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ABSTRACT
Purpose: To evaluate the usefulness of surrogate biomarkers as predictors of 

histopathologic tumor grade and aggressiveness using radiomics data from dual-energy 
computed tomography (DECT), with the ultimate goal of accomplishing stratification 
of early-stage lung adenocarcinoma for optimal treatment.

Results: Pathologic grade was divided into grades 1, 2, and 3. Multinomial logistic 
regression analysis revealed i-uniformity and 97.5th percentile CT attenuation value 
as independent significant factors to stratify grade 2 or 3 from grade 1. The AUC value 
calculated from leave-one-out cross-validation procedure for discriminating grades 
1, 2, and 3 was 0.9307 (95% CI: 0.8514–1), 0.8610 (95% CI: 0.7547–0.9672), and 
0.8394 (95% CI: 0.7045–0.9743), respectively.

Materials and Methods: A total of 80 patients with 91 clinically and radiologically 
suspected stage I or II lung adenocarcinoma were prospectively enrolled. All patients 
underwent DECT and F-18-fluorodeoxyglucose (FDG) positron emission tomography 
(PET)/CT, followed by surgery. Quantitative CT and PET imaging characteristics were 
evaluated using a radiomics approach. Significant features for a tumor aggressiveness 
prediction model were extracted and used to calculate diagnostic performance for 
predicting all pathologic grades.

Conclusions: Quantitative radiomics values from DECT imaging metrics can help 
predict pathologic aggressiveness of lung adenocarcinoma.  

INTRODUCTION

Non-small cell lung cancer (NSCLC) accounts 
for 85% of lung cancers and adenocarcinoma is the 
predominant histologic subtype of lung cancer. Early-stage 
lung adenocarcinoma shows broad spectrum of prognosis, 

and moreover, reported low survival rates in a substantial 
proportion of patients [1–3]. Reflecting the histologic 
heterogeneity of lung adenocarcinoma, there is an 
increasing body of evidence that sublobar resection may 
achieve oncologic outcomes similar to those of lobectomy 
in early-stage NSCLC [4], although some studies have 
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reported the contradictory result that postoperative 
adjuvant chemotherapy improves the prognosis even in 
operable early-stage NSCLC [5].

Radiomics is an ongoing field of research that 
enables us to obtain additional information from standard 
medical images using computational post-processing 
techniques. In an effort to enable more accurate molecular 
and genetic profiling of tumors, many studies have been 
performed with the aim of predicting treatment response 
and, furthermore, accomplish a step toward personalized 
medicine. Al-Kadi et al. showed that computed 
tomography (CT) features with texture analysis can be 
helpful in differentiating aggressive from nonaggressive 
NSCLC [6], and Kido et al. showed differences between 
histologic subtypes of peripheral bronchogenic carcinoma 
using textural parameters on CT [7].  Accordingly, we 
might expect radiomics to provide noninvasive analysis of 
lung adenocarcinoma and allow more effective evaluation 
of tumor aggressiveness based on tumor grade.

Therefore, the purpose of our study was to evaluate 
the usefulness of surrogate biomarkers as predictors of 
histopathologic tumor grade with radiomics data obtained 
from dual energy CT (DECT), with the ultimate aim of 
patient stratification for optimal treatment.

RESULTS 

Correlation between pathologic stage and other 
pathologic features

Among stage 1A tumors, 6/72 (8%) were grade 3 
with mainly micropapillary or solid subtype. The extent 
of invasion showed a positive correlation with pathologic 
stage (P < 0.01). In particular, the extent of invasion in 
stage 1A was 12.9 ± 7.6, which was significantly lower 
than that of stage 1B, 2A, and 2B. Tumor cellularity in 
all pathologic stages was 46.7 to 60.0 without significant 
difference among stages 1A through 2B. The relationships 
between pathologic stage and pathologic features are 
shown in the Supplementary Table S1. 

