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Introduction

Zoonotic infections with influenza A viruses (IAVs) of avian origin can cause severe disease
with high fatality in humans, as in the case of the avian IAV subtypes H5N1 and H7N9. Fortu-
nately, such spillover events from the avian reservoir to humans are rare and mostly limited to
single individuals due to a robust species barrier. The molecular basis for this species barrier is
the intrinsically poor adaptation of avian IAVs to humans [1]. Avian IAVs are unable to
exploit human host factors required for virus replication and to escape anti-IAV restriction
factors that serve as gatekeepers for zoonotic IAVs in human cells. As a result, efficient virus
replication is hampered and virus spread within the human population is not readily possible.
IAVs, however, constantly evolve. Occasionally, they can acquire the capacity to overcome the
human species barrier. This is a very rare event. Yet, all past and current seasonal AV circu-
lating in the human population can be traced back to animal reservoirs. IAVs possess an error-
prone polymerase that facilitates the acquisition of mutations in the viral genome. Most of
these mutations are detrimental for the virus, but some may favor interactions with pro-viral
host factors or bypass specific antiviral factors and may be selected because they grant a fitness
advantage in the new host [2]. Numerous adaptation steps are required to overcome the spe-
cies barrier and to achieve sustained circulation in the human population. For zoonotic IAVs
of avian origin, the step-wise acquisition of favorable mutations is a major challenge. However,
preadaptation in intermediate hosts, such as pigs may facilitate the adaptive process. Another
possibility for avian IAVs to overcome the human species barrier is the exchange of viral
genome segments with viral strains already adapted to humans by reassortment that may
occur in coinfected cells. Examples include the pandemic viruses that caused the Asian influ-
enza of 1957 or the Hong-Kong influenza of 1968. Pigs may play a special role in reassortment
because they are equally susceptible to infections with avian and human IAVs and thus provide
an ideal environment for the emergence of new strains with pandemic potential. Indeed, mul-
tiple reassortments between human, porcine, and avian IAVs over several years led to the 2009
IAV pandemic [2,3].

Many different host factors that are essential for efficient viral replication of AV in human
cells have been described to also contribute to the human species barrier preventing zoonotic
IAV infections (for a review see [4]). Here, we review current insights into human, anti-IAV
restriction factors that preferentially inhibit zoonotic IAVs and discuss how preadaptation in
intermediate hosts may enable IAVs to escape them. In addition, we address how genetic
defects in the antiviral response can compromise the human species barrier.
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Which anti-IAV restriction factors do preferentially block IAVs
originating from nonhuman species?

Most known anti-IAV restriction factors do not differentiate between IAVs of human and ani-
mal origin [5]. A notable exception is the interferon (IFN)-induced human myxovirus resis-
tance protein A (MxA or hsMx1), a dynamin-like large GTPase that interferes with viral
genome replication (for a review see [6]). MxA recognizes the viral nucleoprotein (NP) and
blocks the import of viral ribonucleoprotein complexes (VRNPs) and newly synthesized NP
into the nucleus of infected cells [7,8]. Experiments in cell culture and in MxA-transgenic
mice revealed that pandemic as well as seasonal human IAV strains are less sensitive to MxA-
mediated restriction than strains of avian, swine, bat, and equine origin. This MxA-escape phe-
notype was assigned to the viral NP [9-14]. Likewise, Mx1 proteins are part of the species bar-
rier against IAVs in other mammalian species. Equine Mx1 blocks avian and human IAVs,
whereas equine IAVs have escaped from restriction [12]. Similarly, porcine Mx1 inhibits avian
IAVs, but is only weakly active against swine or human IAVs [11,13]. These observations high-
light a major role of Mx1 proteins in preventing inter-species transmissions of IAVs. Another
IFN-regulated restriction factor with selective antiviral activity against avian strains in humans
is butyrophilin subfamily 3 member A3 (BTN3A3). It blocks viral transcription of avian but
not human IAVs and similar to Mx proteins, NP was identified as the determinant of the high
sensitivity of avian IAVs to BTN3A3 [15]. Interestingly, BIN3A3 orthologs of other species,
including pigs, ducks, and chickens, show no antiviral activity against IAVs of avian or human
origin [15]. Moreover, a CRISPR activation screen in human cells recently identified the glyco-
syltransferase BAGALNT?2 as a cellular factor that specifically blocks viral entry of avian IAV's
[16]. BAGALNT2 modifies glycans terminating in a:2-3-linked sialic acid, the receptor of avian
IAVs, thereby preventing entry of avian IAVs. Human IAVs, however, circumvent this antivi-
ral strategy due to their 0:2-6-linked sialic acid receptor specificity. Finally, the human splicing
regulator TRA2A has been shown to restrict avian IAVs while it promotes replication of
human IAVs by affecting the splicing of the M and NS segments [17]. TRA2A binds to an
intronic splicing silencer (ISS) in the M mRNA of avian IAVs thereby inhibiting viral M2
expression and progeny production. Conversely, human IAVs carry an ISS in the NS mRNA.
Impeded NS mRNA splicing is required for a balanced expression ratio of the viral IFN antag-
onist NS1 and the nuclear export factor NEP leading to optimized viral gene expression and
replication [17]. This study supports previous findings showing how important balanced splic-
ing of the NS mRNA is for efficient replication of zoonotic IAVs in the human host [18].
Together, these examples illustrate how diverse the inhibitory mechanisms of human restric-
tion factors are that specifically prevent human infections by avian IAVs.

