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ct

irus disease (COVID-19) is caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and
millions worldwide. SARS-CoV-2 spike protein uses Angiotensin-converting enzyme 2 (ACE2) and Transme

erine protease 2 (TMPRSS2) for entering and fusing the host cell membrane. However, interaction with sp
receptors and protease processing are not the only factors determining coronaviruses’ entry. Several protea
the entry of SARS-CoV-2 virus into the host cell. Identifying receptor factors helps understand tropism, tra

, and pathogenesis of COVID-19 infection in humans. The paper aims to identify novel viral receptor or membra
that are transcriptionally and biologically similar to ACE2 and TMPRSS2 through a fuzzy clustering techniq

ploys the Grey wolf optimizer (GWO) algorithm for finding the optimal cluster center. The exploratory and
on capability of GWO algorithm is improved by hybridizing mutation and crossover operators of the evolution
m. Also, the genetic diversity of the grey wolf population is enhanced by eliminating weak individuals from
ion. The proposed clustering algorithm’s effectiveness is shown by detecting novel viral receptors and membra
associated with the pathogenesis of SARS-CoV-2 infection. The expression profiles of ACE2 protein and

tor factor are analyzed and compared with single-cell transcriptomics profiling using the Seurat R toolkit, m
metry (MS), and immunohistochemistry (IHC). Our advanced clustering method infers that cell that expres
E2 level are more affected by SARS-CoV-infection. So, SARS-CoV-2 virus affects lung, intestine, testis, hea
and liver more severely than brain, bone marrow, skin, spleen, etc.
have identified 58 novel viral receptors and 816 membrane proteins, and their role in the pathogenicity mechani
S-CoV-2 infection has been studied. Besides, our study confirmed that Neuropilins (NRP1), G protein-coup
r 78 (GPR78), C-type lectin domain family 4 member M (CLEC4M), Kringle containing transmembrane p
KREMEN1), Asialoglycoprotein receptor 1 (ASGR1), A Disintegrin and metalloprotease 17 (ADAM17), Fur
lin-1 (NRG1), Basigin or CD147 and Poliovirus receptor (PVR) are the potential co-receptors of SARS-CoV

significant finding is that heparin derivative glycosaminoglycans could block the replication of SARS-CoV
side the host cytoplasm. The membrane protein N-Deacetylase/N-Sulfotransferase-2 (NDST2), Extostosin p
XT1, EXT2, and EXT3), Glucuronic acid epimerase (GLCE), and Xylosyltransferase I, II (XYLT1, XYLT
ct as the therapeutic target for inhibiting the spread of SARS-CoV-2 infection. Drugs such as carboplatin a
bine are effective in such situations.

ds: Single cell RNA sequencing data, Clustering, COVID-19, SARS-CoV-2, ACE2, TMPRSS2, Fuzzy
ng, Grey wolf optimizer, Differential evolution algorithm, Evolution population dynamics

oduction

naviruses (CoVs) are highly diverse groups of sin-
nded RNA (ssRNA) viruses. Seven variants of
coronaviruses have been reported till now. They
an coronavirus variant such as alpha coronavirus
alpha coronavirus (NL63), beta coronavirus (OC43)
a coronavirus (HKU1). The other human coron-
are Middle east respiratory syndrome (MERS),

cute respiratory syndrome (SARS), and the novel
irus or COVID-19 (SARS-CoV-2). Human CoVs
mmon cold and respiratory illnesses. However, in

early 2000, SARS and MERS CoVs were identified. SA
coronavirus was first identified in 2003 and infected 80
people with a fatality case of 9.6 %. More recently,
2004, MERS CoVs had infected 2,519 people, and the
tality rate was 34.3 %. People infected with SARS vi
and MERS virus usually suffer from fever, chill, headac
muscle ache, and diarrhea. More severe cases cause a
vere respiratory syndrome that reduces lung function
ity, increases the risk of atrial fibrillation, and even dea
A novel strain of coronavirus known as SARS-CoV-2 w
identified in Wuhan city, China, in December 2019. SAR
CoV-2 has infected more than 280 million people and

submitted to Elsevier
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ty rate of 5.41 %. Although the fatality rate of
oV-2 is far less than that of MERS and SARS
iruses, its transmission and severity are very high,
it difficult to curb the disease.
cturally, SARS-CoV-2 is composed of spike (S)
otein, envelope (E) glycoprotein, membrane (M),
cleocapsid (N). The S glycoprotein is present on
er surface of the viral particle and is composed of
o terminal S1 subunit and a carboxyl-terminal S2
. The S1 subunit binds the virus into a host cell,

S2 subunit attaches the virus to the cell mem-
The S1 subunit splits into a receptor-binding do-
BD) and an N-terminal domain (NTD). The RBD

o the host receptor protein ACE2 [1] and initi-
ction in the host cell. Hoffmann et al. [2] show
RS-CoV-2 required ACE2 protein for binding to

e protein, and TMPRSS2 protease cleaves the S2
of the spike protein. Besides this receptor factor,
oV-2 also depends on some other receptor factor

brane protein to initiate an infection to the host cell
erefore, it is necessary to identify the viral recep-
ein and membrane protein that allows the binding
ry of SARS-CoV-2 and causes COVID-19 infection
ost cell. It will help better understand COVID-
se and the development of novel therapeutics and
instead of experimental therapies and drug repos-

arly 2020, Gordon et al. identified the human pro-
eracting with SARS-CoV-2 protein using affinity-
tion mass spectrometry (AP-MS) [3]. They study
oV-2 protein and human protein interaction in the
human embryonic kidney (HEK) 293 cells. The
entified 332 human proteins associated with pro-

fficking, transcription, translation, and ubiquitina-
he work provides insight into the pathway caus-
S-CoV-2 infection and predicts the possible drug
Refs. [4, 5, 6] also applied the MS proteomics

h to study the interaction between SARS-CoV-2
and human protein. The virus protein-host pro-

eraction helps to reveal the pathogenesis pathway
ARS-CoV-2 viral protein and provides a strategy to
or a novel antiviral treatment by targeting the host
[3, 4, 5]. However, it is observed that the experi-
design for the viral protein-host protein interaction
does not provide the functioning and environment
in processing, accessory protein, etc. Therefore,
ent pathway analysis, validation process, and bio-
unctioning of the predicted SARS-CoV-2 viral pro-
host protein interaction are needed to confirm the

nesis pathway of COVID-19 disease and explore
ural and functional significance [4].
erous researchers have investigated the pathogen-
OVID-19 transmission by surveying the gene ex-
pattern of host receptors associated with SARS-
rotein using transcriptomics profiling of single-cell
quencing (scRNA-Seq) technology [1, 7, 8, 9, 10,
e scRNA-Seq technology provides the method to

understand the cellular, biological and molecular proc
of SARS-CoV-2 infection from the expression pattern
genes on various human cells. Some studies pointed
that SARS-CoV-2 requires other receptors to infect s
cific types of human cells. Like other human coronavi
and SARS coronavirus, SARS-CoV-2 utilize multiple
ral receptor factor such as CD209 [12], CLEC4G [1
CLEC4M [14], etc to enter the host cell. The prote
cathepsins (CTSL/M) [15] and FURIN [16] cleave
spike protein of SARS-CoV-2 virus [8]. To the best of
knowledge, no previous study had identified the SAR
CoV-2 viral entry-associated gene and examined the
pression pattern of these viral receptor factors or me
brane proteins using machine learning techniques. To
noted, Furong et al. demonstrate that ANPEP, ENPE
and DPP4 exhibit similar expression profiles with AC
using hierarchical clustering and correlation coefficient
The research provides a foundation for utilizing other
supervised clustering approaches to identify the pot
tial co-receptor showing similar expression patterns w
ACE2 and TMPRSS2.

The current paper attempts to organize a group
genes (i.e., membrane protein or ssRNA viral protein) w
a similar expression pattern to ACE2 and TMPRSS2 p
tein utilizing the fuzzy clustering technique. At the end
the fuzzy clustering technique, an improved metaheu
tic algorithm (GWO) is implemented to find the optim
cluster center in the search space with less computatio
time [17, 18]. Several classical metaheuristic algorith
have been implemented to solve real-life clustering. B
the problem with the classical approaches is that it g
trapped at local minima without giving the best soluti
So efforts should always lie in applying a modified vers
of the classical metaheuristic algorithm when adapting
a real-life domain. This work develops an improved GW
algorithm by hybridizing the mutation and crossover
erator of the Differential evolution (DE) algorithm [1
Later, the worst search agent from the population is
moved, and its position is reinitialized around the b
search agent. It is observed that the improved GWO al
rithm balanced the exploratory and exploitative stage
the classical GWO algorithm and performed a local sea
around the best solution vector [20].

The advantage of the fuzzy clustering technique is
ability to associate a gene showing more than one type
co-regulation into multiple clusters. It helps monitor
expression level of thousands of genes at a time [21].
the fuzzy clustering technique, a gene point is associa
with every other cluster with a membership function. T
membership function measures the degree to which a g
point relates to a cluster group. The higher the memb
ship value, a gene point is associated more strongly w
a cluster. It gives the expressive level of a gene point i
cluster [21, 22]. For example, the expression pattern vec
of ACE2 in the upper respiratory tract is [0.3796, 0.0
0.091, 0.489], ACE2 is expressed with 37.96 % in the n
ciliated secretory cell, 6.7 % in the basal cell, 9.1 % in

3
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ell, and 48.9 % in the ciliated cell. Thus, ACE2 is
xpressed in the ciliated cell and is the primary site
S-CoV-2 infection.
then identify a gene group that shares similar gene
ion patterns with ACE2 and TMPRSS2. The study
ully predicts 58 ssRNA viral and 816 membrane
(or genes) significantly co-expressed with SARS-

receptor protein (ACE2 and TMPRSS2). Finally,
dicted viral and membrane protein are analyzed
ein-protein interaction (PPI) network, Gene On-
GO) terms, and Kyoto Encyclopedia of Genes and
s (KEGG) pathways. The analysis help under-
e biological functioning of these predicted proteins
in the pathogenesis of SARS-CoV-2 infection.

rrent Existing work

arly 2020, many studies identified human proteins
RS-CoV-2 protein interaction using AP-MS, BioID,

approaches, etc.[3, 4, 5, 6]. Such studies have an-
the interaction between SARS-CoV-2 protein and
protein using PPIs network [1, 3, 23]. In Ref. [23]
computationally analyze the interaction of SARS-

viral protein and human protein in HEK 293 cells
ify the processes affected by the SARS-CoV-2 in-
The authors implement the GoNet algorithm to

ne human proteins and SARS-CoV-2 protein in-
n. The GONet algorithm detects the GO term of
clustered in the STRING-extended PPI network.
r, the problem with this algorithm is that it can re-
ignificantly large amount of overlapping GO terms
ght be difficult to interpret the functionality of the
sets.
rent machine learning algorithms have been inves-
in mid-2020 to study the pathogenesis of COVID-
se. Recently there has been a surge in research
ify the viral co-receptors and human protein inter-
ith SARS-CoV-2 protein using the unsupervised

ng approach. In Ref. [7], Furong et al. analyzed
xpression pattern of 51 RNA viral receptors and

mbrane proteins. Through hierarchical clustering,
er observed that the peptidases ANPEP, DPP4
PEP show similar expression patterns with ACE2

To further analyze the co-expression relation-
earson correlation coefficient (PCC) is calculated

ACE2 protein with all the viral receptors and
ne protein. Furong et al. confirmed that ANPEP,

and ENPEP could act as candidate receptors for
COVID-19 infection. But apart from the pep-
glutamine, leucine, asparagine, amino acid, and

lanine also facilitate the binding of SARS-CoV-2
otein to ACE2 protein receptor and membrane pro-
diates the entry of enveloped virus on the host cell
]. The above observation suggests that other co-

r factors might also mediate and restrict the entry
S-CoV-2 host receptors and must be identified to
an effective combination of drugs.

Manvendra et al. [8] initially created a list of 28 h
receptors associated with coronavirus infection from
scRNA-Seq data of various human tissues. The auth
then study the expression level of these host receptors
predict the subset of cells or tissue vulnerable to SAR
CoV-2 infection. The scRNA-Seq gene expression m
trix analysis is performed using an unsupervised clust
ing approach (Seurat package implemented in R envir
ment). Cell type identification is performed using the
fault ”Findclusters” function implemented in the Seu
R package. The study concludes that SARS-CoV-2 inf
tion affects the heart, lung, kidney, central nervous s
tem, liver, gastrointestinal tract, etc. The paper does
clearly state the factors considering the SARS-CoV-2
potential receptor factors.

Similarly, Zou et al. [11, 25] used the default ”Fi
clusters” function implemented in the Seurat R package
identify different cell types. The expression distribut
of ACE2 across different cell types of human organo
is evaluated, and the organs vulnerable to SARS-CoV
infection are placed according to ACE2 expression lev
However, there is still a discordant report on consider
ACE2 expression range in some tissue to determine
organ at high risk and low risk for SARS-CoV-2 infecti
Other studies determine ACE2 expression levels to find
organs or cell types vulnerable to SARS-CoV-2 infecti
The higher the ACE2 expression level, the more vulne
ble the organ to SARS-CoV-2 infection. However, sev
COVID-19 illness in immunocompromised patients mi
result from increased ACE2 expression levels or the
derlying health condition. This fact is still unclear no
Sungnak et al. analyzed the expression level or patterns
ACE2, TMPRSS2, and other associated viral receptor p
teins used by coronaviruses and influenza viruses [9]. T
standard clustering tool Scanpy (implemented in Pyth
is used to identify cell types [26].

Current studies commonly use Seurat [27] and Scan
[26] package to identify cell type from the single-cell tr
scriptome data. Seurat and Scanpy, by default, implem
a graph-based clustering approach with an optimization
gorithm to organize transcriptionally similar cells. Mar
genes in each cell cluster are determined using logistic
gression. The cell cluster is assigned manually based
the knowledge of the previous cell type marker gene. Ho
ever, the main drawback to this approach is that the
tained cluster number depends on a resolution parame
assigned by the user. A high-resolution value genera
more clusters, and a less resolution value produces few
clusters. Thus, it may not reflect the correct cell type.

1.2. Motivation

The main factors that inspired us to develop an
supervised fuzzy clustering approach utilizing the GW
algorithm are described as follows:

• The hierarchical clustering algorithm tends to fo
crisp clusters that are not appropriate for some scR

4
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q datasets. Integration of the ’fuzziness’ concept
the clustering algorithm eliminates the challenges

ten created by extensive dimensional scRNA-seq
ta. It allows the cluster to grow in its natural
ructure and form.

etection of correct cluster number from single-cell
anscriptome data remains challenging. It has moti-
ted us to develop a novel unsupervised fuzzy clus-
ring technique utilizing the GWO algorithm to find
e optimal cluster number from scRNA-Seq data.

me authors implement the GoNet algorithm to
udy SARS-CoV-2 protein and human protein inter-
tion. But GoNet algorithm returns a large number
similar clustered GO terms. But in addition to the

ustering, we also need to learn the expression level
a gene in each cluster group.

ll the previous methods do not explicitly justify
w the expression level of ACE2 protein is deter-
ined or calculated. The current work finds the
pression level of each gene point using the fuzzy
ustering technique.

me previous work created an initial gene list of the
st receptors from the published articles and used it
their work. The reason for considering the recep-

r factors in analyzing the co-expression level with
CE2 protein is still unclear. The current paper at-
mpts to identify novel receptor factors required for
using SARS-CoV-2 infection. This receptor fac-
r might not have been reported in the published
ticles.

y Contribution

key contributions of the current paper are summa-
follows:

he paper proposes an unsupervised fuzzy clustering
ith an optimization algorithm to analyze single-cell
anscriptomes data. The primary purpose of the
zzy clustering technique is to associate genes to
ultiple clusters to study the regulatory relationship
tween the genes. Through this, genes that regulate
rious signaling pathways in the pathogenicity of
RS-CoV-2 infection can be identified.

he fuzzy clustering technique determines the ex-
ession level of a gene point associated with a mul-

ple cluster group. In the fuzzy clustering algorithm,
ch gene is related to every cluster by a member-
ip function. The membership function expresses
e strength a gene point is associated with a cluster
oup. This help finds the expression level of ACE2
otein and its co-receptor genes.

comparative analysis of ACE2 expression profiles
conducted with the proposed clustering method

and MS, single-cell transcriptomics profiling, and I
munohistochemistry (IHC) experiment. A sim
kind of inference established by the previous exp
ment is observed in this work. A cell or tissue w
high ACE2 expression is more affected by SAR
CoV-2 infection than a cell with less ACE2 expr
sion. It is observed that the lung, kidney, tes
heart, upper respiratory tract, and gastrointesti
tract are more affected than the brain, bone m
row, spleen, and skin organoids.

• During India’s second wave of COVID-19 infecti
children developed a better immune response agai
SARS-CoV-2 infection than adults. So, children
perience much mild symptoms and are less affec
by SARS-CoV-2 disease. In children’s nasophar
geal samples, expression of progenitor Fc Recept
Like 6 (FCRL6) is detected in the B cell. The
cell differentiates during early fetal development a
produces ”natural” antibodies to neutralize the
vading pathogens in children. SLAMF1 positiv
regulate the pathway of B-1 cell to make spec
antigen against the SARS-CoV-2 virus.

• The article establishes that SARS-CoV-2 virus
quires a clathrin-dependent endocytosis process
insert the viral particle into the host cell membra
SARS-CoV-2 virus penetrates through the endocy
membrane of the host cell to establish an infecti
It is observed that the membrane proteins AP2A
APLP1, DNM2, EPS15, EPN1, EPN2, LDLR, LY
MRC2, SNX5 mediate the clathrin-dependent
docytosis process in SARS-CoV-2 infection. Th
membrane proteins formed clathrin-coated pits
the host cell’s cytoplasmic membrane. The roles
these membrane proteins in SARS-CoV-2 pathog
esis can be investigated in the future to find antiv
treatment.