Correlation between imaging parameters and 
pathology 

Table 1 shows comparisons of all CT and PET 
parameters according to three pathologic tumor grades. 
A significant difference in various parameters including 
SUVmax, size, and density of the nodule was found among 
tumors of different pathologic grade (all P < 0.01). A 
multinomial logistic regression analysis with the stepwise 
variable selection procedure was performed for significant 
factors according to the univariate analysis, and two CT 
factors, i-uniformity and 97.5th percentile CT attenuation 
value, were shown to be independent significant factors to 
stratify the three grades. On multivariate analysis, there 
was no variable showing multicollinearity (VIF. 10) on 

VIF analysis; thus, no variable was removed from the 
multivariate analysis for that reason. As shown in Table 2, 
i-uniformity was a significant factor in stratifying grade 
2 from grade 1 (OR = 0.037 and P < 0.01), and 97.5th 
percentile CT attenuation value was a significant factor 
in stratifying grade 2 from grade 1 (OR = 1.006 and  
P < 0.01) and grade 3 from grade 1 (OR = 1.041 and 
P = 0.02).

Predictive probability of quantitative CT 
parameters for stratifying tumor grades

Finally, we used leave-one-out CV procedure to 
evaluate the accuracy of prediction of pathologic grade 
and we constructed ROC curves and calculated AUC. 
(Table 3 and Figure 1). The AUC value calculated from 
leave-one-out CV for discriminating grade 1 from the 
other grades was 0.9307 (95% CI: 0.8514–1), which was 
the highest among the three ROC curves. The AUC for 
discriminating grade 2 from the other grades was 0.8610 
(95% CI: 0.7547–0.9672) and the AUC for discriminating 
grade 3 was 0.8394 (95% CI: 0.7045–0.9743).

DISCUSSION

Radiomics is an emerging field that converts medical 
imaging data of a tumor to quantitative biomarkers by the 
application of advanced computational methodologies 
[8, 9]. Quantitative imaging features that are extracted 
from the defined tumor region include descriptors of 
intensity distribution, spatial relationships between the 
various intensity levels, and texture heterogeneity patterns 
[10]. For example, Win et al. [11] reported that CT-derived 
tumor textural heterogeneity and PET-derived textural 
heterogeneity were independent predictors of survival. 
In a radiomics analysis of 440 features extracted from 
CT data of patients with lung or head-and-neck cancer, 
[8] a large number of radiomics features were proven 
to have prognostic power. The data of this study by 
Aertz et al. [8] suggested that by capturing intratumoral 
heterogeneity, which is associated with underlying 
gene expression patterns, radiomics identifies a general 
prognostic phenotype existing in both lung and head-and-
neck cancer. Therefore, radiomics features are expected to 
have the potential to capture intratumoral heterogeneity 
and, furthermore, the distinct phenotypic differences of 
tumors, and have been proven to have prognostic power 
with clinical significance [8, 10–13].

The prognostic impact of pathologic invasiveness 
and the need to predict pathologic invasiveness have been 
described in many studies. Histologic subtypes defined 
by IASLC/ATS/ERS classification and other pathologic 
factors such as lymph node involvement and pleural and 
vessel invasion are known to show correlation with the 
survival outcome [14, 15]. Consequently, in the clinical 
setting accurate prediction of pathologic invasiveness 



