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Abstract

There is a significant public demand for rapid data-driven scientific investigations using 

aggregated sensitive information. However, many technical challenges and regulatory policies 

hinder efficient data sharing. In this study, we describe a partially synthetic data generation 

technique for creating anonymized data archives whose joint distributions closely resemble 

those of the original (sensitive) data. Specifically, we introduce the DataSifter technique for time-

varying correlated data (DataSifter II), which relies on an iterative model-based imputation using 

generalized linear mixed model and random effects-expectation maximization tree. DataSifter 

II can be used to generate synthetic repeated measures data for testing and validating new 

analytical techniques. Compared to the multiple imputation method, DataSifter II application on 

simulated and real clinical data demonstrates that the new method provides extensive reduction 

of re-identification risk (data privacy) while preserving the analytical value (data utility) in the 

obfuscated data. The performance of the DataSifter II on a simulation involving 20% artificially 

missingness in the data, shows at least 80% reduction of the disclosure risk, compared to 

the multiple imputation method, without a substantial impact on the data analytical value. In 

a separate clinical data (Medical Information Mart for Intensive Care III) validation, a model-

based statistical inference drawn from the original data agrees with an analogous analytical 

inference obtained using the DataSifter II obfuscated (sifted) data. For large time-varying 

datasets containing sensitive information, the proposed technique provides an automated tool 

for alleviating the barriers of data sharing and facilitating effective, advanced, and collaborative 

analytics.
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Introduction

Open science advocates for broad sharing of data, reproducible research, source code, and 

software tools. The benefits of open science on many aspects of our everyday lives are well 

documented.1–5 Along with the well-known exponential increase of the amount of newly 

acquired data, there is also an equally striking exponential decay of the value of data that 

is stored but not processed or shared.6,7 However, sharing data without loss of privacy is 

difficult, especially in medical and healthcare settings. In fact, 66% of the participants in 

the 2017 Health Information National Trends Survey were concerned about data privacy 

when health information is electronically exchanged.8 For data sharing involving protected 

health information, organizations’ institutional review boards (IRBs) need to review the 

research before the required information can be retrieved from existing medical records 

and processed to extract valuable information. IRB’s initial review process may take up 

to 4 months. This process has significant variability depending on the type of review, for 

example, expedited, exempt, or full board reviews may take additional time, from 16 to 

631 days.9 In the United States, healthcare systems own the property rights for Electronic 

Health Records (EHR), and researchers have to bear the costs of data extraction and transfer 

under data use agreements.10 Such regulation guarantees the protection of individual privacy 

rights but delays researchers’ ability to gain access to appropriate information, build models, 

and rapidly validate scientific discovery. This slows the knowledge transfer and impedes 

the translation of basic science discoveries into clinical practice. As a result, the restricted 

and significantly delayed access to data may limit the information utility for answering 

specific scientific questions. For example, in 2015, Keegan et al.11 examined the relationship 

between ethnicity and short-term breast cancer survival using 2010 Kaiser Permanente 

Northern California EHR data. However, to obtain both the demographics and the cancer 

treatments for patients across facilities, they had to reduce the study cohort time frame from 

8 to 3 years to have both datasets available and link them together, which significantly 

impacted the statistical power of this scientific investigation. Thus, there are enormous 

benefits in developing new statistical methods to facilitate secure and quick information 

exchange between data stewards and data science experts.

Three existing strategies provide secure mechanisms for modeling, processing, and 

interrogating sensitive cross-sectional data. These include secure enclave access, data 

encryption (e.g. fully homomorphic encryption), and synthetic data publishing. First, secure 

data enclave environments12,13 offer a platform for researchers to analyze sensitive data 

without compromising risks for misuse and other violations. Many health information 

storage solutions, for example, EHRs, rely on technology that provides managed data access 

for research in safe and controlled environments.14 Several possible unmodified database 

management systems can be utilized to provide secure data enclaves.15,16 Second, data 

encryption methods, including fully homomorphic encryption (FHE), encode the data to 
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allow computations directly on the resulting ciphertext.17–19 FHE relies on homomorphic 

computing (result-preserving property) on the ciphertext without exposing the sensitive raw 

data to independent researchers. The above two mechanisms provide secure channels for 

data transfer and storage, however, these approaches do not shorten the data sharing process 

and limit the type of advanced analytics that can be used to interrogate the data.

To address these limitations, the third strategy, synthetic data generation, provides “fake” 

records that closely resemble the real data for predictive and inference model constructions. 