2. Dataset

2.1. Data sources

The publicly available scRNA-Seq data of various
man tissue are downloaded from Gene expression omnib
(GEO) (https://www.ncbi.nlm.nih.gov/geo/). The g
expression matrices of human tissue such as brain, ad
and child nasopharyngeal count matrices, lung, upper r
piratory tract, liver, heart, kidney, stomach, ileum, r
tum, colon, human pancreas, adult testis, skin, spleen, a
bone marrow are collected. The GEO accession No. a
source of each scRNA-Seq data are provided in Table 1

Adult and children’s upper airway transcriptional p
files are acquired as GEO accession no. GSE179277 [2
The children’s nasopharyngeal gene expression data c
tains 38 samples with SARS-CoV-2, 11 samples are fr
other respiratory viruses, and 34 have no virus. The ad
nasopharyngeal gene expression data contains 45 samp

5
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RS-CoV-2, 28 samples of other respiratory viruses,
amples containing no virus. The upper respiratory
obtained as GEO accession no. GSE154564 [29].
ression matrices of lung (GSE130148) tissue are

d from four patients who died of lung parenchy-
or [30]. Five samples of hepatic (or liver) donors

uired under GSE115469 [31]. Healthy samples of
an heart are obtained as GSE106118 [32]. Sam-
uman pancreatic islets are collected from four hu-
nors and acquired as GSE84133 [33]. The adult
ar samples are collected from three healthy men
ductive age and acquired under GSE112013 [34].
tritis samples are collected from GSE134520 [35].

ial cells of human ileum, colon and rectum are col-
nder GSE125970 [32]. Three samples of kidneys

ained from healthy donors under GSE131685 [36].
in samples are acquired from GSE119562 [37]. Six
of spleen cells are acquired under GSE119562 [38].

s of human bone marrow donor cells are acquired
SE119562 [39]. The expression matrix of human
e acquired under GSE67835 [40].

Summary of single-cell RNA sequencing data used in this

issue GEO Accession No. DOI

dult and child nasopharynx GSE179277 10.1101/2021.07.15.21260285
pper respiratory tract GSE154564 10.1016/S2213-2600(20)30193-4
ung GSE130148 10.1038/s41591-019-0468-5
iver GSE115469 10.1038/s41467-018-06318-7
eart GSE106118 10.1038/s41556-019-0446-7
ancreas GSE84133 10.1016/j.cels.2016.08.011
estis GSE112013 10.1038/s41422-018-0099-2
tomach GSE134520 10.1016/j.celrep.2020.03.020
leum GSE125970 10.1084/jem.20191130
olon GSE116222 10.1038/s41586-019-0992-y
ectum GSE125970 10.1084/jem.20191130
idney GSE131685 10.1038/s41597-019-0351-8
kin GSE132802 10.1038/s41591-019-0733-7
pleen GSE119562 10.1186/s13059-019-1906-x
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taset preprocessing and analysis

gene expression matrices of various human tissue
ed from scRNA-Seq technology are considered for
eriment. The expression count matrix is of size,
d, where i = 1, 2, 3, .....n and j = 1, 2, 3....d. Each

resents a gene point, and the column corresponds
l or sample. The expression count matrix E(i, j)
he number of RNA molecules detected within a
in each gene. It records the feature count of every
each sample of the expression count matrix.
following steps are executed to process the scRNA-
a and are summarized as follows:

ell filtering and quality control: Low-quality cells,
ublets, or multiple cells are filtered out. Firstly,
l rows and columns with zero feature count are
moved. The cell with a unique feature count of
er 2500 or less than 200 is removed.

ormalization: The normalization process normal-
es the feature expression count of each cell by the

total expression count. It then multiplies the n
malized value by a scale factor (10,000 default), a
each feature count is transformed by applying log

• Feature selection: The following steps are execu
to select variables subset of feature and summari
as follows:

– Initially, the mean and variance are calcula
for each gene from the normalized count matr

– A curve is then fitted to predict the variance
each gene (i.e., independent variable) as a fu
tion of its mean (dependent variable). The
gives the regularized estimate of variance giv
the mean of its feature.

– Given the expected variances, the following t
formation is applied to standardize each feat
count. The transformation is described as:

Zkj =
xkj − xk

σk

Where Zkj is the standardized value of a feat
k in a cell j, xkj is the raw value of a featur
in a cell j, xk is the mean of feature k, and σ
the standard deviation (or variance) of feat
i obtained from the mean-variance function.

– The standardized variance is computed for
genes (i.e., row) across each cell (i.e., colum
The feature is then ranked according to st
dardized variance value. A high standardi
variance value shows that the feature is hig
variable, and the top features are selected.

• Scaling: Scaling is a linear transformation techniq
applied before reducing the data dimension. It sh
and scales the expression count of each gene su
that the mean expression and variance across ea
cell is 0 and 1, respectively.

• Dimension reduction: The principal component an
ysis (PCA) algorithm is executed on the normali
expression count matrix to reduce data dimensi
The PCA algorithm transforms the large set of va
ables into a small group of variables, preserving
original information of the dataset.

Finally, the above preprocessing process transforms
high dimension scRNA-Seq data into a lower form su
able for applying the proposed clustering algorithm,
explained in the following section.

3. Proposed methodology

In this work, a variable-length solution vector acting
a search agent in a grey wolf population is implemented
detect the optimal clustering solution automatically. T
main objective of the proposed clustering approach is:
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imal cluster number and cluster center (3) Study
ression distribution pattern of each gene point to
her cluster at a time point.
igure. 1 (A), the detailed step of preprocessing
ression count matrix of scRNA-Seq data is out-
igure. 1(B) explains the stages of the proposed

ased improved GWO clustering algorithm graphi-
he downstream cluster analysis process and pre-

of host receptor for causing SARS-CoV-2 infection
n in Figure. 1(C).

out Grey wolf optimizer algorithm

O is a population-based meta-heuristic optimiza-
orithm that simulates the leadership and hunting
ism of grey wolves. The social hierarchy of the grey
pulation is classified into four groups. The domi-
lf in the pack is the alpha (α), followed by beta
ta (δ), and omega (ω) wolves. The main phase of

wolf hunting process is enumerated as follows:

ncircling: During this process, the grey wolves sur-
und the prey once its location is determined. The
circling operation of grey wolves is represented as:

~Dp = |~C · ~Xp(t)− ~X(t)| (2)

~X(t+ 1) = ~Xp(t)− ~A · ~Dp (3)

here ~Xp(t) and ~X(t) refer to the position of prey

d the wolves at current iteration t, ~Dp gives the
proximate distance between the target prey and
ey wolves. ~X(t+ 1) refers to the probable position
a grey wolf at the next iteration.

he coefficient vector ~A and ~C is defined as:

~A = 2 · ~a · ~r1 − ~a and ~C = 2 · ~r2 (4)

he component vector ~a decreases linearly from [2,0]

d ~a = 2 − 2 × (
Iteration

MaxIteration
). The component

ctor ~C contains a random value from the range
,2]. ~r1 and ~r1 are the vector generated randomly
om the range [0,1].

unting: In the hunting process of the GWO algo-
thm, it is assumed that α (best solution vector), β,
d δ have better knowledge of the location of the
rget prey. Therefore, the position of the best three
arch agent is saved and oblige the other search
ents (including ω) to update their position ran-
mly around α, β, and δ in each iteration. Math-
atically, the hunting operation of grey wolves is

hieved using the following Eqs. (5)-(10).

~Dα = | ~C1 · ~Xα(t)− ~X(t)| (5)

~Dβ = | ~C2 · ~Xβ − ~X(t)|
~Dδ = | ~C2 · ~Xβ − ~X(t)|

Eqs. (5)-(7) estimate the distance between the p
and α, β, δ search agent.

~X1 = ~Xα(t)− ~A1 · ( ~Dα)

~X2 = ~Xβ(t)− ~A2 · ( ~Dβ)

~X3 = ~Xδ(t)− ~A3 · ( ~Dδ) (

Eqs. (8)-(10) find the new position of α, β and
search agent.

~Xup(t+ 1) =
~X1 + ~X2 + ~X3

3
(

Eq. (11) define the final updated position of r
search agent.

• Attacking:

The grey wolves finish the hunting process by
tacking the prey. To mathematically simulate
exploitation phase of the grey wolf, the compon
vector ~a is decreased from 2 to 0. When |A|<1, g
wolves attack the prey (exploitation). But wh
|A|>1, grey wolves diverge from each other to fin

better target (exploration). The component ~C a
favors the exploration process. When C > 1,
grey wolf repeatedly attacks the prey, and C <
stops the attacking.

3.2. Proposed clustering algorithm

In the proposed clustering scheme, the GWO algorit
is assimilated with the evolutionary operators to bala
the exploratory and exploitation phases of the classi
GWO algorithm. The evolutionary search pattern of m
tation and crossover operators of the DE algorithm is in
grated into the classical GWO algorithm to avoid stag
tion at the local optima during the optimization proce
The evolutionary population dynamics (EPD) operat
is executed on the grey wolf population to eliminate
worst search agent for the next generation. The propo
clustering approach is referred to as fuzzy-based improv
GWO clustering algorithm in the paper.

The step adopted for fuzzy-based improved GWO cl
tering algorithm is explained below.

3.2.1. Population initialization and solution vector rep
sentation

Initially, the grey wolves population is composed o
search agent. Each search agent represent a solution vec
in the search space. Each solution vector Sl in initiali
with a set of distinct real numbers chosen randomly fr
the given dataset, where l = 1, 2, 3, ...., P . The solut
vector Sl encodes Ck number of possible cluster cent

8
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nimum and maximum value of Ck is 2 and Cmax,

max =
√
n and n is the total gene point in a given

. Now the possible number of Ck is obtained as:
and()mod(Cmax − 1)) + 2 where the rand() gives
m integer value. Therefore, the possible number of
center that can be encoded in a solution vector is

2 to Cmax.
a solution vector Sl encodes Ck cluster center in
ensional search space, then the length of each so-
ector is Ck × d. The first d position represent
ension of the first cluster centre, the next d posi-
resents the dimension of the second cluster cen-
so on. For example, in 4-d, a solution vector

8, 0.2, 0.4, 0.7, 0.8, 0.7, 0.1, 0.5, 0.7, 0.3, 0.6> encodes
ster center <0.9, 0.8, 0.2, 0.4>, <0.7, 0.8, 0.7, 0.1>
.5, 0.7, 0.3, 0.6> respectively.
r initializing each solution vector with a random
center, steps of the Fuzzy c-means (FCM) cluster-
rithm [22, 21] are executed so that the centers get
ed at the initial stage.

erforming steps of FCM algorithm

FCM algorithm aims to partition the dataset into
clusters. The fuzzy clustering algorithm opti-

he objective criteria and simultaneously updates
bership value and cluster centers of a gene point

ed with a cluster [22, 21].
pose there are n finite gene point in a dataset X,
x1, x2, x3, ....xn} and xi = {xi1, xi2, .......xid} be
e point in d-dimension, where i = 1, 2, ....n. xij
ts the jth feature value of ith gene point, where

2, ..., d. Let C = {C1, C2, C3, ......., CC} denotes
of C fuzzy clusters and V = {v1, v2, v3, ......., vC}
e set of C cluster centers in d-dimension i.e, vj =
, vj3, ......vjd}. Suppose uij gives the membership

f a gene point xi in cluster j and d(xi, vj) gives
lidean distance between the ith gene point and jth

center.
FCM algorithm is composed of the following steps
escribed as follows:

he initial fuzzy membership matrix, U (0) = [uij ]
initialized according to the degree of membership
nstraint

t the current step t, cluster center is calculated,
(t) = [v1, v2, ...., vc] with the membership matrix
(t) according to the Eq. (12):

vj =

∑n
i=1 u

m
ijxi∑n

i=1 u
m
ij

(12)

he fuzzy membership matrix U (t+1) is then up-
ted using Eq. (13):

uij =
1

∑C
k=1(

d(xi, vj)

d(xi, vk)
)

2
(m−1)

, 1 ≤ k ≤ C,m = 2

(

4. If | U t+1
m − U tm | < ξ then FCM algorithm termin

successfully otherwise it return from step (2). He
the terminating criteria ξ = 0.01.

3.2.3. Computation of objective function

The fuzzy-based improved GWO clustering algorit
simultaneously minimizes the cluster validity indexes, na
the J measure (Jm) and Xie-Beni (XB) index. The obj
tive functions are described as follows:

• J measure:

Jm measure [21] gives the variance within the clust
It is defined as:

Jm =
n∑

i=1

C∑

k=1

umki × d2(xi, vk),m = 2 (

d(xi, vk) gives the Euclidean distance of ith d
point from kth cluster center. A low value of
measure results in a compact cluster. Thus fuz
based improved GWO clustering algorithm aims
minimize the Jm measure.

• XB index :

XB index [41] is the ratio of fuzzy compaction to
cluster separation.

XB index =

∑C
k=1

∑n
i=1(umki × d2(xi, vk))

n×minCi,k=1(‖ vi − vj ‖2)
(

The goal of the XB objective function is to minim
the numerator (i.e., compactness of fuzzy partiti
and maximize the separation between the cluste
Thus, the fuzzy-based improved GWO clustering
gorithm tries to minimize the XB index.

3.2.4. GWO algorithm with evolutionary operators

This subsection discusses how the GWO algorithm
incorporated with mutation and crossover operators of
DE algorithm. The main reason for choosing the DE
gorithm is because it is easy to transform the continu
problem structure of the GWO algorithm into a com
natorial problem. Incorporating mutation and crosso
operators in the GWO algorithm balances the explorat
and exploitative search mechanism. In turn, the hybridi
tion process will produce a more stable recombinant
spring between different hierarchies or levels of the g
wolves. A detailed description of the process of hybridiz
the mutation and crossover operators of the DE algorit
with the GWO algorithm is explained below:

9
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utation operation: In the DE process, a mutant
ctor Ml is created for every solution vector in the
pulation. The mutant vector is obtained by tak-
g the difference between any two parent or solu-
on vectors and multiplying it with a scaling factor
. The resulting term is then added to another third
lution vector. The mutant vector of DE is gener-
ed using the following equation:

M t+1
l = Str3 + F ∗ (Str1 − Str2) (16)

here r1, r2, r3 express the index number in the
ope [1, 2, 3, ....P ] from the current solution vector
dex l and l 6= r1 6= r2 6= r3 . F ∈ [0,1] control the
aling of the two differential vector and M t+1

l is the
utant vector produced at next (t+ 1) iteration.

the mutation process of the fuzzy-based improved
WO algorithm, β and δ wolves are chosen as the
o target parents and combined with α wolves to
troduce variation in the population. So the muta-
on process is achieved using the following equation:

M t+1
l = Stα + F ∗ (Stβ − Stδ) (17)

he variation factor F balances the exploration and
ploitation process of the improved GWO algorithm.
he variation factor F is defined as:

F = fmin + (fmax − fmin)× Tmax − (t− 1)

Tmax
(18)

here fmin and fmax represent the minimum and
aximum value of the scaling factor, F. Tmax and t
notes the maximum iteration and current iteration
the fuzzy-based improved GWO algorithm.

om Eq. (18), it is observed that F is large in the
ginning stage of the improved GWO algorithm. It
hances the exploration capability of the GWO al-
rithm, thereby preventing it from falling into the
cal optima. As the improved algorithm continues
iterate, the variation factor F decreases to improve
e exploitation ability and prevent premature con-
rgence.

rossover operation: The crossover operation aims
introduce diversity in the population. The crossover
eration is performed with the mutant offspring
t+1
l and current search agent to generate a recom-
nant search agent U t+1

l . For the crossover opera-
on to achieve, the crossover probability factor (CR)
termines the index whose value should be copied

om the mutant offspring or current search agent.

The crossover operation is achieved using the follo
ing equation:

U
(t+1)
lj =





if rand(0, 1) ≤ CR or j = rand(i)

M
(t+1)
lj

if rand(0, 1)>CR and j 6= rand(i)

S
(t)
lj

(

Where l ∈ 1, 2, 3, ...., P and j ∈ 1, 2, 3....., d. T
rand(0, 1) function generates a uniform random nu
ber from the range [0,1], CR gives the crossover or
combination probability from the range of [0, 1] a
rand(i) returns any index from the range [1, 2, 3, ..

S
(t)
lj gives the real value present at the jth index
′l′ current search agent.

From Eq. (19), it is observed that if CR value
large, the mutant offspring contribute more to
generation of recombinant search agent. When CR

1, U
(t+1)
l = M

(t+1)
l but if CR ≤ 1, current sea

agent contribute more to the generation of recom
nant search agent.

• Selection operation: The mutation and crossover
erations are performed for all the search agent to g
erate a recombinant search agent for the new p
ulation. The objective function value (Jm meas
and XB index) are calculated for all the recombin
search agent in the new population. All the sea
agent in the old and new populations are combin
to perform the selection operation. The best | P
search agent are selected from the combined popu
tion, while the rest search agent are discarded in
next iteration. The selection operation is perform
using the non-dominated sorting and crowding d
tance operator of the Non-dominated sorting gene
algorithm (NSGA-II) [42].