Oncotarget525www.impactjournals.com/oncotarget

Table 1: Characteristics of early-stage lung adenocarcinoma according to histologic tumor grade
Variables Grade 1 (n = 19) Grade 2 (n = 65) Grade 3 (n = 7) P
Age (y) 57.8 ± 8.9 58.9 ± 9.0 57.6 ± 4.2 0.82
Male:female ratio** 12 : 7 26 : 39 6 : 1 0.49
Smoking habits 0.93
  Ever/Never 10/9 19/46 6/1
PET parameter
  SUVmax 0.44 ± 0.46 3.1 ± 2.67 5.44 ± 3.84 < 0.01*
CT parameters
  Solidity < 0.01*
   Non-solid (n = 39) 16 23 0
   Part-solid (n = 22) 1 19 2
   Solid (n = 30) 2 23 5
Physical Factors
   Size in lung setting (mm) 15.58 ± 7.76 25.15 ± 11.59 22.57 ± 9.54 0.28
   Size in mediastinal setting (mm) 2.68 ± 6.90 13.57 ± 13.11 19.86 ± 11.19 < 0.01*
   Volume (cm3) 2.20 ± 2.91 6.88 ± 10.28 7.14 ± 9.80 0.76
   Density 0.41 ± 0.17 0.72 ± 0.21 0.82 ± 0.21 < 0.01*
   i-Density 1.17 ± 0.02 1.03 ± 0.39 0.83 ± 0.55 < 0.01*
   g-Density 1.88 ± 0.17 1.54 ± 0.22 1.43 ± 0.20 < 0.01*
   Mass (g) 0.83 ± 1.12 5.23 ± 7.37 6.31 ± 8.64 0.79
   i-Mass (g) 2.10 ± 2.58 5.38 ± 7.90 7.07 ± 10.77 0.29
   g-Mass 3.79 ± 5.53 9.39 ± 17.20 10.22 ± 13.24 0.37
Histogram analysis
   Skewness 0.41  ±  0.66 –0.67 ± 1.01 –1.17 ± 0.48 < 0.01*
   i-Skewness 1.19 ± 1.48 0.29 ± 0.71 –0.20 ± 0.40 0.02*
   g-Skewness –0.31 ± 0.60 0.52 ± 0.79 0.98 ± 0.83 < 0.01*
   Kurtosis 3.37 ± 1.83 4.04 ± 4.43 3.36 ± 2.05 0.02*
   i-Kurtosis 8.17 ± 8.36 4.13 ± 2.88 2.88 ± 1.70 < 0.01*
   g-Kurtosis 3.15 ± 1.71 3.77 ± 2.60 3.85 ± 1.83 < 0.01*
   75th percentile (HU) –496 ± 192 –175 ± 210 43.3 ± 133 < 0.01*
   i-75th percentile (HU) 66.1 ± 25.1 75.7 ± 33.7 50.0 ± 27.1 < 0.01*
   g-75th percentile 734 ± 119 471 ± 205 379 ± 218 < 0.01*
   97.5th percentile (HU) –329 ± 171 –49.3 ± 151 67.8 ± 45.5 0.01*
   i-97.5th percentile (HU) 135.7 ± 25.2 134 ± 58.5 76.0 ± 61.5 < 0.01*
   g-97.5th percentile 838 ± 55.9 687 ± 182 780 ± 103 < 0.01*
Texture analysis
   Uniformity 0.0046 ± 0.0034 0.0028 ± 0.0019 0.0020 ± 0.0031 0.08
   i-Uniformity 0.0134 ± 0.0046 0.0071 ± 0.0047 0.0061 ± 0.0046 < 0.01*
   g-Uniformity 0.0057 ± 0.0039 0.0031 ± 0.0017 0.0031 ± 0.0018 0.48
   Entropy 8.26 ± 0.91 8.85 ± 1.26 7.99 ± 2.71 0.10
   i-Entropy 6.64 ± 0.49 6.38 ± 2.39 5.13 ± 3.42 < 0.01*
   g-Entropy 7.95 ± 0.99 8.78 ± 0.68 8.86 ± 0.83 0.40
Gradient-variability
   g-Intensity-variability 7.42 ± 3.84 7.97 ± 4.28 9.00 ± 2.41 0.08
   g-Size-zone-variability 8.97 ± 8.18 15.7 ± 12.5 18.4 ± 13.9 0.59