Both the computer science and statistical science communities have developed various 

methods in this field. Most of the methods developed by computer science communities 

fall under the umbrella of differential privacy.20,21 For quantitative data types, this class 

of methods creates fully synthetic data for predictive purposes, where noisy conditional 

models generate each synthetic record.22–24 The most recent developments in this class 

are related to generative adversarial networks (GANs).25 They generate candidate synthetic 

records and use a discriminator that accepts only differentially private data to provide 

privacy protection guarantee.23,26 To the best of our knowledge, there is less work 

related to generating data for model-based inference purposes in the differential privacy 

framework. A recent work27 proposed HealthGAN for generating fully synthetic data for 

privacy preservation and inference purposes. They defined data utility and privacy using 

Euclidean distances between original and fully synthetic records, which is not guaranteed 

to be differentially private. The authors reported that seven out of 29 confidence intervals 

estimated using the synthetic data did not actually contain the original data. Moreover, the 

HealthGAN cannot handle time-varying data elements. In the statistical science community, 

synthetic data generation was first proposed by Rubin28 with two classes of generating 

methods, as summarized by Reiter and Raghunathan.29 The fully synthetic data sets are 

created by conditional distributions estimated from sensitive datasets. Popular methods for 

constructing these conditional distributions include multiple imputation (MI).28,30 Also, 

there are Bayesian data augmentation methods like SynSys,31 which aims to enrich the 

existing data to train machine learning predictive models. However, since the distributions 

of subject characteristics are not considered in the data generation procedure, fully synthetic 

data may not represent the original patient population. The other class of methods creates 

partially synthetic data to alleviate this issue, which utilizes a set of multiple-imputed data 

replacing sensitive data value cells with imputations.32–34 This class of methods treats data 

obfuscation as a missing data handling problem, where they generate artificial missingness 

for sensitive values in the data set and impute the value with the remaining untouched 

data. As a result, partially synthetic data provide valid statistical inference. Yet, combined 

information from a set of multiple imputed datasets indicates the locations of true and 

obfuscated cells resulting in no privacy protection for the true cells. In practice, covering 

all possible sensitive values is barely achievable and selecting the obfuscation location is a 

subjective and critical step for data privacy protection.

The DataSifter technique (DataSifter I) was recently introduced35 as an automated procedure 

for generating partially synthetic data. This approach offers better protection of participant 

privacy in the case of using high-dimensional sensitive cross-sectional data. The DataSifter 

framework is designed to help data governors (institutions who possess and manage data) 

safely share synthetic subsets of their sensitive data archives using customized levels of 
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statistical obfuscation. It perturbs individual-level records and allows researchers to acquire 

population-level information that closely approximates the true signal securely. The core 

DataSifter technique relies on two processes supporting the critical statistical obfuscation of 

the data. First, it randomly and artificially generates missingness in the data, following 

the Missing Completely At Random (MCAR) mechanism,36 and uses robust iterative 

imputation methods, for example, missForest,37 to approximate the original information. 

After the first step, DataSifter I creates a partially synthetic dataset disguising the locations 

of true values, which provides better privacy protection than the MI method. Second, 

DataSifter I computed cluster neighborhoods using Euclidean and Gower distances for 

continuous and categorical variables, respectively. Then, within each neighborhood cluster, 

DataSifter I randomly swaps a subset of feature values between similar records. This second 

operation guarantees partial obfuscations within each record while preserving the holistic 

cohort distribution in the variable space.

The quality of generated partially synthetic data can be quantified by disclosure risk and the 

deviance of model-based inference. The disclosure risk describes the privacy-awareness of 

the synthetic data. There are two classes of disclosure risk criterion, namely ϵ-differential 

privacy and statistical disclosure risk measurement. The criterion developed by the computer 

science communities (differential privacy) guarantees strong protection such that intruders 

do not learn much about a target record even if they have access to the rest of the 

original records.38 The confidentiality guarantee provides a stringent threshold for data 

privacy. However, since the threshold is difficult to satisfy, it is challenging to ensure 

the analytical usefulness of a deferentially private synthetic dataset. The other class, 

probabilistic disclosure risk measure, enables the investigation of record-level disclosure 

risk under different scenarios of intruder’s prior knowledge about the original dataset.39,40 