The non-dominated sorting approach [42] divides
the search agents in the population into differ
non-domination levels. It distributes the search ag
into R-different Pareto front such that

F = {Front1, F ront2, F ront3, ......F rontR}

Front1 contains a higher-ranked search agent w
assigned rank 1, and FrontR contains a lower-rank
search agent. The top-ranked search agent is
lected to fill the position of the new population
the next iteration. This process is continued un
search agents up to rank r are copied into the n
population. Then the remaining number of positi
the search agent can fill in the new population is
termined as:

Remaining = P −
r∑

p=0

‖ Sp ‖ (

10
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here ‖ Sp ‖ denotes the set of search agents at rank
and P is the total number of search agents in the
pulation. If ‖ Sp+1 ‖ >Remaining, it means that

l the search agent at rank (q+ 1) cannot be added
the new population. Now to select only the exact
mber of search agents from rank (q + 1) that can
filled up in the remaining position, the crowding

stance (CD) operator [42] is executed on the set of
arch agents at rank (q+ 1). The CD operator first
rts the search agent of rank (q + 1) according to
ch m objective value (m = 2). It then computes the
owding distance value of each search agent. Thus
e remaining search agent is chosen based on lower
nk and least CD value. In this manner, P best
arch agents are selected for the next iteration.

liminating worst search agent from the population

concept of EPD is to eliminate the weak search
om the population. EPD promotes exploration of
O algorithm in a good search direction and resolves
blem of getting trapped at the local optima. EPD
te half of the worst solution vector and repositions
ndomly around the best solution obtained so far

e-position the weak search agent around the loca-
α, the following equation is used:

~X(t+ 1) = ~Xα(t)± (ub− lb.r3 + lb) (21)

e-position the weak search agent around the loca-
β, the following equation is used:

~X(t+ 1) = ~Xβ(t)± (ub− lb.r3 + lb) (22)

e-position the weak solution vector around the lo-
f δ, the following equation is used:

~X(t+ 1) = ~Xδ(t)± (ub− lb.r3 + lb) (23)

e-position the weak solution vector in a random
around the search space, the following equation is

~X(t+ 1) = (ub− lb.r3 + lb) (24)

re ub and lb indicate the upper and lower bound
earch space, respectively, r3 is a random number
ed from the range of [0,1].
process of mutation, crossover, selection, and elim-
of weak individuals from the grey wolves popula-
tinues for many iteration. At the end of the itera-
et of search agent are generated on the final Pareto
he final position of α wolf give the optimal cluster
and cluster centre for the clustering purpose.

3.3. Cluster analysis process

The downstream clustering analysis process begins
finding a set of differentially expressed genes (DEGs)
each scRNA-Seq dataset. The DEGs help annotate ea
cluster to a cell type from the published work. Finally,
DEGs are utilized further to study the biological proc
and their role in the pathogenesis of SARS-CoV-2 illne

3.3.1. Annotation of cell clusters

The developed clustering method can determine
correct class label of a gene point and assign it to a pro
cluster group. The t-test statistic is used to compare
mean of a group (cluster) but at different times. The t-t
statistic is calculated as:

t− score =
x− µ
(
σ√
ni

) (

Where x = 1
ns

∑ns

i=1 xi is the mean of a cluster gro

µ give the mean hypothesis, σ =

√
1

ns − 1

∑ns

i=1(xi −
gives the standard deviation and ns is the total gene po
in a cluster,

A p-value gives the probability value to indicate t
the result from the experiment (or a sample group or cl
ter) occurred by chance. A low p-value suggests that
data do not happen by chance and is valid data. T
function

T.DIST.RT (x, degree of freedom)

is used to compute the p-value of each corresponding
score for each group of cluster. The function computes
right-tailed student’s t distribution taking two argumen
i.e., t-score and degree of freedom (ns − 1). The p-va
is then adjusted using the Benjamini Hochberg method
decrease the false discovery rate (FDR) [43].

The DEGs or gene markers are identified for each gro
cluster. The marker genes are determined using the cr
ria: A gene is said to be up-regulated if its p-value is l
than 0.05 and fold change greater than 2, whereas a g
is down-regulated if its p-value is less than 0.05 and f
change greater than 0.5. Each cluster is then annota
to a known cell type based on the identified marker ge
or DEGS.

3.4. Entire process

The following steps are adopted to predict the poten
co-receptors of ACE2 protein that facilitate SARS-CoV
infection:

1. An initial population of P search agents is crea
and represented as the solution vector.

2. Step of FCM algorithm is executed on each solut
vector to partition the given data into ’C’ fuzzy cl
ter centers [22].
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r each solution vector in the population, the ob-
ctive values Jm [22] and XB [44] are determined.

he non-dominated sorting and crowding distance
erators of the NSGA-II algorithm [42] are exe-
ted to rank each solution vector in different non-
mination levels.

ve the best solution vector, second best solution
ctor and third best solution vector as position of
pha, beta and delta search agent. ~Xα = position
α, ~Xβ = position of β, ~Xδ = position of δ

itialize control parameters: ~a, ~A and ~C. Current
eration t =1

pdate the position of the rest search agent accord-
g to Eqs. (5-11).

se α, β and δ position vector to perform mutation
d crossover operation of DE algorithm according
Eqs. (16)-(19) [20].

pdate the position of ~Xα, ~Xβ , ~Xδ and rest search
ent.

liminate half of the worst search agent and reposi-
on them randomly around the position of α, β and
[20].

pdate the control parameters and current iteration

epeat step (3-10) until the terminating criteria is
tisfied.

set of solution vectors representing the position of
arch agents are generated in the final Pareto front.

eturn the position of α i.e, ~Xα as the optimal clus-
r center for clustering any scRNA-Seq data.

entify the gene marker or DEGs in each cluster
oup and annotate the cluster to cell types

he gene sets (membrane protein or ssRNA viral
ceptor) that are transcriptionally similar to ACE2
otein are identified

he expression distribution pattern of ACE2 and its
-receptor is studied.

he target proteins that plays a crucial role in the
thogenesis mechanism of SARS-CoV-2 infection is
viewed through GO and KEGG pathway enrich-
ent analysis

he target protein is queried through the drug-gene
teraction database, and its drug combination is
entified.

eriment

perimental parameters

proposed clustering algorithm (Fuzzy-based im-
GWO) is implemented using Python 3.3 and runs
er integrated development environment (IDE). All
eriments are conducted on an Intel Core i7 proces-
rating at 2.90 GHz and having 8.00 GB RAM un-
Windows 10 platform. Other clustering techniques
different optimization methods are also developed

ted on various scRNA-Seq data of human tissue.

The fuzzy-based DE clustering approach utilizes
DE optimization algorithm [45] and the fuzzy-based GW
clustering approach uses the classical GWO algorithm [1
All the methods are based on the fuzzy clustering te
nique and simultaneously optimize Jm measure and
index. The required parameter values for executing fuz
based DE, fuzzy-based GWO, and the proposed fuz
based improved GWO clustering approaches are provid
in Table 2.

Table 2: The setting of control parameters used in developing
clustering approach

Clustering Contr
Method Paramete

Fuzzy-based F = 0.8, CR =0.5, Tmax = 10
DE

Fuzzy-based ~a = [2, 0], ~C = [0, 2], ~A = [−2~a,+2
GWO Tmax = 10
Fuzzy-based CR = 0.5, fmin = 0.25, fmax = 1.

Improved GWO ~a = [2, 0], ~C = [0, 2], ~A = [−2~a,+2
Tmax = 10

The entire code of the fuzzy clustering approach uti
ing the classical GWO algorithm and proposed fuzzy-ba
improved GWO clustering approaches are uploaded to
github url as given: https://github.com/achomamika
Metaheuristics_Fuzzy_based_Clustering-Algorith

4.2. Performance metrics

The following cluster evaluation metrics are chosen
measure the goodness of the obtained gene cluster. I
described as follows:

• Silhouette Coefficient (SC): The SC [45] measu
the closeness of each gene point in a cluster to
other gene point in the neighboring clusters.
measures the average distance between each g
point within a cluster (a) and the average dista
between all clusters (b). The silhouette value is c
culated based on ’a’ and ’b’ parameters and is defin
as:

Silhouette value =
(b− a)

max(a, b)
(

Now, the SC is calculated as the average silhoue
values over all the gene points. The SC value var
from -1 to +1, and an SC closer to +1 signifie
better clustering result.

The SC can describe the performance of an ent
population with a single value. So, we use the
values to find the optimal cluster number in scRN
Seq data.

• Calinski-Harabasz Index (CHI): CHI [45] measu
the within-cluster dispersion (i.e., cohesion) and
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spersion between-cluster (i.e., separation). The co-
sion is calculated based on the distances of the
ne point in a cluster to its cluster center, and sep-
ation is estimated based on the distance of the clus-
r center from the global cluster center. Thus CHI
defined as:

CHI =
(

∑C
k=1 nk × d2(vk − vg)

C − 1
)

(

∑C
k=1

∑nk

i=1 d
2(xi − vk)

n− C )

(27)

ere, nk and vk are the number of gene point and
uster center of kth cluster respectively. vg is the
st or global cluster center, n is the total gene point
a dataset, and C is the cluster number. A higher
lue of CHI means the clusters are well separated
d dense.

avies-Bouldin Index (DBI): DBI [45] is defined as
e ratio of within-cluster distances to between-cluster
stances. DBI maximizes the inter-cluster distance
d minimizes the intra-cluster distance. DBI is
sed on the calculation of cohesion and separation
lues. Cohesion measures the closeness of a gene
int in a cluster to the cluster center, while sep-
ation measures the distance between the cluster
nter (or centroid).

he cohesion value is calculated using the Sum of
uare Within Cluster (SSW) equation, and the sep-
ation value is calculated using the Sum of Square
etween Cluster (SSB) equation. SSW is defined as:

SSW =
1

nj

nj∑

i=1

d(xi, vj) (28)

here nj = Number of gene point in cluster j and
= Distance between a gene point Xi and cluster
nter vj .

B is defined as:

SSB = d(vi, vj) (29)

here d(vi, vj) = Distance between the cluster center
nd j.

he ratio Rij measures the similarity of cluster i and
uster j and is defined as:

Rij =
SSWi + SSWj

SSBi,j
(30)

ow, DBI is the average of the similarity measures
each cluster with a cluster most similar to it :

DBI =
1

C

C∑

j=1

max(Rij) (31)

is observed from Eq. 31, lower the average sim-
rity values, the gene clusters are well separated.

hus, a minimum value of DBI gives a good cluster-
g solution.

4.3. Find ACE2 expression distribution pattern and id
tify its co-receptor

To identify the potential host receptor i.e, viral
ceptor/membrane protein of ACE2 that facilitate SAR
CoV-2 infection into human cells, membrane proteom
are extracted from the Membranome database of sing
helix transmembrane proteins 1. Also, the viral recep
genes are downloaded from the Viral Receptor datab
2. The viral receptor database comprises 332 interacti
of mammalian virus-host receptors, including 142 uniq
viral species and 150 receptors. We only extract ssRNA
ral receptor genes because coronaviruses are highly dive
positive sense ssRNA viruses.

The proposed fuzzy-based improved GWO cluster
technique identifies gene sets (membrane protein/ssRN
viral receptors) showing similar expression patterns w
ACE2 protein in all 16 human tissue. We then analy
the tissue-specific expression pattern of ACE2 in 16 d
ferent human tissues. In single-cell gene expression da
each gene point is an element, and the vector of each g
corresponds to its expression pattern. The FCM algorit
aims to organize a group of genes having similar express
patterns in a cluster [21] . This means that genes in
same cluster are co-regulated and involved in the same
ological function. The FCM algorithm can arrange ge
showing more than one type of co-regulation nature i
multiple clusters. So many authors have utilized the FC
algorithm to analyze the expression levels of thousands
genes at a time [46, 47]. In the FCM algorithm, each g
is associated with every cluster by a membership functi
The membership function expresses the gene’s strength
degree of association with a particular cluster. Therefo
we have computed the membership degree of each g
point in a cluster using the above Eq. (13) of the FC
algorithm.

For example, ACE2 has a membership or express
value of 0.0136, 0.0010, 0.00028, 0.98209, 0.002927 wh
associated with the goblet, basal/suprabasal cells, tuft c
ciliated cell, and neuroendocrine cell in the adult nasop
ryngeal data. A particular gene is said to be potentia
associated with a biological process or a cluster if its me

bership value, u
(∗)
ij > 0.05 in Ref. [48] experiment. It c

infer that ACE2 is associated more strongly with the ad
nasopharynx’s ciliated cell (expression value ∼ 0.98).

Further to validate the result of obtained clustering
sults, PCC is calculated between ACE2 protein and me
brane protein or ssRNA viral receptor. It is observed t
ACE2 is strongly correlated with viral receptors such
CD209, GPR78, ADAM17, NRP1, ICAM1, AXL, LDL
EGFR, CLEC4M, and FCGRT, etc. (PCC ≥ 0.5). Wh
ADAM7, ADAM9, NRP1, NRG1, FCRL6, LRP1, FUR
FGFR1, EFNB1, and CLDN1 are the top membrane p
tein strongly correlated with ACE2 protein. These m

1https://membranome.org/
2http://www.computationalbiology.cn:5000/viralReceptor
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he potential co-receptor of ACE2 that facilitates
ry and binding mechanism of SARS-CoV-2 infec-

ult and discussion

ll type identification and analysis of ACE2 expres-
n pattern and role of host receptor in various hu-
n tissue

dult nasopharyngeal dataset : Cells in the adult na-
pharyngeal gene expression dataset are organized
to five major clusters. Cluster 0 is annotated as
blet cell with the marker genes SYT8, GP2 and

NPEP. Cluster 1 is annotated as the basal or supra-
sal cell with the marker genes NRP1, LDLR and
GB1. Cluster 2 is annotated as the tuft cell using
e canonical marker genes PTPRC and FXYD6.
luster 3 is annotated as ciliated with the marker
nes CDHR3 and SYT5. Cluster 4 is annotated as
uroendocrine cell with the marker genes SYT1 (as
own in Supplementary (Suppl) Fig. 1(A)).

CE2 has an expression value 0.0136, 0.0010, 0.00028,
98209, 0.002927 when associated with the goblet,
sal or suprabasal cells, tuft cell, ciliated cell, and
uroendocrine cell, respectively. Thus, ACE2 is as-
ciated more strongly with the adult nasopharynx’s
liated cell (expression value ∼ 0.98).

GLEC1, CD209 and CLEC4M are the viral genes
at are significantly correlated with ACE2 (PCC
0.65) in adult nasopharynx. SIGLEC1 plays an
portant role in the antiviral and antibacterial host
sponse to SARS-CoV-2 infection and HIV infec-
on. Type I interferon is the key antiviral mediator
SARS-CoV-2 infection. Activation of type I inter-

ron signaling increases the expression of SIGLEC1
the circulating cell of monocyte and macrophages.

D209 and CLEC4M are also responsible for the au-
immune response in SARS-CoV-2 infection. NR-
AM, MLN-4760, ADAM7, ASGR1 and TFR2 are
e top membrane protein that are significantly cor-
lated with ACE2 protein (PCC > 0.8). NRCAM
otein is reported to induce an inflammatory re-
onse to SARS-CoV-2 infection. MLN-4760 pro-
in binds to the enzymatic active site of ACE2 pro-
in with high affinity and can alter the conforma-
on of ACE2 protein. The increased activity of
DAM7 cleaves ACE2 ectodomain and other pro-
flammatory molecules, thereby reinforcing the in-
mmatory process during SARS-CoV-2 infection.

SGR1 neutralizes the antibodies targetting the S
otein of ACE2. TFR acts as another receptor for
RS-CoV-2 infection entry and exerts significant

tiviral effects. The expression profile of ACE2 and
s co-receptor is shown in Suppl Fig. 1(B).

• Child nasopharyngeal dataset : Cells are organi
into five main clusters in child nasopharyngeal g
expression data. Cluster 0 is annotated as the n
roendocrine cell using the marker gene SYT1, a
cluster 1 is annotated as the ciliated cell with
marker gene FMO3, SYT5. Cluster 2 is annotated
a goblet cell with the marker gene SYT8, GP2. Cl
ter 3 is annotated as a basal/suprabasal cell with
canonical marker gene PLS3, MET, OSMR, CLIC
Cluster 4 is annotated as tuft cell with the mar
gene PTPRC, SDC4 (as shown in Suppl Fig. 1(C

ACE2 protein has an expression value of 0.056, 0.1
0.6860, 0.0530, and 0.0162 when associated with
neuroendocrine, ciliated, goblet, basal/supraba
and tuft cells. ACE2 exhibits both the nature
goblet and ciliated cells because the membership v
ues in both the cell type are 0.188 and 0.6860. T
expression profiles of ACE2 and its co-receptor
shown in Suppl Fig. 1(D).

CD209, DPP4 and GPR78 are the viral recept
strongly correlated with ACE2 protein. In Ref. [4
it is established that CD209 mediates entry of
SARS-CoV-2 infection through the heterodimeri
tion process, and our work also confirms the sa
observation. DPP4 interacts with the S1 domain
the viral spike glycoprotein. DPP4 is suggested
be the alternate receptor of SARS-CoV-2 infect
[2, 50]. GPR78 protein is mainly expressed in
upper airway cell and overexpressed in SARS-Co
2 infection. During the infection, the SARS-CoV
virus migrates to the GPR78 cell surface and p
motes viral entry. The virus-induced endoplasm
reticulum (ER) stress increased the surface expr
sion of GPR78 to enhance the viral entry. In tu
the viral infection sets up a positive feedback
cle and hijacks the chaperone molecule for signal
multiple molecules acting as the co-receptor for v
entry.