Note. Classified according to the International Multidisciplinary Lung Adenocarcinoma Classification system.
Unless otherwise indicated, data are means ± standard deviation.
*P < 0.05.
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may aid the decision for an appropriate operation type 
based on the status of the tumor. Major lung resection 
has been recommended as a standard procedure for 
the treatment of lung adenocarcinoma, but according 
to recent literature limited surgical resection could 
be used instead for cases of small-sized lung cancer 
[16– 20]. Meanwhile, some studies have emphasized the 
importance of stratifying early-stage NSCLC patients 
to select candidates for adjuvant therapy [14, 15]. The 
presence of the micropapillary or solid subtype has been 
shown to be a poor prognostic factor for overall survival 
and for recurrence in patients with NSCLC [21, 22] and 
Travis et al. [21] suggested that micropapillary or solid 
predominant subtype predicts improved responsiveness to 
adjuvant chemotherapy compared with acinar or papillary 
predominant tumors in patients with surgically resected 
lung adenocarcinoma [23].

A major problem with assessing pathologic 
invasiveness and grade in lung adenocarcinomas has 
been that these features can be estimated using a whole 
tumor specimen from complete resection, but not using 
core biopsy or cytologic material [24–26]. Of course, 
there have been efforts to provide prognostic information 
using limited biopsy samples from lung cancer patients, 
but biopsy samples frequently contain limited amounts 
of cancer tissue. In fact, according to Coghlin et al., the 
mean percentage area of tumor in a biopsy sample was 
only 33.4% [27]. More importantly, our results indicated 

that tumor cellularity represented only 46.7 to 60.0% of 
the whole tumor volume. Moreover, the tumor area is 
not homogenous but tumors themselves are spatially and 
temporally heterogeneous, therefore complete evaluation 
of the tumor status is not easily achieved. In this situation 
radiomics, which can provide a comprehensive view of the 
entire tumor without invasive procedures, could be the key 
to achieve full evaluation of tumor status including tumor 
aggressiveness and also its prognostic power.

However, radiomics still has barriers to its 
implementation in clinical practice. According to Nyflot 
et al. [28], various imaging parameters such as acquisition 
noise, phantom size and reconstruction method show 
substantial influence on textural features. In addition, 
since the manual nodule segmentation is yet a gold 
standard, it suffers from significant inter-reader bias and 
low reproducibility [29]. To overcome the limitation of 
radiomics, variation of image acquisition, segmentation 
and analysis procedures should be minimized.

We aimed to determine the potential of radiomics 
data from DECT imaging metrics for tumor stratification 
compared with pathologic results from completely resected 
tumors. The DECT technique allows differentiation of 
an iodine substance from other materials by the material 
decomposition principle [30]. The real iodine component 
of the tumor can be measured on iodine-enhanced images 
of DECT and is comparable to the real value of the extent 
of enhancement [31]. Tumor angiogenesis, which leads 

Table 2: Multinomial logistic regression analysis for stratifying three pathologic tumor grades 
Imaging variable OR (95% CI) P value

i-Uniformity
   Grade 1 1
   Grade 2 0.037 (0.003–0.419) < 0.01**
   Grade 3 0.110 (0.006–1.887) 0.13
97.5th percentile (HU)
   Grade 1 1
   Grade 2 1.006 (1.002–1.010) < 0.01**
   Grade 3 1.041 (1.006–1.077) 0.02*

Note. CI = confidence interval.
*P < 0.05.
**P < 0.01.