A higher probability is associated with a more vulnerable record. This measurement 

allows accurate comparisons of disclosure risk for different synthetic datasets. McClure 

and Reiter41 discovered that the level of ϵ corresponding to particular levels of statistical 

disclosure risk depends on the properties of the observed data. In this paper, we propose 

a statistical disclosure risk measurement to quantify time-specific record-level risk (data 
privacy) for longitudinal variables, assuming that the intruder can access all but the target 

record. After achieving desirable data privacy, we measure the analytical value of the 

synthetic data to ensure data utility. Since inference is our objective, we define data utility as 

the deviation of the model inference based on the original and the partially synthetic datasets 

given a predefined inferential model and some specific clinical or research questions. There 

is a trade-off between data privacy and data utility. Among the partially synthetic data 

generating methods, MI methods are designed to minimize the loss of data utility, while the 

DataSifter framework focuses on maximizing the data privacy protection under acceptable 

data utility. In this paper, the above two criteria are used to compare different partially 

synthetic datasets.

Time-varying correlated data, including longitudinal data, are ubiquitous and provide 

valuable information for many biomedical and health conditions. For example, in EHR 

databases, patient characteristics and disease progression variables are collected repeatedly 

across visits. Maintaining or preserving the within-subject covariance structure among time-

varying measurements presents another layer of challenges. To the best of our knowledge, to 
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date, there are no automated procedures that enable secure sharing of sensitive time-varying 

correlated data using partially synthetic data. The MI methods tilt the balance towards 

data utility, and the DataSifter I method cannot handle time-varying data elements. We 

propose a new algorithm, DataSifter with Time-varying Correlated Data (DataSifter II), that 

extends the DataSifter functionality in the case of dealing with large, cross-sectional, time-

varying, and self-correlated data elements. DataSifter II introduces artificial missingness and 

embeds robust longitudinal imputation methods to handle high-dimensional sensitive data 

with time-varying measures. As illustrated in Figure 1, our proposed procedure operates on 

the time-varying data separately from the time-invariant (cross-sectional) data elements and 

then integrates the two parts to compile the obfuscated sifted dataset (output). Our extensive 

simulation and application studies show that compared to the MI method, the proposed 

method can better protect data privacy while preserving a proper level of data utility.

The contribution of our paper is twofold: (1) we propose an automated algorithm for 

time-varying partially synthetic data generation allowing user-specified secure level and 

protecting the original within-subject covariance structure, and (2) we formally define 

practical data privacy and data utility measurements to validate synthetic data before 

release. The rest of the manuscript is organized as follows: In section “Privacy and 

utility measurement for partially synthetic data,” we define the data privacy and utility 

measurement for partially synthetic data evaluation. Specifically, in section “Data structure 

and notations,” we define the disclosure risk and show that partially synthetic datasets 

generated by the DataSifter framework provide better privacy protection than that of the 

MI method. Section “DataSifter II technique” describes the DataSifter II protocol. Section 

“Simulation studies” validates the data utility preservation and privacy protection of the 

proposed algorithm under different simulation settings and compares the performance 

against the MI method. In section “Biomedical application,” we apply DataSifter II to the 

Medical Information Mart for Intensive Care III (MIMIC-III) clinical data and demonstrate 

its performance in maintaining a careful balance between protecting sensitive information 

and preservation of the data utility. We summarize the findings and discuss the expected 

impact and future developments in section “Discussion.”

Privacy and utility measurement for partially synthetic data

Data structure and notations

Time-varying correlated data are common in most biomedical and epidemiology studies. For 

example, in multi-center studies, we typically measure the target variables across all subjects 

at a single time point, but the subjects may be correlated within each center. In longitudinal 

data, the target variables are measured repeatedly at baseline and during follow-up, and 

thus we have intrinsic within-subject correlations. In this case, researchers take repeated 

measurements on the same subjects to reduce measurement errors, which may also involve 

within-subject correlations. The DataSifter II framework can be applied to any correlated 

data. For illustration purposes in this study, we investigate the use of DataSifter II on 

longitudinal data.
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Consider a longitudinal EHR dataset with n patients, each recorded until Ji
tℎ visit, where the 

time intervals between visits are similar across patients. We collect ml longitudinal variables 

at each visit and ms static variables for patient characteristics. For simplicity, we denote 

time-varying variables as Y’s and time-invariant variables as X’s. In the following sections, 

we use i = 1, . . . , n to denote patients; j = 1, . . . , Ji to denote the visit time, which allow 

different visit times among patients; and k to index the variables (columns) in the dataset 

such that for static variable k = 1, . . . , ms, and for longitudinal variable k = 1, . . . , ml. 