GDF15, CD8B2, FCRL6 , CD244 and SLAMF1
the membrane protein strongly correlate with AC
protein (PCC > 0.8). GDF15 modulates imm
nity in COVID-19 infection via its iron metaboli
[51]. Expression profiles of host receptor protein
shown in (as shown in Suppl Fig. 1(D)). SLAM
and FCRL6 protein expression is detected in c
dren’s nasopharyngeal swab samples. It is observ
that children experience a milder clinical sympto
of COVID-19 disease than adults. This is beca
children can neutralize the antibody after the on
of infection [52]. CD244 and SLAMF1 are pres
in activated B and T cell and responsible for sig
transduction and viral entry. FCRL6 acts as
major histocompatibility complex II receptor (MH
II) for mediating viral entry. SLAMF1 positiv
regulates the production antigen (Ag) specific
mune response in the B cell of children. The ab

14
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servance proves that children with neutralizing an-
bodies have a lower viral load count and faster virus
earance.

pper respiratory tract: Four major cell types are
tected in the upper respiratory tract (nose and
opharynx): ciliated cells, non-ciliated secretory cells,
sal or suprabasal cells, and goblet cells. Cluster 0
annotated as non-ciliated secretory cell with the
arker genes SRPRB and CNMD. Cluster 1 is an-
tated as basal cell with the marker genes MEGF9,

PMAP, KRT5 and PCDH7. Cluster 2 is annotated
goblet cell using the marker genes CXCL10, IDO1,
C26A4 and ANPEP. Cluster 3 is annotated as

ulti-ciliated cell with the marker genes CXCL13,
CDC78, SCGB3A1. The cell cluster are shown in
ppl Fig. 1(E).

om the result, it is observed that ACE2 has ex-
essive values 0.3796, 0.067, 0.091, 0.489 associated
ith non-ciliated cell secretory, basal cell, goblet,
d ciliated cell. This means that ACE2 protein is
und to express in all the cell types in some ex-

nt because u
(∗)
ij > 0.05. But it is observed that

CE2 is highly expressed in the ciliated cell com-
red to secretory and goblet cells. AXL, EGFR,
GRT, LDLR, KREMEN1 and ASGR1 are the vi-

l receptors coexpressed with ACE2 protein in the
liated cell of upper airway. The protein receptor
SGR1 and KREMEN1 are found to co-expressed
ith ACE2 protein in the non-ciliated cell (secretory
ll). This means the relative expression of ACE2,
SGR1 and KREMEN1 is much higher in SARS-
oV-2 infected cell than the uninfected cell. ASGR1
d KREMEN1 specific antibodies can block the
nding and entry mechanism of SARS-CoV-2 S pro-
in into the cell and reduce the spread of infec-
on in lung organoids [53]. From our result, the
XL protein significantly correlates with ACE2 pro-
in (PCC > 0.8) and promotes viral infection and
production in the upper respiratory system [54].
hrough experiment model and cell culture, it is
served that SARS-CoV-2 infection-induced pul-
onary infection in older patients due to hyperac-
ve response to lung injury mediated by epidermal
owth factor receptor (EGFR) signaling. The rea-
n for the activation of EGFR signalling is the re-
ase of ligands such as epigen (EGN), heparin-binding
GF-like growth factor (HB-EGF), amphi-regulin
REG), epiregulin (EREG), etc from the damaged
ll to bind EGFR and activate the would healing
sponse in COVID-19 patients [55].

ng dataset: A total of 13 primary cluster cells
e detected in human lungs. The cell clusters are
notated as: Cluster 0 is annotated as basal cell
ing the marker genes ISLR, SNCA and PCDH7.
luster 1 is annotated as endothelial cell using the

marker genes ANXA3, CALCRL and FOXF1. Cl
ter 2 is annotated as alveolar type 1 (AT1) cell us
the canonical marker genes AGER, MYRF, PDP
Cluster 3 is annotated as B cell using the mar
genes CD14 and CD4. Cluster 4 is annotated
alveolar type 2 (AT2) cell using the marker ge
TCF7L2, CYP4B1, LRP5. Cluster 5 is annota
as the smooth muscle cell using the marker ge
ACTA2. Cluster 6 is annotated as ciliated cell us
the canonical marker genes SERPINB4, PDZK1I
and KRT4. Cluster 7 is annotated as mesothe
cell using the marker genes PLXNA1 and PLXNA
Cluster 8 is annotated as dendritic cell using
canonical marker genes VEGFA, EREG, IGSF21 a
APOE. Cluster 9 is annotated as NK and T cell
ing the marker genes CD11B, CD56 and CD45R
Cluster 10 is annotated as pericytes using the mar
genes ACTA2, TAGLN and COL1A2. Cluster
is annotated as macrophages from the marker ge
FABP4 and MCEMP1. Cluster 12 is annotated as
broblast or stromal cell using the marker genes PG
TAGLN and MYH11.

ACE2 protein has an expressive value of 0.0203, 0.
0.2171, 0.0947, 0.1906, 0.0053, 0.1065, 0.0377, 0.17
0.0717, 0.0120, 0.0077, 0.0203 associated to ba
cell, endothelial cell, AT1 cell, B cell, AT2, smo
muscle cell, ciliated cell, mesothelial cell, myel
and dendritic cell, NK and T cell, pericytes, mac
phages, and fibroblast cell respectively. ANPE
DPP4 , CD209, EGFR, MMP14 are the viral
ceptors co-expressed with ACE2 protein in AT2
of human lung. The expression profile of ACE2 a
its co-receptor protein is shown in Suppl Fig. 1(F

The coronaviruses use peptidases such as ANP
and DPP4 to enter host cells [2, 56]. ACE2 int
acts with DPP4 and ANPEP peptidases in AT2
(PCC > 0.8). CD209L is seen to co-expressed w
ACE2 protein in AT2 cells. CD209L and CD209
teract with the receptor-binding domain (RBD)
ACE2 protein and mediates viral entry into hum
cells. EGFR receptor enhances the spread of
SARS-CoV-2 infection by stimulating cell motil
SARS-CoV-2 activates the epidermal growth fac
receptor (EGFR), leading to the suppression of
terferon regulating factor 1 (IFR1) dependent int
feron (Λ) and decreased antiviral defense in the
per airway epithelial cell. Matrix metalloproteina
(MMPs) play a key role in lung immunity agai
SARS-CoV-2 infection by facilitating inflammat
cell influx and modulating the chemokines and
tokines signaling pathway.

• Heart dataset: A total of 10 cell clusters are
tained in the human heart. The cell clusters are
notated as follows: cluster 0 is annotated as endot
lial cell using the marker genes PDPN, cluster 1
annotated as atrial cardiomyocytes using the mar
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ne ALDH1A2, cluster 2 is annotated as ventricular
rdiomyocytes using the marker gene MYH2 and
YH7, cluster 3 is annotated as macrophages using
e marker genes MRC1, cluster 4 is annotated as the
ricytes using the marker genes ABCC9, cluster 5 is
notated as the adipocytes using the marker genes
MA2, cluster 6 is annotated as fibroblast follow-

g the marker gene CD63, cluster 7 is annotated as
esothelial cell using the marker gene VT1, cluster
is annotated as immune cell using the prominent
arker genes ICAM1, cluster 9 is annotated as neu-
nal cell using the marker genes NRXN1 and PLP1
s shown in Suppl Fig. 2(A)).

CE2 has an expression value 0.0014, 0.0228, 0.8634,
0154, 0.02162, 0.0138, 0.0039, 0.0079, 0.0069, 0.0423
hen associated to endothelial cell, atrial cardiomy-
ytes, ventricular cardiomyocytes, macrophages, per-
ytes, adipocytes, fibroblast, mesothelial cell, im-
une cell and neuronal cell (shown in Suppl Fig.
B)).

he membrane protein ADAM9, VCAM1, ICAM1,
RBB2, NRG1 and ERAP1 coexpressed with ACE2
otein in cardiomyocytes cell. ADAM9 mediates
e entry of the encephalomyocarditis (EMCV) virus.
MCV virus is associated with myocarditis and en-
phalitis. EMCV infection causes acute myocarditis
e to a direct infection in cardiomyocytes cell by
e SARS-CoV-2 virus. The comorbidities caused
imbalance in the renin-angiotensin system (RAS)

ediated by the interaction between ACE2 protein
d ADAM, along with some factors associated with

MPRSS2 expression. ERAP1 and ERAP2 are the
y regulator of RAS and a key component of the
HC class I antigen processing system. Because
their involvement in RAS, the dysfunction of the

RAP1 enzyme exacerbate the effect of SARS-CoV-
infection.

stis dataset: A total of seven cell clusters are de-
cted in adult male testis. Cluster 0 is annotated
a myoid cell using the marker gene ACTA2, VIM.

luster 1 is annotated as Sertoli cell using the marker
ne RHOX8, APOA1. Cluster 2 is annotated as
ermatid cell using the marker gene SPAG6, ZPBP.
luster 3 is annotated as germ cell using the marker
nes ID4. Cluster 4 is annotated as Leydig cell us-
g the marker genes CYP11A1, VIM. Cluster 5 is
notated as spermatogonial stem cell (SSC) using
e marker gene NEUROG3, ID4. Cluster 6 is anno-
ted as spermatogonia (SPG) cell cluster using the
arker genes MAGEA4, KIT. The cell clusters are
own in Suppl Fig. 2(C).

CE2 is associated with the myoid cell, Sertoli cell,
ermatids, germ cell, Leydig cell, SSC, and SPG cell
ith an expression value of 0.0556, 0.2940, 0.0341,
1653, 0.0351, 0.2858, 0.1297 respectively. ACE2

is highly expressed in spermatid, Leydig cells, SP
and SSC. GGT5, GT7, JAG2, JAM2, PLD6, SPAG
SPEM1, SGPL1, AXL, BAX, KIT, MERTK, RO
SUN5, TYRO3, CADM1, GGT1 are the poten
co-receptor of ACE2 in testis. The expression p
files of ACE2 and its co-receptor are shown in Su
Fig. 2(D).

Testicular damage is one of the clinical damage cau
by SARS-CoV-2 infection. The main reason for
testicular damage is the direct invasion of ACE2
ceptors into the testicular tissue. This is due t
persistent rise in temperature, other secondary
flammation such as autoimmune response, and
expected side effects such as steroid and oxidat
stress from COVID-19 medications. Infertility
males may be the possible long-term effect of COV
19 infection.

• Liver dataset:

Six cell clusters are detected in the human liv
Cluster 0 is annotated as hepatocyte cell with
corresponding marker genes CYP1A2, JUN. Cl
ter 1 is annotated as cholangiocyte cell with
marker genes EPCAM, ONECUT1. Cluster 2 is
notated as an endothelial cell using the marker ge
CLEC14A and SPARCL1. Cluster 3 is annotated
hepatic stellate cell with the marker genes BAM
CSF1, HEXIM1. Cluster 4 is annotated as mac
phage from the marker genes HMOX1, MERTK, a
MS4A7. Cluster 5 is annotated as lymphoid cell
lowing the marker genes CD8A, IL7R. The cell cl
ter are shown in Suppl Fig. 2(E).

ACE2 has an expression value 0.4636, 0.1032, 0.02
0.3899, 0.0037, and 0.0105 when associated with h
atocyte cell, cholangiocyte cell, endothelial cell, h
atic stellate cell, macrophage, and lymphoid cell.
high expression value of ACE2 in hepatocyte c
(0.466) indicates that it is the leading site of infect
of SAR-CoV-2 infection. CEACAM1, IGF1R, BA
LEPR, INSR, XBP1, LRP5, HFE, MET, COX7
COX8C, COX8A, CADM1, CLDN1 are the po
ble co-receptor of ACE2 and TMPRSS2 membra
protein. The expression profiles of ACE2 and its
receptor protein are shown in Suppl Fig. 2(F).

There is a close association between SARS-CoV-2
fection and liver disease. Liver injury, chronic li
disease (CLD), liver cirrhosis, inflammation, and
ral hepatitis are the possible outcome of COVID
illness. An elevated level of alanine aminotransfer
(ALT), gamma-glutamyltransferase (GGT), and
partate aminotransferase (AST) as an impact of
tokine storm could damage the liver and prod
more inflammation. Elevation of AST and GG
cause ischemia and liver cirrhosis and has been as
ciated with cytokine-mediated injury. Tocilizuma
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w approved to treat severe lung injury in COVID-
disease.

idney dataset: In the kidney organoid, six main
usters are identified. Cluster 0 is annotated as dis-
l tubule cell using the marker genes GATA3 and
GF , cluster 1 is annotated as glomerular parietal
ithelial cell using the marker gene PECAM1 and

DGFRB, cluster 2 is annotated as immune cell us-
g the marker gene IL1RL1, cluster 3 is annotated
collecting duct principal cell using the marker gene

CNE1, cluster 4 is annotated as proximal tubule
ll, using the marker gene SLC22A8, CUBN. Clus-
r 5 is annotated as collecting duct intercalated cell
ing the marker gene SLC26A7 and FOXL1. The
ll cluster are shown in Suppl Fig. 4(A)).

CE2 has an expression value of 0.00344, 0.03650,
00828, 0.01373, 0.9081, and 0.02984 associated with
stal tubule cell, glomerular parietal epithelial cell,
mune cell, collecting principal duct cell, proxi-
al tubule cell and collecting duct intercalated cell.
CE2 expression is primarily expressive in proximal
bule cell (shown in Suppl Fig. 4(B)).

AM1, CX3CR1 and CD81 are the viral receptors
rrelated with ACE2 protein. Acute renal ischemic
jury is one of the common features observed in co-
orbidities of COVID-19 patients. Ischemic injury
regulates proinflammatory mediators such as cy-
kines and arachidonic acid metabolism. This in-
eases the expression of CD11/CD81 on leukocytes
d ICAM1 on endothelial cells. A monoclonal an-

body directed against ICAM1 prevents functional
pairment of renal failure. Acute renal ischemic
characterized by loss of renal function and ac-
mulation of end product of nitrogen metabolism.
veral inflammatory responses, such as chemokines,
omote the recruitment of immune cells to the in-
red kidney. The chemokines receptor CX3CR1
cruits monocyte or macrophage, induces chemo-
xis towards kidney tissue damage, and initiates the
pair process. The exosomes rich in tetraspanins
D9, CD63, and CD81) and heat shock and Rab
oteins act as a shuttle to transfer biologically ac-

ve proteins, lipids, and RNAs. The plasma from
OVID-19 recovered exosomes reproduce molecular
tterns to develop immune responses and activate
agulation and complement pathways in the dam-
ed tissue.

P1, NRP1, JAG1 and NOTCH2 are the mem-
ane protein strongly correlated with ACE2 in re-
l proximal tubular cells. SARS-CoV-2 infection
itiates cytokine storms in renal proximal tubule
lls and activates multiple genetic programs lead-
g to kidney dysfunction. Acute kidney injury has
en the main cause of cytokine storms. It is re-
rted in article [57] that type I interferon lead to

renal damage after acute kidney injury. The ty
I interferons upregulates interleukins (IL), toll-l
receptors (TLR2, TLR4), interferon regulatory f
tors (IRF1, IRF7, IRF9), interferon-induced prote
(IFIT1, IFIT2, IFIT3, IFI44), and chemoattracta
(CXCL10, CXCL11) enhancing ACE2 protein
pression. To counteract the effect, Interferonβ (IF
simulate immune response through JAK/STAT pa
way in COVID-19 patient. LRP1 or CD91 me
brane protein is responsible for initiating cell mig
tion, proliferation and differentiation process. It a
regulates multiple immune signaling pathways su
as JAK/STAT and ERK1/ERK2 in renal COV
19 patients. NRP1 is highly expressed in diabe
kidney patients with podocytes cells. A strong c
relation of ACE2 protein with NRP1 suggests
increased risk of COVID-19 and the developm
of diabetic nephropathy disease condition. The
search article [58] suggests that notch signaling
renal tubular epithelial cells (RTECS) induces
development of fibrosis in the kidney. JAG1 a
NOTCH2 are significantly correlated with ACE2 p
tein in renal tubule cell. JAG1 along with NOTC
reprogrammed the metabolic activity of RTEC
mitochondrial transcription factor A (TFAM). It
sults in cell proliferation, differentiation, and u
mately developed fibrosis in RTECS [58]. Ischem
acute renal failure is one of the common effects
SARS-CoV-2 infection. Expression profiles of so
ACE2 co-receptor proteins are shown in Fig. 8(B

• Pancreas dataset: A total of eight-cell clusters
detected in the pancreas. The cell clusters are alp
beta, delta, epsilon, pancreatic polypeptide, acin
ductal, and endothelial cells. The cell cluster
shown in Fig. 3(C).

The studies in Ref. [59] show a close association
tween SARS-CoV-2 infection and the developm
of diabetes. SARS-CoV-2 infection induces panc
atic β cell death through several mechanisms su
as programmed cell death, inflammation, auto
munity against β cell, direct cell lysis, etc. T
receptor proteins DPP4, NRP1 and HMGB1 alo
with ACE2 protein facilitates SARS-CoV-2 viral
try in β cell. Type 2 diabetes mellitus (T2DM)
velops due to β cell dysfunction in the presence
insulin resistance. DPP4 plays a significant role
glucose metabolism, neuropeptide, and cytokine
tivity. DPP4 inhibitors could reduce the severity
COVID-19 disease and prevent lung inflammat
and injury.

NRP1 acts as the co-receptor that enhance SAR
CoV-2 virus infectivity when co-expressed with AC
protein. SARS-CoV-2 uses spike protein (S) to
cilitate cell entry, and its cleavage allows atta
ment to NRP1 membrane protein. Therefore,
sue with increased NRP1 expression levels may ra
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fection risk. NRP1 exists in two isoforms: one is
creted form of NRP1 (sNRP1), and the other is
e transmembrane form that interacts with SARS-
oV-2 infection. sNRP1 inhibits the interaction of
scular endothelial growth factor A (VEGF-A) or
her growth factors with some specific receptor and
embrane protein NRP1. NRP1 interacts with RAS
protect from hypertension-induced angiotensin II.

