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Purpose: To evaluate the clinical, histopathologic, and genetic characteristics of a microphthalmia pedigree.
Methods: A five-generation Chinese family with microphthalmia was recruited. Clinical and histological examinations
were performed in the affected patients and their family members. Cyrillic software was used to map the pedigree. Genomic
DNA was extracted from peripheral blood, and linkage analysis was performed using short tandem repeat polymorphism
markers. Two-point LOD scores were calculated using the MLINK program.
Results: Microphthalmia was inherited in an autosomal dominant manner in this family. All nine affected members had
hyperopia (mean: +8.00 diopters) and physiologically reduced axis oculi (mean: 19.29 mm) with a visual acuity of less
than 0.5. Refractory angle-closure glaucoma occurred in three of them and atrophia bulbi in two. Histological examination
showed diffuse degenerated collagen fibers in the scleral stroma. Two-point LOD score linkage analysis excluded all
known genetic loci associated with simple microphthalmia in all patients.
Conclusions: Simple microphthalmia was dominantly inherited in this Chinese pedigree with typical phenotypes, which
resulted in severe visual deterioration by middle age. A novel locus is predicted to be responsible for the microphthalmia
in this family, which may prove a high genetic heterogeneity in microphthalmia.

Simple microphthalmia (OMIM 309700), which refers to
a structurally normal but small eye globe, is an uncommon
congenital or developmental ocular anomaly. Absent of
systemic disease, it is usually bilateral with a short axis and
has hyperopia of +7.00 to +13.00 diopters, a high volume ratio
of lens to eye, and a high incidence of angle-closure glaucoma
[1,2]. Hyperopia can be treated with correcting lenses, but
some children may develop irreversible amblyopia if not
diagnosed in time. Untreated angle-closure glaucoma is prone
to result in blindness. However, complications are common
in microphthalmic eyes after any type of intraocular surgery,
especially interventions for glaucoma, which may cause
severe loss of vision [3]. Moreover, microphthalmia is a
clinically heterogeneous developmental disorder. As major
causative genes for simple microphthalmia, CHX10 (Ceh10
homeodomain gene; OMIM 142993), PAX6 (Paired box gene
6; OMIM 607108), and MFRP (Membrane-type frizzled-
related protein; OMIM 606227) probably induce the failure
of ocular differentiation [4-6]. In addition to these putative
genes, several loci have been identified with microphthalmia,
mapping to chromosomes 11p, 14q32, and 2q11-q14 [2,7,8].
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It has been reported that 3.2%–11.2% of blind children
suffered from microphthalmia [9]. The prevalence rate was
1.18/10,000 births in China [10], which is similar to that in
the Caucasian population in England [11]. There was no
predilection with regard to race and gender [12]. Most
microphthalmos cases were sporadic, and a small quantity of
cases were inherited in an autosomal dominant or recessive
fashion [13]. In this study, we reported a Chinese family with
a dominant form of simple microphthalmia and found that
there may be a high genetic heterogeneity in microphthalmia.

METHODS
Clinical examinations: A five-generation Chinese family
diagnosed with microphthalmia was recruited at Shandong
Eye Institute (Qingdao, China). The research followed the
tenets of the Declaration of Helsinki. All 34 family members
underwent general physical and complete ophthalmic
examinations including refraction, corneal curvature and axial
length by A-B scan ultrasonography, slit-lamp
biomicroscopic examination, the measurement of intraocular
pressure, gonioscopic examination, and optic-disc evaluation.
Histological examination: Whole eye globes or full-thickness
scleras obtained from the affected members during surgery
were subjected to light microscopic evaluation (Eclipse E800;
Nikon, Tokyo, Japan). Samples were fixed for 12 h in 4%
neutral formaldehyde (pH 7.4). After repeated washing in
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water, a prolonged dehydration in a graded series of ethanol
and an immersion with toluene and paraffin wax were
performed. Samples were then immersed in prepolymerized
epoxy resin and embedded in paraffin wax. Four-micrometer
sections were prepared and stained with hematoxylin and
eosin.

