around the critical point (A, h) = (2.0, 2.5) in the limit T— 0
is displayed. One also observes that the peak position marking the anomaly shifts and the peak height decreases
with increasing temperature, and the peak position A, as a pseudo-critical point can be described by the follow-
ing scaling law:
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Figure8. (a) The evaluated F=[1 — exp(dD,/dA — dD,/dA|, )]asa function of (A —A,,)/T at different
temperatures. (b) The evaluated F = [1 — exp(dD,/dh — th/dmh |h )] as a function of (h — h,,)/T at different

temperatures. Given the fixed parameter h=2.5 (a) or A =2 (b), all the data collapse on a single curve,
respectively, as expected from the finite temperature scaling ansatz.

1
log(A. — A,,) = ks— + const
g( c m) 3 T ( 6)
in approaching to the critical point A . The numerical results are plotted in Fig. 7(c), implying A, — A as T—0.
On the other hand, at the pseudo-critical point A, the value dD,/d A diverges logarithmically with decreasing
temperature T, according to

log(dD,/dA |, ) = k,log(T) + const. @)

The numerical results are plotted in Fig. 7(d). Here, it should be mentioned that the scaling behaviors are very
different from the counterpart in the quantum criticality from ENQ phase to UFI phase. The two kinds of transi-
tions can be distinguished by the different finite-temperature scaling behaviors.

Furthermore, by proper scaling and taking into account the distance of the maximum of dD,/d A from the
critical point, all the data at different temperatures can be properly re-scaled onto the single curve using the scal-
ing transform relation: F = [1 — exp(dD,/dA — dD,/dA |, )]against(A — A,)/ T%7. The results around the
point(A, h) = (2, 2.5) are plotted in Fig. 8(a), demonstratinyg'1 the scaling of the critical behaviors. The critical
exponent =1 is obtained.

We understand that the transitions across the critical line A — 2/ + 3 =0 can be driven by A or h. It is also well
known that the most important ingredient of physics with quantum phase transitions is the universality class,
which means that different driving parameters may exhibit the same behavior around the critical point and thus
have the same critical exponent’. To check this universality behavior, we investigate the scaling behaviors given
different values of driving parameter, i.e., external field /. In our calculations, we find that they do exhibit similar
behaviors. We ignore the details and only focus on the results from which the critical exponent can be extracted.
By proper scaling treatment and taking into account the distance of the maximal point of dD,/dh from the critical
point, we plot the scaling function F = [1 — exp(dD,/dh — dD,/dh |, )]against(h — h,,)/T" for different tem-
peratures T around the point(A, k) = (2, 2.5) in Fig. 8(b). Obviously; all the data collapse onto a single curve,
confirming the scaling behavior. The extracted critical exponent is = 1. These results also demonstrate convinc-
ingly that the quantum critical behaviors can be characterized by the trace distance even at nonzero (finite)
temperature.

Discussion
Here the quantum criticality in the Ising-XXZ diamond structure at finite temperature have been studied by the
trance distance discord calculations. Around the critical lines, the first-order derivative of the trace distance dis-
cord exhibits a maximal at a finite temperature and diverges under the thermodynamic limits T — 0. By analyzing
the finite-temperature scaling behaviors, we show that the trace distance discord can detect exactly the quantum
phase transition from the entangled state in ferrimagnetic phase to an unentangled state in ferrimagnetic phase
or to an unentangled state in ferromagnetic phase. The results also show that the trace distance can distinguish
the two kinds of transitions by consulting to the different finite-temperature scaling behaviors. As a comparison,
we also study the behaviors of some other typical quantum correlations (e.g., concurrence, quantum discord and
Hellinger distance) around the critical points, and the results state that the trance distance discord is more reliable
than the others to spotlight the critical points for this Ising-XXZ diamond structure at finite temperatures.
Surely, this model system has three different critical phases, and it would be significant and challenging in
the future to consider the multipartite quantum correlations which may grasp all these transitions. The bipartite
quantum correlations imposed on this Ising-XXZ diamond structure, as studied in this work, can not detect the
transition from UFI phase to UFM phase at finite temperature, an issue for future investigations.
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Methods
By employing the transfer-matrix method, the reduced density operator for the Heisenberg spin pairs can be
obtained exactly*!,
p, 0 0 0
o= 0 Py Py 0
0 by P55 0
0 0 0 py (8)
with
1 1 1 1 1 1 1 1 1 1
_ales) to(s - s) + 20,30 = 5)7- + le3) = nls =3 0
Pii 24 QA 204 C

1
Here, A= (7., +7__+Q)/2,Q = [(t,, — TV +arl (o, 0) = Xk expl — B, (0, o] with
T =T 21, Nr o =7(5 - D, =7 (-4 l),T,, = T(,l 1)andB: 1/kpT. T'is the absolute tem-

2 2’2 2’ 2

perature and kg can be taken as a unit. p(c,,0,.,) are given by,

—BA
e B 1(‘7;»<7r+1)’

pll(ar’ Ur+ 1)

L e 4 g iNon0),

pzz (Ur’ Ur+ 1)

1

(e*ﬁ)\z(anarﬂ) _ e*ﬂ)g(d,,(f,ﬂ) ),

P00 01 11)

Pig(@p 0ppy) = & P (10)
For a bipartite system described by the density operator p,j, the trance distance discord is defined as?>%

Dy = min |lp,; — xII»

" Xengg AP ! (11)

where lp,p — X||1 = Tr/\/(pAB — ) (Pup = X) denotes the trace distance between p, and x € pcq, and
A B

Peq = 2P 1Lk ® pys

@ (12)

{pi} is the probability distribution, and IT{* and p” are the orthogonal projector for A and the density operator for
B, respectively. For a two-qubit X state p, which only contains nonzero elements along the main diagonal and
anti-diagonal, the calculation of the trace distance discord can be simplified by*

v max (5,77 + X7 — % min (5
max (v, 7% + X, } — min (5 5} + -

D, =

% (13)

here, v, = 2(|Pz3|i|/’14l)’ Y3 =1=2(py+ p33), and x3=2(py; + p55) — 1.
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