2DM is a feature associated with severe SARS-Cov-
infection and acute respiratory distress syndrome
RDS). Diabetic patients have overactive RAS due
increased ACE2 expression in the kidney. Thus,

tivating RAS increases the levels of sNRP1 and
s associated ligands (VEGF-A) in hypoglycemia
2DM patients hospitalized with COVID-19. The
pression profiles and ACE2 and its co-receptor are
own in Fig. 3(D).

astrointestinal tract: Stomach, Ileum, colon and
ctum

he SARS-CoV-2 virus replicates inside the gastroin-
stinal tract cell inferring the intestine as the main
te of SARS-CoV-2 infection. It is observed that
D147 or basigin correlates strongly with ACE2 pro-
in in the intestinal epithelial cell. An increased
pression of ACE2 and CD147 damage the vascu-
r endothelium and cause thrombosis in COVID-19
tients. The SARS-CoV-2 infection elevates vascu-
r endothelial growth factor (VEGF) and its recep-
r VEGFR-1 and VEGFR-2 in COVID-19 patients.
EGF supplies adequate oxygen and nutrient to the
strointestinal tissue and removes its metabolic tox-
s. Elevated serum VEGF level is seen in COVID-
patients with intestinal edema. SAR-CoV-2 spike

otein promotes VEGF production by activating
itogen-activated protein kinases (MAPK) or ex-
acellular signal-regulated kinase 1/2 (ERK) signal-
g in enterocytes cell and induces permeability and
flammation. The ERK/VEGF pathway blockage
duces intestinal inflammation and allows vascular
rmeability.

esides ACE2 and CD147, NRP1 also promotes the
try of SARS-CoV-2 infection into the gastric cell.
RP1 is critical in tumor progression, cell invasion,
igration, and angiogenesis. NRP1 promotes tumor
giogenesis of gastric cancer by interacting with

EGF and its receptor. In the tumor microenviron-
ent (TME), tumor cells interact with immune cells,
romal cells, and fibroblast cells, providing an envi-
nment of tumor immune escape, resulting in ma-
nancies. In TME of gastric cancer, macrophages
oduce a variety of cytokines, proteases, and growth
ctors to regulate tumor immunity. In addition to
acrophages, the regulatory T (Treg) cell acts on the
nate immune cell to suppress immune responses

secreting cytokines and TGF-β. Thus, NRP1

could work as a prognostic marker in gastric c
cer by predicting the infiltration of Treg cells a
macrophages. The cell cluster and expression pro
of ACE2 and its co-receptor in stomach are sho
in Suppl Fig. 3(A) and (B).

• Skin dataset: A total of seven cell clusters are
tected in skin tissue, and the obtained cluster
shown in Suppl Fig. 3(E).

A few cases of cutaneous manifestations have b
reported as the outcome of COVID-19 disease. F
cutaneous symptoms arising from COVID-19 dise
are atopic dermatitis, urticarial eruptions, acral
chaemia, retiform purpura, papular dermatoses,
[60].

ADAM17, GPR78 , CD147, CD209, DPP4 are
receptors that manifest skin infection as a con
quence of COVID-19 disease. ADAM17 is import
in skin protection and acts as an intestinal barr
during adulthood. ADAM17 cleaves the ectodom
of transmembrane protein such as heparin-bind
epidermal growth factor (HB-EGF). Because of th
it activates EGFR and promotes cell proliferati
ADAM17 encourages the shedding of ACE2 rec
tors from the membrane to cytosol forming solu
ACE2 (sACE2). sACE2 potentially blocks the sp
protein and protects from cell infection [60]. R
cently, a patient with a homozygous loss of funct
mutation of the ADAM17 gene presented with
peated skin infections. The gene ADAM17 depen
on rhomboid-related protein 1 (RHBDL1/RHBDL
for maturation and functioning. A slight mutat
in RHBDL2 causes tylosis, a rare hereditary dis
der characterized by hyperkeratosis of the palms a
soles. Keratinocytes sample from this patient is ch
acterized by EGFR signaling, which is not detec
in a normal person [61].

During the second wave of the COVID-19 pandem
many incidences of mucormycosis as a result of po
COVID-19 symptoms rises in India. Mucormy
sis is a life-threatening fungal infection caused
Rhizopus oryzae. The factor that caused COV
19-associated mucormycosis is the injudicious use
steroids in hyperglycemia patients with a history
glucocorticoid therapy. Mucorales use GPR78 a
host receptor to enter the endothelial cell, and
sues [62, 63]. Studies conducted in Ref. [63] sh
an interaction between the receptor binding dom
(RBD) of SARS-CoV-2 spike protein and GPR
SARS-CoV-2 viral infection induces endoplasmic r
ulum (ER) stress by accumulating excess unfold
protein in the ER lumen and activating unfolded p
tein response (UPR) signaling pathway. The U
pathway upregulates the GPR78 synthesis proc
to overcome the unfolded protein. In this situati
GPR78 is exported out oF ER lumen and expres
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the cell surface. The increased GPR78 expression
hances the viral entry by positive feedback cycle
2, 63] .

he expression profile of ACE2 and its co-receptor
e shown in Suppl Fig. 3(F).

mphatic tissue: Bone marrow
ight cell populations are detected in the human
ne marrow. The cell clusters are B cell, NK/NKT
ll, erythrocytes, hematopoietic stem cells (HSCs),
dothelial progenitor cells (EPCs), monocytes, den-
itic cells, and myeloid cells. It is shown in Suppl

ig. 4(E).

CE2 is expressed in bone marrow-derived in HSCs
d EPCs. This shows that SARS-Cov-2 infection
fects and damages the stem cell. It is observed
om the result that NRP1 is strongly correlated
ith ACE2 protein in an immune cell derived from
acrophages. NRP1 mediates SARS-CoV-2 infec-
on in bone marrow-derived macrophages (BMMs).
he entry of SARS-CoV-2 infection on BMMs de-
nds on the expression of NRP1 rather than ACE2
pression. SARS-CoV-2 infection hinders the dif-
rentiation process of BMM to osteoclast. COVID-

disease is associated with a disorder in calcium
etabolism and osteoporosis. Severe COVID-19 pa-
ents have lower blood calcium and phosphorous lev-
s than moderate COVI-19 patients. Approaches
ch as the knockdown of NRP1 expression or block-
e of NRP1 expression can inhibit SARS-CoV-2 in-
ction in BMMs [64]. A recent study in Ref. [65] ob-
rved that SARS-CoV-2 envelope protein activates
LRP3 inflammasome, thereby inducing interleukin-

(IL-1β) secretion. IL-1β induces an inflammatory
sponse by activating nuclear factor-κB (NF-κB)
d the c-Jun N-terminal kinase signaling pathway.

s a result, many cytokines are released in acute
flammatory disease and are associated with more
verity in COVID-19 patients. The expression pro-
e of some ACE2 co-receptors is plotted in the form
a dot matrix and is shown in Suppl Fig. 4(F).

rain dataset: A total of seven cell clusters are de-
cted in the human brain. Cluster 0 is annotated as
e astrocyte cell with the prominent marker genes
FR3. Cluster 1 is annotated as the microglial

ll with the known marker genes CSF1R and CD83.
luster 2 is annotated as neurons using the marker
nes SLC10A4, C14ORF37. Cluster 3 is annotated
the oligodendrocyte precursor cell (OPC) using

e prominent marker genes MEGF11. Cluster 4 is
notated as the vascular cell using the marker genes

RM8, TRPM3. Cluster 5 is annotated as oligo-
ndrocytes with the canonical marker genes MAG.
luster 6 is annotated as endothelial cell using the
arker genes TM4SF1, ICAM1, VCAM1. The cell
usters are shown in Suppl Fig. 4(C).

ACE2 protein is detected mainly in the astrocy
and microglial cells to a small extent. This me
astrocytes and microglial cells both express AC
protein. The receptor responsible for causing SAR
CoV-2 infection are co-expressed in the astroc
and microglial cells [66]. ACE2 is associated w
astrocyte cell, microglial cell, neuron cell, oligod
drocytes precursor cell, vascular pericytes cell, oli
dendrocytes and endothelial cell with an express
value 0.9912, 0.0039, 0.0007, 0.0008, 0.00034, 0.00
0.0009 respectively. A high ACE2 expression va
shows that the SARS-CoV-2 virus initially infe
the astrocytes cell after crossing the blood-brain b
rier and impairs neuronal viability. A similar kind
observation has also been reported in Ref. [67]. B
sides, ICAM1, VCAM1, DAG1, LDLR and MXR
are the ssRNA receptors correlated significantly w
ACE2 protein in human brain cell.

Endothelial cells (EC) are the primary site of leu
cyte trafficking from the circulating blood into
areas of infection and inflammation. During SAR
CoV-2 infection, early cytokines response interleu
1 receptor type 1 (IL1R1) and tumor necrosis fact
alpha (TNF-α) initiates various kinase cascades a
activates transcription molecules such as ICAM1,
selectin, P-selectin and VCAM1. VCAM1 media
the recruitment of monocytes to infection and inju
sites. ICAM1 mediates the transmigration of mo
cytes and lymphocytes to active infection sites.

The membrane protein ADAM9, FGFR1, EFNB
NRP1, FURIN and CD147 co-expressed with AC
protein in astrocytes cell of the brain. ADAM9 a
FGFR1 facilitate the binding and genome trans
tion of encephalomyocarditis virus (EMCV) to
cell surface. It is involved in inflammation and
morigenesis and causes meningitis or encephali
EFNB1 initiates T cell exhaustion during SAR
CoV-2 viral infection. SARS-CoV-2 infection
pacts T cells, and lymphopenia is its common cau
A reduction in the number of T cells causes sev
diseases. NRP1 mediates the entry of the SAR
CoV-2 virus into the brain through the olfactory
ithelium. The highest expression of NRP1 is fou
in the astrocytes cell. NRP1 induces multiple effe
such as cell proliferation, angiogenesis, and axon c
trol. NRP1 is involved in various neurological sym
toms such as encephalomyelitis and stroke in COV
19 patients. Both CD147 and NRP1 mediate the
try of SARS-CoV-2 infection into the human br
cell. The expression profiles of ACE2 co-recep
are displayed in the form of a dot plot in Suppl F
4(D).
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Figure 2: ACE2 expression level of proposed clustering clustering in all human tissue

mparison of ACE2 expression profiles with other
thods

expression level of ACE2 at each specific cell type
zed for all human tissue as described in the previ-
section 4.3. Suppose the expression pattern vector
2 in the upper respiratory tract is 0.3796, 0.067,
.489 when associated with the goblet, basal cell,

ated secretory cell, and ciliated cell, respectively.
as the highest expression level in ciliated and gob-
and is 2-3 % and 4-5 %. A similar result has also
served in recent studies [68, 69, 11] where ACE2

es primarily in ciliated and goblet cells (2-3 % and
In adult testis, ACE2 expression pattern vector is
.294, 0.0341, 0.165, 0.035, 0.285, and 0.130 when
ed with the myoid cell, sertoli cell, spermatids,
eydig cell, SSC and SPG cell. ACE2 is highly

ed in Sertoli and Leydig cells (>2.9 %). Similar
tion has also been reported in Ref. [68]. ACE2
showed a high expression value of >3 % in Leydig
li cells.
mparative study is conducted to analyze the ex-
profiles of ACE2 protein in various human tissues.

e compared expression profiles of ACE2 based on
], scRNA-seq transcriptomics profiling using Seu-
(Seurat tool) [68], MS [68] and proposed cluster-
nique. Table 3 presents a comparative account of
xpression profiles in different human tissue using
S, and Seurat packages. In IHC based expression
the highest level of ACE2 expression is detected in
ll intestine (93.724), testis (26.895), kidney (30.81),
rt (12.309). A medium value of ACE2 expression
ted in the colon (4.695), liver (1.294), and stomach
while very low ACE2 expression level is detected
marrow (0.049), brain (0.045), and spleen (0.007)

(as refer from Table 3).
Based on the MS study, a high ACE2 expression le

is observed in the kidney (4.8), testis (4.75), small int
tine (4.6), and pancreas (4.3). Low ACE2 expression
detected in bone marrow (0.16), brain (0.31) and spl
(0.26) (Referring Table 3). Single-cell transcriptomics p
filing using the Seurat tool detects high ACE2 express
levels in the heart (2.01), kidney (2.14), small intest
(1.53), testis (1.72), lung (1.61), and colon (1.53). L
ACE2 expression level is detected in bone marrow (0.1
brain (0.31), pancreas (0.35), skin (0.28), spleen (0.26) a
stomach (0.51).

Fuzzy-based improved GWO clustering method dete
a high ACE2 expression level in the lung (5.653), up
respiratory tract (5.073), testis (4.024), colon (4.099
kidney (1.483). Low ACE2 expression level is detec
in brain (0.338), spleen (0.019) and bone marrow (0.1
(as Refer from Table 3 and Figure. 2).

In all the previous studies and proposed fuzzy-ba
improved GWO clustering technique, it is observed t
intestinal cells, heart, kidney, testis, and lung show e
vated ACE2 expression. In contrast, low ACE2 express
is detected in the stomach, lymphatic tissue, skin, a
brain.

5.3. Interaction of SARS-CoV-2 protein with other me
brane protein and ssRNA viral receptor

To identify the gene set (ssRNA viral receptor or me
brane) that interact with SARS-CoV-2 protein, PPI n
work is constructed using string database https://stri
db.org/, with a confidence score of ≥ 0.4. The list
predicted ssRNA viral receptors and membrane prot
are then queried from STRING database with ACE2 a
TMPRSS2 protein as the hub genes. The PPI network

20



Journal Pre-proof

Table 3: ing
method

Datas
d

Bonem
Brain
Colon
Heart
Kidne
Liver
Lung
Pancr
Skin
Small
Spleen
Stoma
Testis

then vis
at: http

CD2
TFRC,
tein int
culated
CLEC4
ACE2 i
DPP4,
and VC
obtaine
5 gives
membra

Table 4:

SAR
Prot

ACE
ACE
ACE
ACE
ACE
ACE
ACE
ACE

DPP
are the
PRSS2
TMPRS
FURIN
dence s
ral rece
between
work of
protein

E2

in
ar-
me
e 8
ex-
hat
me
zy-

in
at

sed
zy-
ne)
ec-
sed

et-
sed
Jo

ur
na

l P
re

-p
ro

of

A comparative account of ACE2 expression profiles based on IHC, MS, and Seurat tool with Fuzzy based Improved GWO cluster

et Immunohistochemistry Mass Spectrometry Single-cell transcrip- Fuzzy-based Improved
(IHC) (MS) tomics profilling (Seurat) GWO Clustering metho

arrow 0.049 0.65 0.16 0.14910
0.045 0.48 0.31 0.33808
4.695 4.5 1.53 4.09998
12.309 3.4 2.01 2.94387

y 30.81 4.8 2.14 1.48309
1.294 1.45 0.23 1.40624
0.345 2.5 1.61 5.65387

eas 0.199 4.3 0.35 1.92722
0.089 0.65 0.28 1.34841

Intestine 93.724 4.6 1.53 2.74684
0.007 0.21 0.26 0.01932

ch 1.177 2.9 0.51 0.84124
26.895 4.75 1.72 4.02471

ualized using the open cytoscape software available
s://cytoscape.org/.
09, CEACAM1, CLEC4M, DPP4, ITGA2, ITGB1,
VCAM1 are the top ssRNA viral receptor pro-
eracts strongly with ACE2 protein. PCC is cal-
between ACE2 protein and CD209, CEACAM1,

M, DPP4, ITGA2, ITGB1, TFRC, VCAM1. Also,
nteract with the membrane protein BET1, DPP10,
DPP6, ECE1, FURIN, MEP1A, MEP1B, TRHDE
AM1. Table 4 gives the confidence score and PCC
d between ACE2 and ssRNA viral receptor. Table
the confidence score and PCC between ACE2 and
ne protein.

Confidence score and PCC of ssRNA protein with ACE2

S-CoV-2 ssRNA viral Confidence PCC
ein Receptor Score

2 CD209 0.455 0.8642
2 CEACAM1 0.420 0.8660
2 CLEC4M 0.420 0.7421
2 DPP4 0.898 0.715
2 ITGA2 0.530 0.728
2 ITGB1 0.591 0.7914
2 TFRC 0.618 0.9743
2 VCAM1 0.410 0.8156

4, TFRC, CEACAM1, ICAM1, ITGA4 and ITGB1
viral receptor protein correlate strongly with TM-
protein. The membrane protein that interacts with
S2 are ALK, DPP4, EPCAM, ERBB2, FOLH1,

, GOLM1 and PCSK5. Table 6 gives the confi-
core and PCC between TMPRSS2 and ssRNA vi-
ptor. Table 7 gives the confidence score and PCC

TMPRSS2 and membrane protein. The PPI net-
the predicted receptor protein and SARS-CoV-2
are given in Figure. 3 (A)-(D).

Table 5: Confidence score and PCC of membrane protein with AC

SARS-CoV-2 Membrane Confidence PCC
Protein Protein Score

ACE2 BET1 0.422 0.8660
ACE2 CD209 0.455 0.8642
ACE2 DPP10 0.420 0.7437
ACE2 DPP4 0.980 0.8010
ACE2 DPP6 0.420 0.7157
ACE2 ECE1 0.445 0.8620
ACE2 FURIN 0.525 0.8750
ACE2 MEP1A 0.925 0.5814
ACE2 MEP1B 0.878 0.9569
ACE2 TRHDE 0.408 0.9088
ACE2 VCAM1 0.410 0.8156

5.4. Experimental comparisons

• Computational complexity: With the simulation
Figure. 4 (a) and (b), the population size is v
ied between 20 to 220, and the CPU execution ti
is noted for all the repeated experiments. Tabl
shows the maximum execution time for all the
perimental runs. It is observed from Figure. 4. t
fuzzy-based improved GWO consume less CPU ti
to execute all the operation when compared to fuz
based DE and fuzzy-based GWO algorithm.