How do zoonotic IAVs evade human restriction factors?

Escape from restriction factors of the species barrier is a prerequisite for zoonotic IAVs to estab-
lish a new lineage in the human population (Fig 1). Thus, a common characteristic of all human
IAVs is their drastically reduced sensitivity to MxA restriction due to adaptive mutations in NP,
the viral target of MxA [10,13]. The combinations of amino acid substitutions mediating MxA
escape vary between different IAV lineages. While the main escape mutations in NP of the 1918
Spanish HIN1 virus (1001/V, 283P, and 313Y) and the 2009 pandemic HINT strain (53D, 1001/
V, and 313V) and their seasonal descendants are very similar, the MxA escape mutations for the
Eurasian avian-like swine influenza A (EA) lineage differ greatly (48Q, 98K, and 99K) [11,13].
An unbiased deep mutational scan confirmed these substitutions and identified additional NP
mutations conferring MxA escape that have not been detected in virus isolates so far [19],
highlighting the plasticity of MxA escape signatures in NP. However, acquisition of MxA escape

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1011450  July 6, 2023 2/7


https://doi.org/10.1371/journal.ppat.1011450

PLOS PATHOGENS

@

Escape mutations

NS1 potency

Loss of function of
antiviral restriction Increased viral
factors polymerase activity

Fig 1. How zoonotic IAVs can overcome anti-IAV restriction factors. Avian IAVs are poorly adapted to the human host. This species barrier prevents
individual infections (1). Deficiencies of anti-IAV restriction factors or defects in their activation like loss of IFN induction or signaling required for the
expression of antiviral ISGs can increase the susceptibility of individual humans to zoonotic IAVs (2). Zoonotic IAVs can also exploit different adaptation
strategies to evade antiviral restriction factors including the acquisition of escape mutations (3) or replication enhancing mutations resulting in highly potent
NSI variants antagonizing the IFN response (4) or increased viral polymerase activity (5). Created with BioRender.com. IAV, influenza A virus; IFN,
interferon; ISG, IFN-stimulated gene.

https://doi.org/10.1371/journal.ppat.1011450.9001

mutations causes severe virus attenuation due to impaired nuclear import of vRNPs and
requires additional stabilizing mutations to compensate for this fitness loss [13,20]. This obser-
vation emphasizes the high hurdle of the species barrier due to MxA that can only be overcome
by a multistep mutational process. Interestingly, escape from BTN3A3 requires NP substitu-
tions identical to those previously associated with MxA escape (313Y/V and 52N/H/Q)
[13,15,21]. Unlike MxA, only 1 adaptive mutation is required to escape from BTN3A3. Since
acquisition of this adaptive mutation does not affect viral fitness, zoonotic IAVs may rapidly
overcome this species barrier [15]. Despite targeting the same surface exposed area of NP,
BTN3A3 is antivirally active independently of MxA [15]. Adaptation of avian IAVs to mamma-
lian hosts also requires redirecting the binding of the splicing inhibitor TRA2A from viral M
mRNA to NS mRNA. Adaptive mutations in the ISS of the viral M gene have been observed, for
example, in human isolates of the zoonotic avian IAV H5N1 [17].

Partial escape from anti-IAV restriction factors can also be achieved by genetic changes that
enhance viral fitness overall which, in turn, increases replication in the human host and may
facilitate the acquisition of additional, true escape mutations (Fig 1). The virulence factor NS1
of IAV leads to diminished expression of IFN-stimulated genes (ISGs), including MxA and
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BTN3A3. NS1 variants with enhanced IFN-antagonistic properties have been detected in
avian-origin H5N1 viruses isolated from birds and humans [22]. Furthermore, mutations that
increase viral polymerase activity can result in enhanced viral replication capable of overrun-
ning the host innate immune response [23]. When an MxA-sensitive, avian-origin H7N9
patient isolate was experimentally adapted to grow in immunocompromised mice that express
a human MxA transgene, it did not acquire MxA escape mutations in NP. Instead, it acquired
a mammalian adaptive mutation in the viral polymerase subunit PB2 (E627K) [24]. Although
this mutation did not confer MxA escape, it enabled increased viral replication in MxA-trans-
genic mice.

What is the role of intermediate hosts in adaptation of IAVs to human
MxA?