Karyotype analysis: Chromosomes of actively proliferating
peripheral blood lympholeukocyte cultures were analyzed.
Cells in the exponential phase of growth were treated with
0.06 μg/ml colchicine at 37 °C for 3 h before being collected
and incubated in a hypotonic salt solution (0.075 M KCl) at
37 °C for 20 min. After the cells were subsequently fixed in
cold methanol/acetic acid (3:1 v/v), 1 ml of dispersed cell
suspension was smeared evenly on a cold slide, air dried,
stained with Giemsa, and observed using a microscope.

Linkage analysis: Genomic DNA isolated from 3 ml of
peripheral blood using the routine phenolic alcohol-
chloroform method [14] was diluted to a concentration of 100
ng/ml. Thirty-four individuals including nine affected family
members and 25 unaffected family members were collected
and subjected to further analysis. Multiple polymerase chain
reaction (PCR) amplifications were performed using
AmpliTaq Gold DNA polymerase (PE Applied Biosystems,
Foster City, CA) in 15 ml of reaction mixtures with a
touchdown procedure. The 23 microsatellite repeat markers
for assay were from five autosomes (ABI PRISM Linkage
Mapping Panels; PE Applied Biosystems). One of each pair
of primers was labeled with phosphoramidite fluorescent tags.
Thermal cycling in the Amplifier 2720 (PE Applied
Biosystems) was performed. The resulting PCR products were
analyzed on an ABI 3100 semiautomated sequencer. GS400

size standards were used as internal standards. Alleles read
and scored with Genescan and Genotyper software (PE
Applied Biosystems) were confirmed by visual inspection,
and two-point LOD scores were calculated using the MLINK
sub-program from the LINKAGE package of programs under
a model of autosomal dominant inheritance with 95%
penetrance and a disease-allele frequency of 0.0001. The
recombination frequencies between male and female were
assumed equal. Allele frequencies for all markers were
calculated from an ethnically matched population.

RESULTS
Phenotype: All family members did not have any other
physical anomalies. Nine microphthalmia patients from the
ages of 6–66 years (mean: 42.8 years) expressed the same full
phenotype as previously reported [2,9]. They were affected
by isolated microphthalmia in an autosomal dominant
transmission manner in both eyes with onset since birth
(Figure 1). Combined hyperopia ranged from +4.50 to +11.50
diopters (mean: +8.00 diopters). The axial length was from
18.22 mm to 20.26 mm (mean: 19.29 mm), which was shorter
than the normal length of 23–24 mm. Best corrected visual
acuity was less than 0.5 in most eyes. Angle-closure glaucoma
or occludable anterior chamber angles were present in three
patients who were all older than 50 years of age and was
treated by trabeculectomy, but the pathogenetic condition kept
developing. In the end, atrophia bulbi occurred in subjects
III10 and III15 despite repeated surgeries (Table 1).

Impairment of the global structure: The histological
examination showed that the full-thickness scleras were
composed of collagen fibers and fibroblasts. The diffusely

Figure 1. The pedigree of a five-
generation Chinese family with
autosomal dominant microphthalmia.
The symbols in the image are; open
circle=female; open square=male;
closed circle=affected female; closed
square=affected male; open square with
backslash=deceased male; closed circle
with backslash=deceased female; and
open square with question mark;
possible affected male.
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swelled collagen fibers were twisted or frayed and were mixed
with normal fibers (Figure 2A). In the two atrophied globes,
which became significantly smaller than the other affected
eyes but maintained a relatively normal shape, the alignment
of collagen fibers was disrupted and there were a lot of coil-
like amorphic materials in the scleras with three times the
thickness of a normal sclera. The corneas were thickened as
well. The pigment cells proliferated, and bone-like tissues
were formed in the eyes (Figure 2B).

Genetic analysis: The karyotype in the nine affected family
members was normal. Two-point LOD scores indicated that
all 23 markers were less than 1 under different recombination
fractions (Table 2).

DISCUSSION
Congenital microphthalmia is rare and results in severe
developmental defects of eye globes. Up to 80% of affected
individuals are accompanied by physical congenital

TABLE 1. MAJOR CLINICAL DATA OF INDIVIDUALS WITH MICROPHTHALMIA IN THE FAMILY.