• Convergence analysis: With the simulation result
Figure. 4 (c) and (d), the objective value is noted
each iteration of fuzzy-based GWO and fuzzy-ba
improved GWO algorithm. It is seen that the fuz
based improved GWO algorithm (blue curve li
minimizes the Jm and XB objective function eff
tively at each iteration compared to the fuzzy-ba
GWO algorithm (orange curve line).

In Table 8, we have reported the performance m
rics scores achieved by fuzzy-based DE, fuzzy-ba
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(A) A PPI network of ACE2 and predicted viral receptor protein (B) A PPI network of ACE2 and predicted membrane pro
I network of TMPRSS2 and predicted viral receptor protein (D) A PPI network of TMPRSS2 and predicted membrane protein

Figure 4: Performance comparisons of different clustering algorithms
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Figure 5: Schematic flow of SARS-CoV-2 pathogenesis pathway analysis
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Confidence score and PCC of ssRNA protein with TM-

S-CoV-2 ssRNA viral Confidence PCC
ein Receptor Score

RSS2 DPP4 0.685 0.8229
RSS2 TFRC 0.500 0.974
RSS2 CEACAM1 0.526 0.7451
RSS2 ICAM1 0.474 0.9608
RSS2 ITGA4 0.488 0.6721
RSS2 ITGB1 0.975 0.7914

Confidence score and PCC of membrane protein with TM-

RS-CoV-2 Membrane Confidence PCC
tein Protein Score

PRSS2 ALK 0.510 0.9091
PRSS2 DPP4 0.685 0.8229
PRSS2 EPCAM 0.451 0.983
PRSS2 ERBB2 0.441 0.8581
PRSS2 FOLH1 0.568 0.883
PRSS2 FURIN 0.663 0.866
PRSS2 GOLM1 0.422 0.673
PRSS2 PCSK5 0.449 0.885

WO, and fuzzy-based Improved GWO algorithm
hen executed on different datasets. It is observed
at our proposed fuzzy-based improved GWO clus-
ring algorithm gives a good SC on brain, heart,
dney, lung and testis dataset. Least DBI value
achieved in brain, small intestine, heart, kidney,
ncreas, skin, stomach and testis data. A high CHI
lue is also achieved in brain, small intestine, heart,
dney, pancreas, lung, skin and stomach dataset.

hway enrichment analysis

is work, we have predicted 58 potential viral recep-
t mediate SARS-CoV-2 infection in different hu-

ganoids. These are: AXL, CD55, CD151, CD209,
D74, CD80, CD86, CEACAM1, CLDN1, CLEC4G,
, CX3CR1, CACNA1C, CD300LD, CR1, CR2,

DPP4, EPHA2, EFNB2, EFNB3, FCGRT, F11R,
, GPC5, GRM2, MRC1,MERTK, MXRA8, MOG,
, ITGB1, ITGB3, ITGB6, ITGB8, ITGA2, KRE-
PHB, NGFR, NCAM1, NECTIN4, PVR, RPSA,
1, OCLN, SCARB1, SCA-RB2, SLAMF1, LAMP1,
HAVCR1, HLA-DRA, TFRC, TYRO3, VCAM1,
M and CLEC5A.
membrane proteins that are co-expressed with SARS-
receptor protein (ACE2 and TMPRSS2) are also
d in this work. The molecular mechanism of the
d host receptors is studied to investigate their role

pathogenesis of SARS-CoV-2 infection using GO
d KEGG pathway enrichment analysis.

6.1. Gene ontology term enrichment analysis

The GO term enrichment analysis examines the fu
tional characteristics of the predicted 816 membrane p
tein and 58 ssRNA viral receptors. The GO annotat
term of the predicted genes is collected from DAVID bio
formatics resources [70]. The GO term enrichment an
ysis is performed to know the biological function (BP)
the predicted membrane protein at the cellular (CC) a
molecular level (MF). Those genes involved in similar
ological processes or molecular functions are expected
interrelate.

Some of the enriched CC terms of GO analysis p
cess are membrane, plasma membrane, lysosome me
brane, endosome membrane, nuclear membrane, endopl
mic reticulum membrane, mitochondrial membrane,
surface, cytosol, cytoplasm, nucleoplasm and extrace
lar exosome, etc. The GO-CC term refers to the lo
tions relative to the cellular structure where a gene p
forms a function, either cellular compartment (e.g., mi
chondria) or a part of stable macromolecular comple
(e.g., ribosomes), etc. The SARS-CoV-2 virus invades
host nucleus or cytoplasmic cell and causes severe respi
tory complications such as pneumonitis leading to up
acute respiratory distress syndrome (ARDS). Therefo
the membrane proteins involved in the CC terms medi
the entry of coronaviruses into the host cell membrane

Some of the enriched BP terms of the GO proc
are regulation of membrane protein, ectodomain pro
olysis, cell-cell adhesion mediated by integrin, adapt
and innate immune response, positive regulation of h
by the replication of the viral genome, fusion of me
brane, regulation of I-kappaB kinase/NF-kappaB sign
ing pathway, processing of antigen and representation
peptide antigen through major histocompatibility comp
(MHC) I, regulate the inflammatory response to the st
ulus of antigens, regulation of host morphology or ph
iology through the virus, mediate receptor endocyto
activate mitogen-activated protein kinase (MAPK) act
ity, toll-like receptor signaling pathway, involved in prot
ubiquitination catabolic process, activate the protein
rosine kinase transmembrane receptor protein, etc

A few of the top MF terms of the GO process are bi
ing of receptor, protein, complex molecular, and cell ad
sion, endopeptidase activity, binding of adenosine triph
phate (ATP), guanosine triphosphate (GTP) and antig
binding of lipid antigen, endogenous lipid antigen, a
exogenous lipid antigen, amide binding, peptide bindi
lipopeptide binding, virion binding, etc.

6.2. KEGG pathway enrichment analysis

The KEGG enrichment pathway analysis of the p
dicted viral receptor and membrane protein helps ident
the target protein that mediates or restricts SARS-CoV
infection. It helps understand the pathogenesis mechani
of SARS-CoV-2 infection and identify the target prot
for developing effective drugs and therapeutics for COV
19 disease. We have determined 816 membrane prote
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Table 8: Comparing the result of clustering method applied to the scRNA-Seq data

et Clustering method Optimal SC CHI DBI CPU Executio
Cluster No. time (in Sec

Fuzzy-based DE 6 0.40111 129.2800 1.0981 4324.159
Fuzzy-based GWO 7 0.51035 199.4293 0.8838 3468.025
Fuzzy-based Improved GWO 7 0.518334 203.3781 0.9540981 1421.252

Intestine Fuzzy-based DE 7 0.28990 47.1200 0.9250 3170.599
Fuzzy-based GWO 7 0.32706 166.5812 1.1416 2404.98
Fuzzy-based Improved GWO 7 0.32172 160.070 1.0754 1885.622

Fuzzy-based DE 9 0.16777 106.9702 1.2495 2624.318
Fuzzy-based GWO 9 0.2503 105.3301 1.38 2735.81
Fuzzy-based Improved GWO 10 0.26988 121.28160 1.30915 2636.0933

y Fuzzy-based DE 9 0.18920 174.2728 1.30155 5443.1794
Fuzzy-based GWO 8 0.2378 187.7814 1.2034 5064.963
Fuzzy-based Improved GWO 6 0.24466 122.8541 0.96017

eas Fuzzy-based DE 7 0.1578 52.59440 1.375780 1881.4833
Fuzzy-based GWO 9 0.14269 50.4459 1.3097 1770.255
Fuzzy-based Improved GWO 9 0.17971 50.78220 1.25620 1301.2298

Fuzzy-based DE 11 0.1660 25.55930 1.25809 281.2556
Fuzzy-based GWO 10 0.230 32.394 1.072 290.882
Fuzzy-based Improved GWO 13 0.29951 38.41294660 1.051319 215.39013

Fuzzy-based DE 6 0.296880 133.97489 1.04126 2042.3886
Fuzzy-based GWO 7 0.22799 60.4798 1.20528 1422.4246
Fuzzy-based Improved GWO 7 0.21182 100.504201 1.12764 1342.2304

ch Fuzzy-based DE 7 0.363190 181.50296 1.01722 2157.0308
Fuzzy-based GWO 7 0.31017 59.4220 1.17966 1365.36539
Fuzzy-based Improved GWO 11 0.201755 105.90519 1.16535 1522.73169

Fuzzy-based DE 7 0.31205 180.6621 1.2418 2997.637
Fuzzy-based GWO 9 0.33008 203.9592 1.1515 2914.6436
Fuzzy-based Improved GWO 9 0.334947 160.96580 0.88774 3152.2396

in the SARS-CoV-2 condition. The pathogenicity
ism or pathway of SARS-Cov-2 infection identified
GO and KEGG enrichment analysis is shown in

5.
ally, the SARS-CoV-2 virus uses its spike glycopro-
nteract with the host cell surface. The glycosylated
attaches to ACE2 receptor via glycosaminogly-
AGs) and induces a conformational change on the
l surface. The protein CHST1, CHST2, CHST3,
, CHST17, CHPF2, GLCE, EXT1, EXTL1, EXTL2,
, NDST3, NDST4, XYLT1 and XYLT2 synthesise
SARS-CoV-2 then penetrates the endocytic mem-
f the host cell to create an infection. Research
ed in Ref. [71] shows that the SARS-CoV-2 S1 re-
an bind to heparin derivative GAGs. Because the
oV-2 protein envelope contains positively charged
cid and are prone to interact with the negatively

charged heparin sulfate proteoglycans group. The me
brane proteins NDST1, NDST2, NDST3, NDST4, EXT
EXTL1, EXTL2, GLCE, XYLT1 and XYLT2 synthesi
glycosaminoglycan heparin sulfate or heparin that inhi
SARS-associated coronavirus cell invasion. Ref. [72] a
demonstrate that GAGs heparin derivative could prev
the spread of SARS-CoV-2 infection and hence can use
an anticoagulant drug against any other members of cor
aviridae. The antiviral drugs carboplatin and gemcitab
could act as therapeutic agents to prevent SARS-CoV
infection.

After interacting the viral spike protein with the h
cell membrane, the SARS-CoV-2 virus uses clathrin a
caveolin-dependent endocytosis to insert the viral part
into the host cell membrane. The SARS-CoV-2 virus th
penetrates through the endocytic membrane of the h
cell to establish an infection. It then transfers its v
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Table 9: The KEGG pathway enrichment analysis of some significant membrane protein

G Pathway P value Predicted protein of SARS-CoV-2

osome/Protolysis 6.9E-2 VTI1A, ZFPL1, MYRF, MGAT2, CLCA4, PRSS8
ST14, TRHDE, MEP1A, MMP24, PSMC5,PSMD14

PSME1,PSMB1, PSMA2, OLR1, POMP
itin mediated proteolysis 6.9E-2 FBXW11, HERC2, HERC4, HERC1,WWP1,MGRN1

NEDD4,UBE3A, UBA2, UBE2K, UBE2G1, UBE2E1
UBE2D2, NEDD4L

rin dependent endocytosis 2.2E-6 AP2A2, DNM2, APLP1, EPS15, EPN1,EPN2
LDLR,LY75, MRC2, SNX5

cytosis 1.2E-8 FGFR4, IGF1R, IL2RA, PSD2, TPCN2 ,ARF1
ARAP2, CLTA, CYTH1, RAB11, FIP1, RAB11A

SNF8, VPS29, VPS37B, WWP1, ARPC1B
GITI, ARPC2, CAPZB, CHMP5, HLA-F, NEDD4

PSD2, PDCD6IP, CHMP2A
saminoglycan biosynthesis 2.5E-3 NDST1, NDST2, NDST3, NDST4 , CHST1, CHST2

CHST3,CHST4, CHST17, CHPF2 GLCE, EXT1
EXTL1 , EXTL2, GLCE, XYLT2, XYLT1

kine mediated signalling pathway 2.6E-5 BCL2, CD226, CD27, CD276, CD28, FCER2
KIT, LRP8, MCL1, NFAM1, TRIL,VTCN1

EDA, EREG,ICAM1, PTPRN, STX1A, STX3
kine-cytokine receptor interaction 7.0E-2 CD70, ACVR1,AMHR2, BMPR2, CSF1, CRLF2

EDAR, EPOR, GHR, L1R2, IL2RA, IL21R
IL23R, IL5RA, IL9R, LEPR, OSMR, PRLR

l receptor signalling pathway 8.0E-1 CD8A, CD226, CD276, CD28,CD3D, CD3G
CD8A, CD8B, CTLA4, ICOS, LAT

cyte transendothelial migration 3.9E-3 THY1, ESAM, ICAM1, JAM2, JAM3 , VCAM1
K signaling pathway 8.9E-4 FLT3, EPHA8, KIT, MET, AREG,CSF1

EREG, ERBB2 , ERBB3 , ERBB4, FGFR4, FLT3
IGF1R, INSR, NTRK1, NTRK2, PTPRR , TGFA , EPHA2

STAT signalling pathway 2.9E-2 KIT, MCL1, CRLF2, EGF, EPOR,GHR
,IL2RA, IL21R, IL5RA, IL9R, LEPR, OSMR

PRLR, BCL2
tyrosine kinase inhibitor 8.4E-3 IGF1R, EGF, ERBB2,ERBB3,IGF1R, NRG1

NRG2, TGFA , BCL2, MET, BAX
ded protein response 1.4E-2 VAPB, XBP1, ATF6B, CREB3, EDEM1
in processing in 1.0E-2 EDEM1,XBP1,ATF6B,VCP, HSPA5, PDIA6

LMAN1, PREB, RRBP1
plasmic reticulum DNAJB1, SIL1, SEC61G, XBP1, DERL2, PRKCSH

CAPN1, CALR,CKAP4, DERL1, EIF2AK1, HSP90AB1
NFE2L2, PREB, PDIA3, CANX

carcinogenesis 6.0E-2 BAX, BAK1, DCC, REB3, BAD, CREBBP, J
UN, KRAS, RASA2, SP100, TRADD, CCND1

CCND3, CDK2, CDK6, CDKN1B, GTF2A2, MAPK3
SYK , NFKB2, CDKN1A

myocarditis 1.4E-2 DAG1, ICAM1,SGCA, SGCB, SGCD, ICAM1
HLA-F, SGCC, CD28, CD55, CXADR, CYCS

en processing and presentation 1.1E-4 CD8A,CD8B,CD74, HLA-DRA, CD1B, LGMN
HLA-F

on metabolism 9.4E-2 KIT,MET, FLT3, NTRK1, NTRK3, RET
RAF1, ERBB2

nthesis of antibiotics 3.2E-2 ACLY, SQLE, NME2, ACAT1, CDC42, FDFT1
FNTA, FMO1,FMO3, FMO4, FMO5, UGT1A1

GMPS, MGST1, PGP
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Table 10: List of approved drugs associated with the SARS-CoV-2 membrane protein for the treatment of COVID-19

brane Protein Drugs Composition

3 Rintatolimod, Hiltonol, Hydroxychloroquine, Aspirin
8848 Imiquimod, Resiquimod, Isatoribine, Loxoribine, Hydroxychloroquine
7 Telratolimod, Vesatolimod, Hydroxychloroquine sulfate, Gsk-2245035
9 Hydroxychloroquine sulfate, Agatolimod sodium, Tilsotolimod, Emd-1201081

Ribavirin
1A1 Bilirubin, Indinavir, Tranilast, Nilotinib, 7-Ethyl-10-hydroxycamptothecin

Dolutegravir, Letermovir , Raltegravir, Raloxifene , Etoposide
C5 Carfilzomib, Ixazomib, Bortezomib, Ixazomib citrate, Oprozomib
D11 Carfilzomib, Bortezomib, Ixazomib, Oprozomib
D14 Carfilzomib, Bortezomib, Ixazomib citrate, Oprozomib Sulfuretin
E1 Carfilzomib,Bortezomib
A2 Carfilzomib, Bortezomib ,Ixazomib citrate, Oprozomib, Marizomib
B2 Carfilzomib, Bortezomib ,Ixazomib citrate, Oprozomib, Marizomib , KZR-616
T4A Bevacizumab, Capecitabine, Oxaliplatin, Cetuximab
H2 Prunetin, Acetaldehyde, Diacetylmorphine, Disulfiram
T3 Docetaxel, Thalidomide
T1 Imatinib

Imatinib, Quizartinib, Nilotinib, Sunitinib, Amuvatinib
1 Cannabinol, Ditiocarb, Mannitol, Aminoglutethimide, Mestrano
M1 Tamoxifen, Piroxicam, Dexamethasone, Liothyronine Sodium

Mercaptopurine, Dexamethasone, Troglitazone, Cyclosporine
A4 Tremelimumab, Ipilimumab, Zalifrelimab, Abatacept, Atezolizumab

Sirolimus, Wortmannin, Dexamethasone, Methimazole, Antibiotic
R Cholestyramine, Evolocumab, Mipomersen, Tributyrin, Alirocumab

Acetylcysteine, Gemfibrozil, Corticotropin, Retino
1 Indatuximab Ravtansine, Heparin
2 Docetaxel, Paclitaxel, Hypoxanthine, Navitoclax

Oblimersen, Venetoclax, Obatoclax, Beauvericin, Isosorbide, Protuboxepin A
H1 Capromab, Technetium TC-99m Trofolastat Chloride, Mipsagargin , MDX-070

MLN-2704, MLN-591RL,Androstanolone, Methotrexate, Docetaxel, Mercaptopurine
3 Itopride, Tamoxifen, Nicotine, Rosuvastatin, Tacrolimu
1 Tamoxifen, Nicotine, Olanzapine
18A1 Glutamine, Tamoxifen, Aspirin, Collagenase clostridium histolyticum

Thrombin, Celecoxib, Ocriplasmin
B3 Afatinib, Seribantumab, Patritumab ,Cetuximab, Lapatinib