Table 3: Predictive probability of quantitative CT parameters for stratifying tumor grades
Pathologic grade Sensitivity (%) Specificity (%) PPV (%) NPV (%)

Grade 1 75.0 (0.500–0.938)* 96.3 (0.909–1.000)* 85.7 (0.688–1.000)* 93.0 (0.871–0.982)*

Grade 2 96.0 (0.900–1.000)* 57.1 (0.381–0.762)* 84.2 (0.783–0.909)* 85.7 (0.688–1.000)*

Grade 3 0 100 (1.000–1.000)* 0 93.0 (0.930–0.930)*

Note. PPV = positive prediction value, NPV = negative prediction value.
*Data in parentheses are the confidence interval.
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to increased microvessel density, results in increased 
tumor perfusion and thus iodine enhancement [32, 33]. 
Therefore, the net iodine value obtained through DECT 
may reflect the level of underlying tumor angiogenesis 
[34]. On the other hand, a recent study demonstrated that 
the iodine-related attenuation of DECT in primary lung 
cancer correlates with the SUVmax of PET/CT because 
increased glucose metabolism, which is known to have 
an association with tumor perfusion, increases FDG 
uptake in PET [32]. These authors also showed that the 
iodine value could be added to conventional FDG PET/
CT for more advanced tumor grading [32]. Overall, with 
radiomics values derived from DECT and PET/CT, tumor 
phenotyping with consideration of the tumor metabolism 
and perfusion could be established in our study.

Our study had several limitations. First, this study 
was performed at a single institution and therefore the 
patient population was relatively small. Especially, grade 
3 group included only 7 tumors, which is very small and 
therefore it may have affected the reliability of our results. 
Further studies with large numbers of patients from multiple 
centers are needed to confirm the feasibility of DECT and 

its quantitative analysis for prediction of tumor grade and 
aggressiveness. Second, the pathologic tumor grades 1, 2, 
and 3 used in this study only reflect the most predominant 
subtype of the tumor, without consideration of the presence 
of other subtypes within the tumor. Future studies should 
be performed with consideration of tumor heterogeneity 
and the proportion of the histologic subtype, which can 
affect the prognosis. Third, potential disagreement between 
the pathologists in pathologic evaluation was present in 
this study. However, effort was made to minimize the 
disagreement since the pathologic assessment was the 
standard of reference in our study. Two pathologists reviewed 
the cases independently, followed by reaching consensus in a 
two-step order. In addition, digital miscroscope system was 
used to obtain objectivity of visual assessment.

In conclusion, quantification using preoperative 
DECT imaging metrics can help to predict pathologic 
aggressiveness based on tumor grade. Among various CT 
radiomics parameters obtained from DECT, i-uniformity 
and 97.5th percentile CT attenuation value were proved 
to be independent significant factors for predicting tumor 
grade by distinguishing grade 2 or 3 from grade 1.

Figure 1: Receiver operating characteristic (ROC) curves for prediction of pathologic grade based on significant 
imaging parameters. The AUC calculated from leave-one-out CV for discriminating grade 1 from the other grades was 0.9307, which 
was the highest among three ROC curves. The AUC was 0.8610 for discriminating grade 2 and 0.8394 for discriminating grade 3.
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MATERIALS AND METHODS

Patients

This study was performed as part of an ongoing 
prospective clinical trial that aimed to determine the value 
of biomarkers for the prognostic stratification in patients 
with early-stage lung adenocarcinoma at a single tertiary 
referral hospital (NCT01482585). This prospective study 
was approved by the institutional review board and written 
informed consent was obtained (No. SMC 2011-09-083).

Between October 2011 and May 2013, a total of 
101 patients with stage I or II lung adenocarcinoma were 
prospectively enrolled. Inclusion criteria for our study were 
as follows: (1) Clinically and radiologically suspected lung 
adenocarcinoma, (2) Newly-diagnosed stage I or II disease 
from clinical work-up including F-18-fluorodeoxyglucose 
(FDG) positron emission tomography (PET)/CT, (3) Eastern 
Cooperative Oncology Group (ECOG) performance status 
of 0 or 1 who are eligible for surgery, (4) Age 20 years or 
older, (5) Able to tolerate DECT imaging as required per 
protocol, (6) Able to give study-specific informed consent. 
Exclusion criteria were (1) Prior malignancy, (2) Scheduled 
for definitive radiation therapy or neoadjuvant concurrent 
chemoradiation therapy, (3) Poor cardiopulmonary reserve 
(contraindication for surgery).