Acquiring the necessary set of MxA escape mutations appears to be particularly challenging
because the concomitant fitness loss needs to be compensated. Consequently, without the
strong selective pressure of MxA, the MxA escape phenotype will gradually be lost. The 2009
pandemic HINT1 strain, for example, lost some of the MxA escape-mediating mutations in NP
after reintroduction into the swine population due to the reduced antiviral pressure by porcine
Mx1 [11,13]. On the other hand, the comparatively weaker antiviral activity of Mx1 proteins in
intermediate IAV hosts can promote gradual preadaptation to human MxA. This has been
observed for the precursor of the 2009 pandemic HIN1 lineage and the EA lineage in pigs
[11,13]. Preadaptation to porcine Mx1 in pigs lowered the species barrier for the pandemic
HIN1 precursor virus by acquiring partial MxA escape while the full MxA escape genotype
was obtained in the human population [13]. The avian Mx1 proteins analyzed so far in duck
and chicken show no anti-IAV activity [25,26]. However, the relatively low sensitivity of avian
IAVs to porcine Mx1 may explain why pigs appear to be an ideal host, facilitating the acquisi-
tion of intermediate levels of Mx-resistance for otherwise MxA-sensitive IAVs. Similarly, a
recently identified IAV from bats, HI8N11, shows some escape from MxA that may originate
from preadaptation during replication in the presence of bat Mx1 [9,27]. In contrast, in horses,
preadaptation of equine IAVs to human MxA has not been observed so far. While equine IAV
strains show strong resistance to equine Mxl1, they are still sensitive to the antiviral activity of
human MxA [12].

Another way for IAVs to gain MxA escape is their reassortment with MxA-adapted IAVs in
intermediate hosts, such as pigs. Interestingly, the majority of reassortants that circulate in
pigs carry NP segments with MxA escape mutations. These genomic segments were derived
from 2009 pandemic HIN1 viruses that were accidentally reintroduced into pig herds [28].
The pandemic H2N2 of 1957 and the pandemic H3N2 virus of 1968 both escaped the MxA
barrier by acquiring the already human-adapted NP genomic segment from the descendant of
the 1918 pandemic HINT1 virus. It is still unclear in which hosts the reassortments took place
[29] and how MxA escape arose in the 1918 virus strain. A recent study analyzing archival
1918 HIN1 genomes from formalin-fixed lungs suggests that the complete set of MxA escape
mutations in NP was acquired in humans during the ongoing pandemic. In early isolates only
100I and 313Y were detected, whereas later isolates additionally gained 283P as well as the sta-
bilizing amino acid 16D [30].

Do anti-IAV restriction factors play a role in the susceptibility of humans
to avian IAVs?

Among the best-studied anti-IAV restriction factors associated with IAV susceptibility is the
IFN-induced transmembrane protein 3 (IFITM3), an entry inhibitor of avian and human
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IAVs. Genetic variations within the IFITM3 gene have been shown to be associated with the
severity of seasonal and pandemic IAV infections [31-33]. In addition, in patients infected
with the avian IAV subtype H7N9, the homozygous C/C genotype of the single-nucleotide var-
iant (SNV) rs12252 was associated with an increased risk for a severe clinical outcome and
death [34,35]. Thus, IFITM3 appears to be a critical restriction factor reducing disease severity
in patients infected with either human or avian IAVs, but does not seem to play an essential
role for the species barrier, in contrast to MxA. A recent study demonstrated that MxA reduces
the risk of infections with avian IAVs in humans. By comparing whole-genome sequences of
patients infected with the avian IAV subtype H7N9 with those of healthy poultry workers,
Chen and colleagues observed a strong association between H7N9 infection and rare, hetero-
zygous SNVs in the MxA-encoding MXI gene [36]. About 6.5% of the H7N9 patients, but
none of the healthy controls, were carriers of antivirally inactive MxA variants that exhibited a
dominant-negative phenotype and interfered with the function of wild-type MxA. Hence, het-
erozygous carriers had an MxA-null phenotype and an inherently increased risk for avian IAV
infections. The underlying cause for increased IAV susceptibility in the remaining patients
who had a wild-type MX1 gene is unclear. One explanation might be defects in IFN induction
and signaling hampering the expression of MxA and BTN3A3 (Fig 1). Inborn errors of the
IFN system have been previously detected in patients with life-threatening, seasonal influenza
[37]. The identification of individuals with increased susceptibility to zoonotic IAVs due to
genetic defects is demanding since it depends on how rare these defects are and whether the
patient cohort is large enough although IAV zoonoses are sporadic.

Conclusions

Anti-IAV restriction factors such as the MxA protein are major components of the human
species barrier against transmission of zoonotic IAVs. Most likely, numerous additional host
restriction factors are involved and need to be discovered. Such antiviral barriers can be over-
come through the acquisition of escape mutations in the viral genome, host genetic defects
that compromise innate antiviral defenses, and reassortment events. Preadaptation, including
reassortment, in intermediate hosts can also increase the viral fitness of nonhuman IAVs,
thereby increasing their zoonotic and pandemic potential. It will be important to monitor the
capacity of IAVs originating from diverse animal reservoirs to escape human restriction fac-
tors. It will be equally important to identify and protect highly susceptible individuals carrying
inactive variants of these essential antiviral host factors.
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