Pertuzumab , Panitumumab , Erlotinib, Aspirin, Alteplase
B2 Lapatinib, Afatinib , Trastuzumab, Pertuzumab , Dacomitinib

AC-480, Margetuximab, Tucatinib, MM-111, Sapitinib
1 Afatinib, Seribantumab , Patritumab, Cetuximab, Lapatinib

Pertuzumab, Panitumumab, Erlotinib, Aspirin, Alteplase
Daratumumab, Isatuximab, Thrombin
Metreleptin, Atorvastatin, Simvastatin
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Table 11: List of drugs in clinical trials associated with SARS-CoV-2 membrane protein for the treatment of COVID-19

brane Protein Drugs Composition

RA Basiliximab, Daclizumab, Aldesleukin, Inolimomab, Lmb-2, Lentinan
Dinitrochlorobenzene, Denileukin diftitox, Thyroxine, Methimazole

NQ1 Indapamide, Bepridil, Tacrolimus, Celecoxib, Ezogabine, Dolasetron
Repaglinide, Insulin, Indomethacin

L18A1 Glutamine, Tamoxifen, Aspirin, Collagenase clostridium histolyticum
Thrombin, Celecoxib, Ocriplasmin

KN1B Raltitrexed, Epoetin Beta, Celecoxib, Methotrexate, Lapatinib
Epoetin Alfa, Tretinoin, Progesterone, Streptozocin

3R Celecoxib
LF2 Ruxolitinib
PRB Razuprotafib, Sunitinib
1 Eculizumab, CDX-1135
LA4 Tremelimumab, Ipilimumab, Zalifrelimab, Abatacept, Atezolizumab

Sirolimus, Wortmannin, Dexamethasone, Methimazole, Antibiotic
-DRA Floxacillin, Amoxicillin, Clavulanic acid, Pembrolizumab, Atezolizumab, Nivolumab

E2 Zidovudine, Tenofovir, Lamivudine, Progesterone
YR1 Cixutumumab, Teprotumumab, Trandolapril, Verapamil, Pioglitazone
34 Fludeoxyglucose-F18, Puromycin, Prednisolone, Quercetin
CN2 Verapamil
O3 Itopride, Tamoxifen, Nicotine, Rosuvastatin, Tacrolimus
A8 Bupivacaine, Denosine Diphosphate, Tretinoin

ST3 Docetaxel, Thalidomide
P4 Sitagliptin, Saxagliptin, Gosogliptin, Vildagliptin, Begelomab

Alogliptin, Linagliptin, Bisegliptin, Valacyclovir, Anagliptin
R Pegvisomant, Somatropin, Somatrem, Somatrogon, ACP-001
LR Endostatin, Somatropin, Androstanolone

articles from the lumen to the cell cytosol of the
al system. [73] demonstrates that the knockdown

rin-dependent heavy chain process could reduce
fectivity. The viral plasma protein low-density
ein receptor (LDLR) is required to regulate plasma
ein levels. LDLR internalizes lipoprotein cargo
the clathrin or caveolin-mediated endocytosis pro-
LR protein level is regulated by an inducible de-

of the LDLR (IDOL) and proprotein convertase
n/kexin type 9 (PCSK9). IDOL, an E3-ubiquitin
promotes the degradation of LDLR through the
nation process. PCSK9 induces LDLR internaliza-
forming clathrin-coated pits similar to the binding
rotein ligands. LDLR is important lipid metabolism

associated with cardiovascular disease. A better
ation into the pathway of degrading LDLR levels
rovide a new therapeutic target. It is found that
embrane proteins AP2A2, APLP1, DNM2, EPS15,
EPN2, LY75, MRC2, SNX5 mediate the clathrin-
nt endocytosis process in SARS-CoV-2 infection.
embrane proteins are responsible for forming clathrin-

pits in the host cell’s cytoplasmic membrane. The
involved in the clathrin-dependent endocytosis path-
be extensively studied in the future to find antivi-

apy’s target.

The ubiquitin-proteasome interaction is also essen
for the various stages of the coronavirus infection cy
[74]. The membrane protein FBXW11 mediates the ub
uitination process and degrade the target protein in SAR
CoV-2 infection. The protein ligase namely: HERC
HERC4, HERC1, WWP1, MGRN1, NEDD4, NEDD
UBE2D2, UBE2E1, UBE2G1, UBE2K and UBA2 acc
ubiquitin from a conjugating ubiquitin enzyme and tra
fers the ubiquitin directly to the target substrate. Epit
lial growth factor receptor (EGFR) plays a vital role in
internalization process of coronaviruses. SARS-CoV-2
fection can over-activate the EGFR signaling pathway a
consequently produce inflammation in the lung. Ref. [
shows the possible way of preventing SARS-CoV-2 dise
is by downregulating the signaling pathway that promo
the endocytosis process. EGFR tyrosine kinase inhibit
(TKIs) inhibit the endocytosis of the SARS-CoV-2 vi
through EGFR. Imatinib, an inhibitor, can inhibit
replication process of SARS-CoV-2 infection before th
reproduction [71].

When the SARS-CoV-2 virus invades the human c
viral proteins trigger an immune response to counter
the virus. These viral antigens are recognized by the
cell and presented by MHC to the T cell for developing
nate immunity. It results in natural antibody product
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ances cytokine secretion and cytolytic activity in
ial phase of infection. During the innate immune
e, pattern-recognition receptors (PRRs) are acti-

recognize the molecular structure of the invading
ns [75]. Once PPRs identify the pathogen molec-
tern, several signaling pathways and transcription
are activated via Janus kinase-signal transducer
ivator of transcription (JAK-STAT) pathway [76].
nscription factors induce gene expression that en-
ro-inflammatory cytokines, chemokines, and sev-
esion molecules. Interleukin-1 (IL-1), interleukin-6
ype I interferon (IFN-I), and TNF-α are the neces-
-inflammatory cytokines response. The mast cell,

hages, endothelial and epithelial cells generate pro-
atory cytokines during the immune response. The
increase in the circulating level of pro-inflammatory
es results in the cytokine storm [77]. The cytokines
aused the influx of various immune cells such as T
utrophils, and macrophages from the blood cap-
the infection site, which inflames the injury and

es ARDS [77, 76].
co-receptor protein EPHB2, KIT, MCL1, CRLF2,
RBB4, EPOR, GHR, IL21R, IL23R, IL5RA, IL9R
PR of ACE2 mediate cytokine-cytokine interaction
imal JAK-STAT signalling pathway. Suppression

feron pathway is a common approach used by the
degrade innate antiviral immunity. Targeting the

ediators of immune evasion may help block virus
ion in patients with COVID-19. The deficiency
n interleukin 21 receptors (IL21R) cause chronic

itis and liver disease in severe SARS-CoV-2 in-
atients. Thus, IL21 is a new therapeutic target
taining immune homeostasis [78].

er possible immunopathological manifestations of
oV-2 infection are neutrophilia, dysregulation of
tes and macrophages, delayed IFN-I response, lym-
ia, etc. Severe COVID-19 patients usually have an
d neutrophil count than a mild case and average
Neutrophils protect against infection by produc-
rophil extracellular traps (NETs). However, exces-
ivation of neutrophils in SARS-CoV-2 patients can
the surrounding cell and dissolve connective tis-

]. Treatment using the NETs approach decreased
monary hyperinflammation caused due to severe
-19 infection.
rophages and monocytes are the primary immune
lved in infection and inflammation. At the initial
f acute lung injury, an immune response is trig-
y macrophages and dendritic cells by activating
-presenting cells, which produce pro-inflammatory
es, prostaglandins, and histamine. The increased
bility of microcirculatory into the infection site ob-
the blood-air barrier and promotes pulmonary hem-
s, and ARDS [77, 76, 75]. Dysfunction of endothe-
s and pulmonary tissue oxygenation may promote
l pneumonia and sepsis. Ref. [65] article sug-
PP4 inhibitors could suppress the production of

interleukin and interferon, reducing T cell proliferati
DPP8/9 inhibitor reduced cell activation by reducing
secretion of TNF-α and IL-6 from macrophages. Th
the food and drug administration (FDA) approve us
DPP4 inhibitors for managing chronic inflammatory d
eases such as atherosclerosis and type II diabetes.

Interferons (IFNs) activate immune cells. IFNs re
late the infiltration of monocyte-derived macrophages
the lung. Delayed IFNs induction in SARS-CoV-2
fection accumulates excessive active macrophages in
lung and causes immunopathology. Impaired product
of IFNs during SARS-CoV-2 infection creates an imb
ance in upper airway macrophages’ pro-inflammatory a
repair function. A delayed IFNs production inhibits T
progression from lymphoid tissue and can cause cell de
of T cells. Acute lung injury in SARS-CoV-2 patie
is due to the failure of T cells to activate immunos
pressive mechanism timely [76, 75]. The toll-like recep
membrane protein TLR3 and TLR7 induce macroph
cells to generate innate lung immunity. TLR signaling
tivates pro-inflammatory cytokine factors such as IL-
IL-1β, IL-4, IL-6, and interferon. Thus, TLRs could
as a potential target for controlling SARS-CoV-2 infect
in an early stage of the disease [79, 75].

SARS-CoV-2 infection induce lymphopenia by activ
ing systemic inflammation and directly neutralizing or
stroying human lymphoid organs. SARS-CoV-2 infec
patients have low lymphocyte count, smaller lymphoid
licles, enhancement of immunoblastic cells, and low T zo
proliferation. This shows that SARS-CoV-2 infection c
cause more severe damage to human lymphoid organs a
spleen than hepatitis B virus (HBV) and Epstein–B
virus (EBV) infection [80]. Lymphatic endothelial c
require Ephrin B4 and Ephrin B2 membrane protein
maintain the integrity of lymph vessels. Ephrin B4 a
Ephrin B2 signaling pathways provide a potential the
peutic target to modulate the permeability of lympha
vessels. The loss of Ephrin B4 and Ephrin B2 signal
increases the vessel leakage in response to bacterial a
viral infection [81].

Ref. [82] reported that coronavirus replication indu
excessive stress in the endoplasmic reticulum (ER). T
excessive synthesis of protein and folding of a viral prot
is the main reason for causing ER stress in coronavi
infection. The excessive protein accumulation disru
the protein synthesis and ER folding capacity balan
This led to the accumulation of excessive unfolded prote
in ER. The membrane proteins EDEM1, XBP1, ATF6
DERL1, DERL2, HSPA5, NFE2L2, and VCP initiate
unfolding protein response in the ER. The SARS-CoV
protein CANX, CALR, HSP90B1, HSPA5, PDIA3 fol
transmembrane protein into ER. We find drugs brefeld
indapamide, ezogabine, dolasetron, and repaglinide p
vent protein assembly, disrupt coatomer protein I (COP
transport, and partially block viral RNA synthesis.

The proteins CD28, CD55, CXADR, CYCS, ICAM
DAG1, HLA-F, SGCA, SGCB, SGCD, and SGCG, are
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le for causing myocardial damage in SARS-CoV-
ion. Stingi and Cirillo reported that oncogenic
e the long-term secondary effect of SARS-CoV-2

n [83]. SARS-CoV-2 infection may develop can-
inhibiting tumor suppressor genes, ST14. Also,
oV-2 infection induces carcinogenesis via tyrosine
eceptors [71] by penetrating the blood-brain bar-
B). Another potential cause of cancer development
gression in SARS-CoV-2 infection is the activa-
IL-6 and JAK/STAT3 signaling pathways in the
microenvironment of bladder cancer patients. A
o-inflammatory cytokine triggers cancer develop-
d progression through tyrosine kinase receptors.
mbrane proteins BAK1, BAX, KRAS, CCND1,
CDKN1A, CDKN1B, and NFKB2 promote mu-

is in SARS-CoV-2 infection. The identified KEGG
g pathway of the target membrane protein is shown

9.
have identified some of the target membrane pro-
lated to the pathogenesis of SARS-CoV-2 infection.
mbrane protein list is then queried from the drug-
teraction database 3 https://www.dgidb.org/ and

combination is found. Table 10 and Table 11 list
ggable membrane protein and its composition to
OVID-19 disease. A list of gene names and their
ation used in this article is provided in Tables 12,
15.

clusion

the first time, the paper discusses a metaheuristic
ased clustering approach for predicting the poten-
t receptor that either mediates or restricts SARS-
infection in humans. The main reason for iden-
the host receptor of SARS-CoV-2 infection from
ell gene expression data is to study the role of the
r in the pathogenesis of COVID-19 disease. It helps
ate the effect of these target receptors in the search
tment against COVID-19 illness.
proposed fuzzy-based clustering approach utilizes
O algorithm concept to find the optimal cluster
and centroid from the scRNA-Seq data. The ex-
y and exploitatory search mechanism of the clas-
O algorithm is improved by hybridizing a set of

n, crossover, and selection operators of the evo-
y algorithm. Towards the end of the optimiza-
orithm, the weak search agents are removed from
ulation and reinitialized around the position of

t search agent randomly to evolve through a bet-
vidual in the next generation. The fuzzy-based
d GWO clustering algorithm is then executed on
scRNA-Seq data of human tissue to identify a set
criptionally and biologically similar genes (mem-
rotein or ssRNA viral receptor protein) with ACE2.

://www.dgidb.org/

Also, PCC is calculated between ACE2 protein and me
brane protein or viral receptor protein to validate the
expressed genes. The interaction of the predicted rec
tor protein with the SARS-CoV-2 protein (ACE2 or T
PRSS2) is also analyzed through the PPI network. P
vious work using hierarchy clustering had confirmed t
the peptidases: DPP4, ANPEP and ENPEP are the
receptor of ACE2 protein [7]. But our study successfu
identified 816 membrane proteins and 58 viral recept
that play a vital role in the pathogenesis of SARS-CoV
infection.

The main advantage of the proposed fuzzy-based
proved GWO clustering approach is its ability to stu
the expression level of a gene in every other cluster at o
time. Previous work, such as IHC and MS studies,
quired more detailed pathology information to determ
the biomarker of tissue at the microscopic level. As a
sult, it becomes difficult to study the expression level
a protein at the molecular level. It also requires a lot
effort and time for the specimen collection and laborat
setup. Also, single-cell transcriptomics analysis using
Seurat tool does not give a clear account of the biologi
functionality of the receptor protein at the molecular lev
We have predicted the co-receptor protein of SARS-CoV
infection using the unsupervised fuzzy clustering techniq
with the GWO algorithm and analyzed the biological a
cellular functioning of the receptor protein using PPI n
work, GO term, and KEGG pathway enrichment analy

We have identified the set of proteins that either me
ates or restricts a biological pathway in the mechani
of SARS-CoV-2 infection. The work has also succe
fully identified the membrane protein that could inhi
the spread of SARS-CoV-2 infection. Antiviral drugs su
as carboplatin and gemcitabine could prevent SARS-Co
2 disease. Besides, one of the most significant finding
that one of the preventing SARS-CoV-2 infection in
initial stage is by downregulating the signalling pathw
that promotes clathrin or caveolin mediated endocyto
process. Drug, imatinib, has been shown to inhibit
replication process of SARS-CoV-2 infection. In futu
clathrin or caveolin mediated pathway can be studied
find the root cause of SARS-CoV-2 disease.
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Table 12: Gene name and its abbreviation used in the article

Name Abbreviation Gene Name Abbreviation

0 Dipeptidyl peptidase 10 EPN2 Epsin 2
9 Disintegrin and metalloproteinase domain 9 MYH7 Myosin 7
17 Disintegrin and metalloproteinase domain 17 LAMA2 Laminin subunit alpha 2

1 Claudin MRC1 Macrophage mannose receptor 1
A2 Plexin A2 PRSS8 Prostasin preproprotein

/CD151 Tetraspanin SCARB2 Scavenger receptor class B member 2
2 Endoplasmic reticulum aminopeptidase 2 GRM2 Metabotropic glutamate receptor 2
A2 Cytochrome P450 family 1 family A member 2 GPC5 Glypican 5
14A C-type lectin domain family 14 member A EFNB2 Ephrin-B2
RA Histocompatibility antigen, DR alpha chain EFNB3 Ephrin-B3

IN4 Nectin cell adhesion molecule 4 CR1/CR2 Complement receptor 1/2
3 Integrin beta-3 ST14 Suppression of tumorigenicity 14
6 Integrin beta-6 CXCL11 Chemokine (C-X-C motif) ligand 11
8 Integrin beta-8 SLC22A8 Solute carrier family 22 member 8
A1C Voltage dependent L-type calcium subunit alpha SLC26A7 Solute carrier family 26, member 7

/CD9 Tetraspanin COX8C Cytochrome c oxidase subunit 8C
/ERK2 Mitogen-activated protein kinase COX8A Cytochrome c oxidase subunit 8A
1A Cyclin-dependent kinase inhibitor 1A CDKN1B Cyclin-dependent kinase inhibitor 1B

0B1 Heat shock protein 90 beta family member 1 DERL2 Derlin-2
Interleukin 23 receptor IL5RA Interleukin-5 receptor subunit alpha

D2 Ubiquitin conjugating enzyme E2 D2 UBE2E1 Ubiquitin conjugating enzyme E2 E1
G1 Ubiquitin conjugating enzyme E2 G1 UBE2K Ubiquitin-conjugating enzyme E2
1 HECT, RLD domain E3 ubiquitin ligase 1 EXTL1 Exostosin like glycosyltransferase 1
4 HECT, RLD domain E3 ubiquitin ligase 4 EXTL2 Exostosin like glycosyltransferase 2
2 Carbohydrate sulfotransferase 2 CHST3 Carbohydrate sulfotransferase 3
4 Carbohydrate sulfotransferase4 MEP1B Meprin B subunit
9 ATP binding cassette family C member 9 MMP24 Matrix metallopeptidase 24