All 101 consecutive patients underwent DECT and 
FDG PET/CT for work-up. Among 101 enrolled patients, 
3 patients who were proven to have benign disease after 
percutaneous biopsy of the lesion and 5 patients who were 
proven to have unresectable stage III or stage IV lung 
cancer through further studies were excluded. In addition, 
one patient who refused surgery was excluded. Overall, 
92 patients underwent complete resection and 3 patients 
with benign disease, 8 patients with pathologic stage III or 
IV disease, and 1 patient with mucinous adenocarcinoma 
were additionally excluded. Further details are described 
in the Supplement. Finally, 80 patients with 91 stage I or 
II lung adenocarcinomas were included in our analysis 
(Figure 2). The clinicopathologic characteristics of the 
80 patients and 91 lung adenocarcinomas included in this 
study are summarized in Table 4.

Imaging and Analysis

All patients underwent CT examination using a 
dual-source CT scanner (Somatom Definition Flash; 
Siemens Healthcare, Forchheim, Germany) with the dual-
energy technique. The overview of dual-energy imaging 
is described in Figure 3. Three types of data set were 
generated from the DECT scanning: 80 kV, 140 kV, and 
enhanced weighted-average images. Further details of 
image parameters are described in the Supplement. PET/
CT images were acquired using a Discovery STe scanner 
(GE Healthcare, Milwaukee, WI). Unenhanced CT was 
performed with 16-slice helical CT (140 keV, section 

width of 3.75 mm, 30–170 mA in AutomA mode) at 1 h 
after injection of 18F-FDG (5.0 MBq/kg) and emission 
scan was performed at 2.5 min per frame in 3D mode. PET 
images were reconstructed using a 3D ordered subsets 
expectation-maximization algorithm (voxel size, 3.9 × 3.9 
× 3.3 mm3). The standardized uptake value (SUV) was 
calculated by correcting for the injected dose of 18F-FDG 
and body weight. Virtual non-enhanced images and iodine-
enhanced images were generated using the liver Virtual 
Non-Contrast (VNC) application mode of dedicated dual-
energy post-processing software (Syngo Dual Energy; 
Siemens Medical Solutions, Forchheim, Germany). To 
obtain the iodine value of both the solid and ground-glass 
opacity (GGO) component in each tumor, postprocessing 
was performed with two different types of software. Image 
data were reconstructed with a section thickness of 1 mm 
using a D30f (medium smooth) kernel for the iodine-
enhanced image and a D45f (medium sharp) kernel for 
the virtual non-enhanced image.

CT scans were assessed for the type of nodule 
in terms of GGO nodule (GGN), part-solid nodule, or 
solid nodule. Nodule size in both the lung setting and 
mediastinal setting was evaluated manually.

The stability of various quantitative CT features 
with intra-observer reliability was evaluated through 
calculation of intra-class correlation coefficients (ICC) 
in 25 randomly selected patients [35]. The concordance 
correlation coefficient (CCC) was calculated for each 
feature using this test-retest image set. Features whose 
CCC is less than 0.8 were not considered reproducible 
and were excluded from our analysis. For nodule 
segmentation, tumors were segmented independently 
by two chest radiologists who were unaware of clinical 
and pathologic results by drawing a region of interest 
(ROI) covering as large an area of the whole tumor as 
possible. Quantitative CT analysis was performed based 
on physical, histogram-based, regional, and local features 
from the manually derived ROI. Histogram analysis was 
performed for assessment of tumor volume, tumor mass, 
density, skewness, kurtosis, and CT attenuation values 
at the 75th and 97.5th percentiles of Hounsfield units 
(HU). Texture parameters of uniformity, entropy, intensity 
variability, and size zone variability were also evaluated 
[36]. These CT parameters were evaluated on both non-
contrast images and iodine contrast images.