Patient no./sex/age
(years)

Visual acuity
(after correction)

Diopter/Axis Oculi
(mm)

Lens A-PD
(mm)

Increased
IOP

Glaucoma/patient
age when operated

Karyotype

III10/F/66 OD: NLP − 4.96 ↑ +/60 46,XX
 OS: FC/30cm +10.00/18.27 4.94 ↑ +/59

III11/M/60 OD: 0.5 +9.00/19.28 4.58 − − 46,XY
 OS: 0.2 +9.50/19.19 4.56 ↑ +/58

III14/F/56 OD: 0.5 +10.50/18.47 5.17 − − 46,XX
 OS: 0.2 +11.50/18.40 5.13 − −

III15/M/53 OD: 0.2 −/18.22 4.98 ↑ +/52 46,XY
 OS: NLP − 4.96 ↑ +/52

III17/M/50 OD: 0.5 +6.50/19.98 4.88 − − 46,XY
 OS: 0.3 +6.50/19.91 4.90 − −

IV10/M/40 OD: 0.5 +8.00/19.78 4.03 − − 46,XY
 OS: 0.5 +8.50/19.66 4.05 − −

IV19/M/28 OD: 0.8 +4.50/20.25 4.03 − − 46,XY
 OS: 0.8 +4.50/20.26 3.99 − −

IV21/M/27 OD: 0.8 +4.50/20.12 3.98 − − 46,XY
 OS: 0.8 +4.50/20.16 4.01 − −

V5/M/6 OD: 0.3 +9.00/19.59 3.54 − − 46,XY
 OS: 0.3 +8.50/19.63 3.58 − −

All affected members had hyperopia and physiologically reduced axis oculi with a visual impairment. FC=finger count; NLP=No
light perception; Lens A-PD=Lens antero-posterior diameter; IOP=intraocular pressure.

Figure 2. Histological examination of the paraffin sections stained with hematoxylin and eosin. A: The diffusely swelled collagen fibers were
twisted or frayed (arrows) and mixed with normal fibers in the sclera (Subject III15; magnification, 400X). B: The alignment of collagen
fibers was disrupted, and there were a lot of coil-like amorphism materials (arrows) in the sclera of an atrophied eye globe (Subject III10;
size, 20 mmx18 mmx15 mm; magnification, 100X).
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malformations (multiple malformations) as well as other
ocular abnormalities such as coloboma, orbital cyst, and
cataract [15]. Isolated microphthalmia is an uncommon
condition. Data on these malformations have been scarcely
reported, and most cases have been of unknown etiology. In
this study, we evaluated an isolated microphthalmia pedigree
of Chinese origin. The diagnosis was based upon clinical and
imaging criteria and confirmed by histology of the sclera.
Establishing a phenotype of this pedigree involved
undertaking a comprehensive family and medical history,
physical examination, imaging, karyotyping, and molecular
genetic testing. The disease pattern was autosomal dominant
in this family with nine members affected with
microphthalmia. Most patients had serious visual impairment.
An unusually high incidence of high hyperopia and frequent
occurrence of angle-closure glaucoma were noted. Hyperopia
in these affected members was congenital. Complicated
glaucoma at middle age represented a late stage of progression
of the phenotype. Both were attributed to congenital short
ocular axis. These patients experienced a high rate of
complications and blindness after intraocular surgery,
including two with final atrophia bulbi. Learning disabilities
were observed in one-third of the cases. The lens thickening
after middle age and the gradually occludable anterior
chamber angles could generate refractory glaucoma. In the
end, loss of visual acuities would occur in most patients.

The detailed pathogenesis of microphthalmia remains
unknown. In the present study, the scleras were subjected for
ultrastructural examination. Histologically, collagen fibers in

the scleral stroma degenerated, and the sclera became
significantly thickened compared to the report of Fukuchi et
al. [16]. It is possible that the abnormal collagen fibers directly
prevented the early development of eye globes. The atrophied
eye globes were obviously small in size, the pigment cells
proliferated, bone-like tissue formed, and calcification
occurred. These features were consistent with typical
microphthalmia.