Vesicle transport interaction with t-SNARE 1A ZFPL1 Zinc finger protein-like 1
2 Mannoside acetylglucosaminyltransferase 2 PSMC5 Proteasome 26S subunit, ATPase 5
4 Calcium activated chloride channel regulator 4 PSMD14 Proteasome 26S subunit, nonATPase 14
1 Proteasome activator subunit 1 PSMB1 Proteasome subunit beta 1

Oxidized low-density lipoprotein receptor 1 POMP Proteasome maturation protein
11 F-box and WD repeat domain containing 11 FGFR4 Fibroblast growth factor receptor

Interleukin-2 receptor subunit alpha TPCN2 Two pore segment channel 2
Phosphatidylserine decarboxylase proenzyme 2 ARF1 ADP-ribosylation factor

1 Cytohesin-1 CLTA Clathrin light chain
1A Ras-related protein Rab-11A isoform 1 SNF8 Vacuolar-sorting protein SNF8
7B Vacuolar protein sorting 37B ARPC2 Arp2/3 complex 34 kDa subunit
B F-actin-capping protein subunit beta CHMP2A Charged multivesicular body protein 2A

B-cell CLL/lymphoma 2 FCER2 Fc fragment of IgE receptor II
Low density lipoprotein receptor protein 8 NFAM1 NFAT activation molecule 1

1 V-set domain T cell activation inhibitor 1 PTPRB Protein tyrosine phosphatase receptor B
A Syntaxin 1A HSPA8 Heat shock protein 8
1 Potassium voltage-gated channel family Q1 CYYR1 Cysteine and tyrosine-rich protein 1

8A1 Collagen type XVIII alpha 1 ALDH2 Aldehyde dehydrogenase 2 family membe
MHC class I polypeptide-related sequence B PGP Phosphoglycolate phosphatase

/7/9 Toll like receptor-3/7/9 MGST1 Microsomal glutathione S-transferase 1
A1 UDP-glucuronosyltransferase FDFT1 Farnesyl-diphosphate farnesyltransferase
1 Acetyl-CoA acetyltransferase 1 NME2 Nucleoside diphosphate kinase

Squalene epoxidase ACLY ATP citrate lyase
3 Neurotrophic tyrosine kinase receptor, type 3a MAPK3 Mitogen-activated protein kinase
D Tumor receptor-associated DEATH domain CAPN12 Calpain 12
K1 Eukaryotic initiation factor 2-alpha kinase 1 SEC61G SEC61 translocon subunit gamma
3 cAMP responsive element binding protein 3 PRLR Prolactin receptor

Hoffmann, H. Kleine-Weber, N. Krüger, M. Müller,
rosten, S. Pöhlmann, The novel coronavirus 2019 (2019-

ncov) uses the sars-coronavirus receptor ace2 and the cellu
protease tmprss2 for entry into target cells, BioRxiv (2020)
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Table 13: Gene name and its abbreviation used in the article

Name Abbreviation Gene Name Abbreviation

Syntaxin 3 CD70 CD70 molecule
1 Receptor protein serine/threonine kinase AMHR2 Anti-Muellerian hormone type-2 receptor
2 Receptor protein serine/threonine kinase EDAR Ectodysplasin A receptor

Leukocyte immunoglobuli-like receptor 2 PRPL Plastid ribosomal protein L24
T-cell surface glycoprotein CD3 delta chain CTLA4 Cytotoxic T-lymphocyte protein 4
T-cell surface glycoprotein CD3 gamma chain ICOS Inducible T cell costimulator
Linker for activation of T cells THY1 Thymus cell antigen 1, theta
Endothelial cell-selective adhesion molecule JAM3 Junctional adhesion molecule 3
Fms related receptor tyrosine kinase 3 EPHA8 Ephrin type-A receptor 8
Amphiregulin ERBB3 Receptor protein-tyrosine kinase

1 Neurotrophic tyrosine kinase, receptor 1 NTRK2 neurotrophic tyrosine kinase, receptor 2
R Receptor-type tyrosine-protein phosphatase R TGFA Transforming growth factor alpha
2 EPH receptor A2 NRG2 Neuregulin 2

Vesicle-associated membrane protein B PDIA6 Protein disulfide-isomerase A6
1 Lectin, mannose binding 1 PREB Prolactin regulatory element binding
1 Ribosome binding protein 1 SIL1 Nucleotide exchange factor SIL1
SH Protein kinase C substrate 80K-H CKAP4 Cytoskeleton associated protein 4

0AB1 Heat shock protein HSP 90-beta isoform A DCC Development and carotenogenesis control-
Betaine aldehyde dehydrogenase 2 CREBBP Histone acetyltransferase

2 Ras GTPase-activating protein 2 SP100 Nuclear autoantigen Sp-100
Cellular communication network factor 1 CND3 Condensin complex non-SMC subunit
Cyclin dependent kinase 6 CDKN1B Cyclin-dependent kinase inhibitor 1B
Spleen associated tyrosine kinase CD74 Thyroglobulin type-1 domain protein
T-cell surface glycoprotein CD1b RET Ret proto-oncogene
RuBisCO accumulation factor 1 FNTA Farnesyltransferase, CAAX box, alpha

S Guanine monophosphate synthase FMO4 Flavin containing monooxygenase 4
Flavin containing monooxygenase 5 PSMD11 Proteasome 26S subunit, non-ATPase 11
Hematopoietic progenitor cell antigen CD34 CD38 ADP-ribosyl cyclase 1
Leukocyte surface antigen CD47 CD74 Histocompatibility antigen gamma chain

/86 Cluster of differentiation 80/86 CD300LD CD300 molecule like family member D
2 N-deacetylase and N-sulfotransferase 2 NDST3 N-deacetylase and N-sulfotransferase 3
4 N-deacetylase and N-sulfotransferase 4 XYLT2 Xylosyltransferase 2

Exostosin glycosyltransferase 2 EXT3 Exostosin glycosyltransferase 3
Interleukin-2 receptor subunit alpha IL23R Interleukin 23 receptor
Interleukin 5 receptor subunit alpha IL9R Interleukin-9 receptor

. Gordon, G. M. Jang, M. Bouhaddou, J. Xu, K. Obernier,
. White, M. J. O’Meara, V. V. Rezelj, J. Z. Guo, D. L.

ney, et al., A sars-cov-2 protein interaction map reveals tar-
for drug repurposing, Nature 583 (7816) (2020) 459–468.
i, M. Guo, X. Tian, X. Wang, X. Yang, P. Wu, C. Liu,
iao, Y. Qu, Y. Yin, et al., Virus-host interactome and pro-
ic survey reveal potential virulence factors influencing sars-

2 pathogenesis, Med 2 (1) (2021) 99–112.
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eomics resources for covid-19 research, bioRxiv (2020).
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i, S. Qian, S. Zhang, Z. Zhang, Single cell rna sequencing
3 human tissues identify cell types and receptors of human
naviruses, Biochemical and biophysical research communi-

cations (2020).
[8] M. Singh, V. Bansal, C. Feschotte, A single-cell rna express

map of human coronavirus entry factors, bioRxiv (2020).
[9] W. Sungnak, N. Huang, C. Bécavin, M. Berg, R. Que

M. Litvinukova, C. Talavera-López, H. Maatz, D. Reich
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Table 14: Gene name and its abbreviation used in the article

Name Abbreviation Gene Name Abbreviation

9 C-type lectin domain containing protein CLEC4G C-type lectin domain family 4 member G
4M C-type lectin domain family 4 member M CLEC5A C-type lectin domain family 5 member A
N Furin, paired basic amino acid cleaving enzyme DNM1 Dynamin 1
P Aminopeptidase ENPEP Glutamyl aminopeptidase

Dipeptidyl peptidase 4 DPP6 Dipeptidyl peptidase 6
F1 Signaling lymphocytic activation molecule APLP1 Amyloid beta precursor like protein 1
2 Adaptor protein complex 2 subunit alpha 2 EPS15 Epidermal pathway substrate 15

Epsin 1 LDLR Low density lipoprotein receptor
Lymphocyte antigen 75 MRC2 Mannose receptor, C type 2

7 Disintegrin and metalloproteinase protein 7 SNX5 Sorting nexin-5
Neuropilin ICAM1 Intercellular adhesion molecule 1
Epidermal growth factor receptor AXL Alpha-xylosidase

T Fc gamma receptor and transporter NRG1 Neuregulin 1
6 Fc receptor like 6 LRP1 lipoprotein receptor-related protein 1
1 Fibroblast growth factor receptor EFNB1 Ephrin B1
EN1 Kringle containing transmembrane protein 1 ASGR1 Asialoglycoprotein receptor 1

Immunoglobulin superfamily leucine-rich SNCA Alpha-synuclein
7 Protocadherin 7 ANXA3 Annexin

Monocyte differentiation antigen 14 PDPN Podoplanin
L Calreticulin FOXF1 Forkhead box F1

Advanced glycosylation end-product receptor MYRF Myelin regulatory factor
L2 Transcription factor 7 like 2 LRP5 Low density lipoprotein receptor protein
B1 Cytochrome P450 family 4 subfamily B member 1 ACTA2 Actin alpha 2
INB4 Serpin B4 KRT4 Keratin 4
A1 Plexin A1 VEGFA Vascular endothelial growth factor

Epiregulin IGSF21 Immunoglobin superfamily member 21
Apolipoprotein E TAGLN Transgelin

A2 Collagen type I alpha 2 chain FABP4 Fatty acid-binding protein 4
P1 Mast cell expressed membrane protein 1 MYH11 Myosin heavy chain 11

14 Matrix metallopeptidase 14 ALDH1A2 Aldehyde dehydrogenase 1 family, A2
1 Neurexin-1 MYH2 Myosin 2

Proteolipid protein 1 VCAM1 Vascular cell adhesion protein 1
2 Receptor protein-tyrosine kinase ERAP1 Endoplasmic reticulum aminopeptidase

Jun proto-oncogene EPCAM Epithelial cell adhesion molecule
UT1 One cut domain family member SPARCL1 SPARC-like protein 1
I BMP and activin membrane-bound inhibitor CSF1 Colony stimulating factor 1

M1 Hexamethylene bisacetamide inducible 1 HMOX1 Heme oxygenase 1
K MER proto-oncogene, tyrosine kinase MS4A7 Membrane spanning 4-domains A7

T-cell surface glycoprotein CD8 alpha IL7R Interleukin 7 receptor
3 Fibroblast growth factor receptor CSF1R Colony stimulating factor 1 receptor
A4 Solute carrier family 10 member 4 MEGF11 Multiple epidermal growth factor 11

8 Glutamate metabotropic receptor 8 TRPM3 Transient receptor potential member 3
F1 Transmembrane 4 L six family member 1 DAG1 Dystroglycan 1
8 Matrix remodeling associated 8 CD147 basigin or BSG

2 Integrin subunit alpha 2 ITGB1 Integrin beta
Transferrin receptor BET1 BET1 isoform 4
Endothelin converting enzyme 1 MEP1A Meprin A subunit

E Thyrotropin releasing hormone degrading enzyme ITGA4 Integrin subunit alpha 4
Aurora-like kinase FOLH1 Folate hydrolase 1

1 Golgi membrane protein 1 CHST1 Carbohydrate sulfotransferase 1
5 Proprotein convertase subtilisin/kexin type 5 CHPF2 Chondroitin polymerizing factor 2

Glucuronic acid epimerase EXT1 Exostosin glycosyltransferase
Exostosin like glycosyltransferase NDST1 N-deacetylase and N-sulfotransferase 1

1 Xylosyltransferase 1 DNM2 Dynamin 2
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Table 15: Gene name and its abbreviation used in the article

Name Abbreviation Gene Name Abbreviation

2 HECT, RLD domain E3 ubiquitin ligase 2 WWP1 WW domain E3 ubiquitin protein ligase
1 Mahogunin, ring finger 1 NEDD4 Neural precursor cell, downregulated 4

Ubiquitin conjugating enzyme E2 UBA2 Ubiquitin-activating enzyme E1 2
2 Ephrin type-B receptor 2 MCL1 Myeloid leukemia cell differentiation
2 Cytokine receptor-like factor 2 ERBB4 Receptor protein-tyrosine kinase

Erythropoietin receptor IL21R Interleukin 21 receptor
Leptin receptor XBP1 X-box binding protein 1

1 ER degradation enhancer, mannosidase alpha 1 ATF6B Activating transcription factor 6 beta
1/2 Derlin-1/2 VCP Valosin containing protein
5 Heat shock protein 90 beta family member 1 CANX Calnexin
L2 Nuclear factor erythroid 2 factor 2 isoform 1 CALR Putative calreticulin
3 Protein disulfide-isomerase A3 CD55 Complement decay-accelerating factor
R Coxsackievirus and adenovirus receptor SGC Sarcoglycan

Cytochrome c, somatic BAK1 BCL2 antagonist/killer 1
HLA class I histocompatibility antigen, F BAX BCL domain-containing protein
GTPase KRas isoform X1 SYT Synaptotagmin

1 Cyclin N-terminal domain-containing protein SIGLEC1 Sialic acid binding Ig like lectin 1
Cyclin-dependent kinase inhibitor MLN-4760 Promotilin-4760
Flavin dimethylaniline monoxygenase 3 NRCAM Neuronal cell adhesion molecule

2 Nuclear factor kappa B subunit 2 TFR2 Transferrin receptor 2
Membrane cofactor protein GP2 Glycoprotein 2

C Protein tyrosine phosphatase receptor type C MET Methyltransferase
6 FXYD domain-ion transport regulator OSMR Oncostatin M receptor
3 Cadherin related family member 3 CLIC4 Chloride intracellular channel protein
B Signal recognition particle receptor subunit beta SDC1/SDC4 Syndecan -1/Syndecan-4

Plastin 3 GDF15 Growth differentiation factor 15
2 T-cell surface glycoprotein CD8 beta-2 CNMD Chondromodulin-I

Ig-like domain-containing protein CXCL10 C-X-C motif chemokine ligand 10
9 Multiple epidermal growth factor 9 KRT5 Keratin 5
P Adipocyte plasma membrane-associated protein IDO1 Indoleamine 2,3-dioxygenase 1

13 Chemokine (C-X-C motif) ligand 13 CCDC78 Coiled-coil domain protein 78
3A1 Secretoglobin family 3A member 1 IGF1R Insulin-like growth factor 1 receptor
AM1 Carcinoembryonic antigen cell adhesion molecule 1 INSR Insulin receptor activity

Homeostatic iron regulator COX7B Cytochrome c oxidase subunit 7B
1 Cell adhesion molecule 1 VIM Vimentin
8 Reproductive homeobox 8 APOA1 Apolipoprotein A-I

6 Sperm-associated antigen 6 ZPBP Zona pellucida binding protein
Inhibitor of DNA binding 4 NEUROG3 Neurogenin-3

1A1 Cholesterol side-chain cleavage enzyme MAGEA4 Melanoma-associated antigen 4
Gamma-glutamyltransferase 5 GT7 Putative glycosyltransferase 7
Junctional adhesion molecule 2 PLD6 Phospholipase D family, member 6

1 Spermatid maturation protein 1 SGPL1 Sphingosine-1-phosphate lyase 1
Tyrosine-protein kinase receptor TYRO3 Receptor protein-tyrosine kinase
Gamma-glutamyltransferase 1 EGF Epidermal growth factor

M1 Platelet endothelial cell adhesion molecule 1 IL1RL1 Interleukin 1 receptor like 1
RB Platelet-derived growth factor receptor beta CUBN Cubilin
1 Potassium voltage-gated channel family E member 1 FOXL1 Forkhead box L1

Jagged canonical Notch ligand CX3CR1 Chemokine (C-X3-C motif) receptor 1
H2 Neurogenic locus notch homolog protein 2 HMGB1 High mobility group box 1
R1 Hepatitis A virus cellular receptor 1 OCLN Occludin
1 Lysosomal associated membrane protein 1 PVR Poliovirus receptor
B1 Scavenger receptor class B member 1 RPSA 30S ribosomal protein S1
A1 Solute carrier family 10 member 1 PHB Prohibitin
1 Neural cell adhesion molecule 1 NGFR Nerve growth factor receptor
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orec, J. Jorgačevski, Neurotropic viruses, astrocytes, and

d-19, Frontiers in Cellular Neuroscience 15 (2021) 123.
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• Identifictinn ifn refepctirn ficftirn (singleten stricndedn RNA n pcritein/meemearicnen pcritein)n 
thictn eithern meediicten irn restriftn then entryn ifn SA RS-CiV-2n infeftinn intin histn feetetn 

• n Expcressiinn eteveetn ifn SA RS-CiV-2n pcitenticetn refepctirsn icren icnicetysedn withn then heetpcn ifn 
fuzzyn fetusteringln icpcpcriicfhn 

• n Then pcripcisedn fuzzyn fetusteringln icpcpcriicfhn utetizen Greyn wietfn ipctmeizern icetglirithmen tin 
deteftn feetetn fetustern icutimeictficetetyn frimen icnyn sfRNA -Seqn dicticn 

• n Identifictinn ifn singleten stricndedn viricetn refepctirn icndn meemearicnen pcriteinn thictn eithern 
meediicten irn restriftn then entryn meefhicnismen ifn SA RS-CiV-2n infeftinn intin histn feetetn 

• n Then furrentn studyn identiesn meemearicnen pcriteinn respcinsiaeten firn then repcetifictinn ifn 
SA R-CiV-2n icndn suglglestn pcissiaeten thericpceutfsn firn inhiaitngln then spcreicdn ifn SA RS-CiV-2n 
infeftinn 

• n Then furrentn studyn ipcensn icn futuren reseicrfhn direftinn tin investglicten then efeftn ifn 
diwnregluetictngln siglnicetetingln pcicthwicyn thictn meediicten feticthrin-ficveietinn depcendentn endifytisisn 
pcrifess.n 
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