Overall, the parameters analyzed include global 
parameters of solidity, size, volume, density, and mass 
of the tumor on CT, maximum standardized uptake value 
(SUVmax) on PET/CT, and all parameters obtained 
through histogram and texture analysis. We differentiated 
the CT parameters of the iodine map from those of non-
contrast images by adding a lowercase “i” as a prefix. 
Gradient values of the CT parameters were also obtained, 
which represent the difference of the values obtained from 
non-contrast images and from the iodine map. These are 
indicated by the prefix “g”.
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Pathologic evaluation

Each resected specimen (the entire tumor) was 
evaluated with standard pathologic methods as described 
in the surgical pathologic dissection manual of the 

Department of Pathology. All resected specimens were 
designated R0 (no residual tumor at the primary tumor 
site after surgical resection). For tumor sampling, an 
approximately 10-mm sample of tumor tissue from the 
entire tumor specimen was placed on a slide. All slides 

Table 4: Clinicopathologic characteristics of early-stage lung adenocarcinoma (91 tumors of 80 patients)
Characteristics Number of patients/nodules

Gender (%)

  Male 37 (46)

  Female 43 (54)

Median age (y) 58 (35–76)*

Smoking habits (%)

  Non-smoker 50 (63)

  Current/former smoker 30 (37)

Type of operation†

  Segmentectomy 27 (30)

  Lobectomy 64 (70)

p-T status†

  ≤ 2 cm 53 (58)

  >2 cm 38 (42)

p-N status

  N0 87 (96)

  N1 4 (4)

Histopathology†

  AIS 4 (5)

  MIA 11 (12)

  Invasive adenocarcinoma 76 (83)

   Lepidic predominant 5 (7)

   Acinar/Papillary predominant 64 (84)

   Micropapillary/Solid predominant 7 (9)

Pathologic stage

  1A 72 (58)

  1B 15 (21)

  2A 3 (19)

  2B 1 (2)

Note. Unless otherwise indicated, data in parentheses are percentages. 
AIS = adenocarcinoma in situ, MIA = minimally invasive adenocarcinoma.
*Data in parentheses are the range.
†Data are numbers of tumors (n = 91).
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were scanned to produce a high-quality resolution digital 
image (0.25 lm/pixel at 40Å) using the Aperio Slide 
Scanning System (ScanScope T3; Aperio Technologies 
Inc., Vista, CA, USA). Two lung pathologists interpreted 
all tissue sections from virtual slides using ImageScope 
viewing software (Aperio Technologies, Inc.) and a high-
resolution monitor [37]. For each case, the specimens 
were reviewed according to International Association for 
the Study of Lung Cancer (IASLC)/American Thoracic 
Society (ATS)/European Respiratory Society (ERS) 
International Multidisciplinary Lung Adenocarcinoma 
Classification criteria [38] and staged according to the 
seventh edition of the TNM classification for lung cancer. 
Comprehensive histologic subtyping was performed for 
the primary tumor in a semi-quantitative manner to the 
nearest 5% level, adding up to a total of 100% subtype 
components per tumor. The extent of the invasive 
component and tumor cellularity was measured and the 
most predominant subtype was recorded (Figure 4). When 
evaluating the predominant pattern, the central fibrosis 
area and its extent were disregarded. Next, the tumors 
were graded into 3 groups. Grade 1 included histologic 
subtypes of adenocarcinoma in situ (AIS), minimally 
invasive adenocarcinoma (MIA), and the lepidic pattern 
of invasive adenocarcinoma. Grade 2 corresponded to 

tumors that mainly showed acinar or papillary patterns 
and grade 3 corresponded to tumors that mainly showed 
micropapillary or solid patterns [21, 24, 26].