Moreover, congenital microphthalmia is usually
combined with anterior segment dysgenesis [16] and raised
intraocular pressure, which may result from eye
embryological defects. According to Mann [17],
anophthalmia had its genesis early in gestation as a result of
the failure to develop the anterior neural tube (secondary
anophthalmia) or optic pits to enlarge and form optic vesicles
(primary anophthalmia). The genes that regulated eye
embryogenesis induction failure could be responsible for
microphthalmia. Abnormal migration or proliferation of
neural crest cells has been implicated in the development of
several anterior segment anomalies and congenital glaucoma
syndromes [18,19]. However, the posterior segment of
microphthalmic eyes seems to be more frequently affected
than the anterior. Weiss et al. [20] reported that postnatal
ocular growth was crucial. The decreased size of the optic cup,
altered proteoglycans in the vitreous, low intraocular pressure,
and abnormal growth factor production may all or in part have
a bearing on the pathogenesis of simple microphthalmia while
inadequate production of secondary vitreous may result in
complex microphthalmia.

TABLE 2. TWO-POINT LOD SCORE LINKAGE ANALYSIS WITH KNOWN GENETIC LOCI IN ALL PATIENTS.

Marker Position
Recombination fraction

0 0.01 0.05 0.1 0.2 0.3 0.4
D2S2216 2p11.2-q14.3 −3.30 −0.03 0.55 0.69 0.65 0.45 0.21
D2S160  −18.86 −6.86 −3.77 −2.39 −1.10 −0.48 −0.15
D2S112  −11.99 −6.55 −3.52 −2.17 −0.93 −0.35 −0.08
D2S347  −0.22 −0.22 −0.2 −0.18 −0.14 −0.07 −0.02
D3S1285 3p14.1-p12.3 −5.05 −2.58 −1.64 −1.10 −0.50 −0.19 −0.04
D3S3681  −7.94 −4.46 −2.12 −1.10 −0.25 0.04 0.07
D11S4046 11p15.5-q23.3 −13.67 −3.29 −1.34 −0.63 −0.13 −0.01 −0.03
D11S902  −18.22 −7.62 −4.05 −2.54 −1.17 −0.51 −0.16
D11S904  −9.61 −3.47 −1.36 −0.54 0.07 0.21 0.15
D11S935  −8.95 −2.45 −0.55 0.09 0.44 0.38 0.17
D11S905  −9.28 −1.16 0.04 0.39 0.45 0.25 0.04
D11S4191  −5.47 −1.89 −0.62 −0.19 0.07 0.11 0.07
D11S987  −4.91 −2.06 −0.79 −0.34 −0.05 0.00 0.00
D11S1314  −9.84 −2.60 −0.73 −0.11 0.18 0.08 −0.05
D11S908  −6.10 −3.44 −1.49 −0.76 −0.21 −0.04 0.00
D11S925  −5.57 −1.35 0.03 0.50 0.68 0.50 0.20
D14S258 14q24.2-q32.12 −10.86 −3.68 −1.55 −0.70 −0.05 0.12 0.09
D14S985  −10.10 −3.18 −1.66 −0.99 −0.39 −0.13 −0.01
D14S292  0.54 0.53 0.48 0.41 0.26 0.14 0.05
D14S280  −5.46 −1.87 −0.97 −0.53 −0.15 −0.02 0.00
D15S165 15q13.3-q14 0.12 0.11 0.09 0.07 0.04 0.02 0.00

D15S1007  −11.74 −3.51 −1.39 −0.57 0.02 0.14 0.08
D15S1012  −10.57 −3.25 −1.74 −1.09 −0.51 −0.25 −0.10

All 23 markers were less than 1 under different recombination fractions.
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Regarding genetic analysis, chromosomal abnormality is
usually implicated in microphthalmia with syndromes. The
karyotype in this pedigree was normal, so the disease was most
probably induced by a mutation of a monogenic mutation.
Moreover, genetic defects that underlie the autosomal
dominant microphthalmia are still unclear. Microphthalmia
has been mapped to different chromosomal regions [21], but
this disease appears to be of high genetic heterogeneity, which
was proven again in this study. Further investigations on large
pedigrees from different genetic backgrounds may help reveal
the genetic etiology of microphthalmia [22] and map the
phenotype to one member of the genes that direct eye
development.

Furthermore, a LOD score of less than 1 with all 23
markers involved did not support any linkage relation in this
study, so we excluded the linkage of microphthalmia in this
pedigree with the reported candidate genes (CHX10, PAX6,
and MFRP) and loci (chromosomes 14q32, 11p, and 2q11-
q14). To further identify the gene responsible for this Chinese
family, a whole-genome scan analysis is needed. A novel
locus is predicted to be responsible for the microphthalmia in
this family.
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