Statistical analysis

Patient demographics and CT radiomics parameters 
were compared among the three different pathologic 
grades using one-way ANOVA with post hoc test of 
Bonferroni. A multinomial logistic regression model 
with the stepwise variable selection procedure using 
a 2-sided alpha of 5% as insertion and deletion criteria 
was used to predict three grades. In terms of variables 
for multivariate analysis, multicollinearity examination 
by using the variance inflation factor (VIF) was also 
performed. As for multiple nodules in a patient, we did not 
take into account within-patient correlation because each 
of them was considered as an independent synchronous 
lesion [39]. To evaluate the accuracy of the prediction of 
pathologic grade, we used leave-one-out cross-validation 
(CV) procedure and we constructed ROC curves plotting 
sensitivity versus 1-specificity, and calculated the area 
under the ROC curve (AUC), a measure of predictive 
power. Statistical analyses were performed using SAS 
version 9.4 (SAS Institute, Cary, NC, USA) and R 3.0.3 

Figure 2: Flow chart of the study population. ADC = adenocarcinoma.
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Figure 3: Overview of dual-energy imaging. (A) Diagram of three-material decomposition of voxel used by dual-energy software. 
(a), (b), (c), and (d) are fixed points of CT attenuation values from two different energies for air, fat, soft tissue, and iodine. Intercept x or 
y along iodine axis represents iodine content of voxel on this two-energy plot. (x) is the degree of enhancement of ground glass opacity 
nodule, whereas (y) is the degree of enhancement of solid nodule. (B) Three types of data sets were generated from the DECT scanning: 
the 80 kV, 140 kV, and enhanced weighted-average images. The weighted-average images were generated by combining the 140-kV and 
80-kV data sets with a weighting factor of 0.6 (60% of the information derived from the 80 kV image and 40% derived from the 140 kV 
image) and these were approximately 120 kV images. The virtual non-enhanced images and iodine-enhanced images were made by using 
the liver Virtual Non- Contrast (VNC) application mode of dedicated dual-energy postprocessing software (Syngo Dual Energy; Siemens 
Medical Solutions, Forchheim, Germany).
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(Vienna, Austria; http://www.R-project.org). A P value 
less than 0.05 was considered to indicate a statistically 
significant difference.

The sample size calculation was based on the 
previous study by Sica et al. entitled “A Grading System 
of Lung Adenocarcinomas Based on Histologic Pattern is 
Predictive of Disease Recurrence in Stage I Tumors [24]. 
According to that report, the accuracy of finally selected 

grading system for concordance probability estimate 
was 0.65 (95% confidence interval 0.57–0.73) (p). The 
necessary sample size was calculated as follows: N = 
4(Zcrit)2p(1- p)/D2, with a 90 % confidence interval (CI) 
of ± 10% (ie, Zcrit = 1.960) and where D = total width 
of the expected CI, that is, 0.20. Under these conditions, 
Power analysis indicated that a minimum sample size of 
70 patients with lung adenocarcinoma.

Figure 4: Lung adenocarcinoma in a 76-year-old woman. (A) Photomicrograph shows internal scar tissue (*), surrounding areas 
of acinar and papillary (#) adenocarcinoma patterns, and lepidic pattern (arrows) (hematoxylin-eosin stain; original magnification, x10).  
(B) Schematic of tumor components shows estimated percentages of grade 1 (yellow area, 5%), grade 2 (blue area, 60%), grade 3 (green 
area, 5%), and central fibrosis (red area, 15%).
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Abbreviations

AIS = Adenocarcinoma in situ; AUC = Area 
under the receiver operating characteristic curve; CT = 
Computed tomography; DECT = Dual-energy computed 
tomography; FDG = Fluorodeoxyglucose; GGN = 
Ground-glass opacity nodule; GGO = Ground-glass 
opacity; HU = Hounsfield unit; MIA = Minimally invasive 
adenocarcinoma; NSCLC = Non-small cell lung cancer; 
PET = Positron emission tomography; ROC= Receiver 
operating characteristic; ROI = Region of interest; 
SUVmax = Maximum standardized uptake value; VNC = 
Virtual non-contrast.
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