Dummy variables are created for all categorical longitudinal variables. Then the longitudinal 

measurements for subject i are

Yi =

Yi, 1, 1 ⋯ Yi, 1, ml
Yi, 2, 1 ⋯ Yi, 2, ml

⋯ ⋯ ⋯
Yi, Ji, 1 ⋯ Yi, Ji, ml

with patient i’s, time j’s record of longitudinal variable k denoted as Yi,j,k. The 

time-invariant variables of subject i are denoted as Xi = Xi1, …, Xims , which can 

also be represented as Xi = Xi1, …, Xims  to match the dimension of Yi where 

Xik = Xi, 1, k, …, Xi, Ji, k
T, and k = 1, . . . , ms repeats the static variable for Ji times.

Missing data occurs often in longitudinal observations. Missingness can come from a 

completely missing record or partially missing record, where patient i does not have all data 

available for some visits. In this case, we denote the missing indices for kth outcome as misk 

= {(i, j)|Yi,j,k = NA }, and observed indices as obsk = {(i, j)|Yi,j,k ≠ NA}. Fully observed 

long format data Y ∑iJi × ml = Y1, …, Yn
T has ∑iJi rows and ml columns. Similarly, the 

static variables are denoted as X ∑iJi × ms = X1, …, Xn
T. We use D = [X, Y] to denote the 

observed dataset.

While generating partially synthetic data, we view data obfuscation as an artificial missing 

creation and imputation procedure. Here we focus on obfuscating time-varying data and 

further denote each row in partially synthetic time-varying data as (Yi, j, nrepij, Yi, j, repij), 

where nrepi,j is a set of indexes for unreplaced variables, repi,j is a set of indexes for replaced 

variables compared with the original row such that nrepi,j ∪ repi,j = {1, . . . , ml}, and 

Yi, j, repij is a vector of the synthetic values created for patient i’s record at time j. Similarly 

we denote one row in the synthetic static data as (Xi, neepi, Xi, repi), where nrepi and repi 

are indexes for unreplaced and replaced variables, and Xi, repi denotes a vector of synthetic 

values for patient i’s static characteristics. Finally, we use Z to denote a synthetic dataset 

that is composed of the time-varying and static synthetic data components.
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Data privacy measurement

In this section, we formally define data privacy in the form of disclosure risk and compare 

the disclosure risk between MI and DataSifter methods. Assume we have a ml-dimensional 

partially synthetic time-varying data vector yi, j = (yi, j, nrepi, j, yi, j, repi, j) corresponding to 

each individual i at time j in the original dataset D and the static portion of data is complete. 

We have a partially synthetic dataset Z that follows a similar joint distribution as the original 

data with unchanged static variables (unobfuscated). Specifically, we denote the partially 

synthetic dataset generated by DataSifter as Zsift and U (U ≥ 2) multiply imputed (MI) 

datasets as ZMI = (ZMI
(1), …, ZMI

(U)). To compare the disclosure risk between the sifted and 

MI partially synthetic datasets, we closely follow the Bayesian risk approach described by 

Reiter et al.40 Suppose an intruder is interested in learning some of the true values in the yi,j 

vector. Let A represent the intruder’s prior knowledge about the original dataset D, which 

is often referred to a subset of records in D−(i,j) = D \ {yi,j}. Let S denote any information 

known by the intruder about the synthetic data generation procedure. Then, define the 

disclosure risk for yi,j,k as the conditional distribution

p Yi, j, k = yi, j, k ∣ Z, A, S
disclosure risk

,

where j ∈ nrepi,j ∪ repi,j. The intruder cannot infer the location (indices) of unchanged 

(nrepi,j) and changed (repi,j) cells in Zsift, whereas the unchanged cells in a set of U 
multiple-imputed datasets would imply the index locations for nrepi,j. Hence, for the output 

sifted dataset, we have the disclosure risk:

p Yi, j, k = yi, j, k ∣ Zsift, A, S .

For ZMI we have

p Yi, j, k = yi, j, k ∣ ZMI, A, S
= 1 − I k ∈ nrepi, j p Y i, j, k = yi, j, k ∣ ZMI,

Yi, j, nepi, j = yi, j, nrepi, j, A, S + I k ∈ nrepi, j ,

where I(k ∈ nrepi,j) is an indicator that takes the value of 1 when the data cell (i, j, k) of 

the multiple imputed datasets are not replaced with obfuscated value. When k ∈ nrepi,j, the 

intruder knows that ZMI contains true value at cell (i, j, k) so that the discourse risk is 1. On 

the other hand, when k ∉ nrepi,j, it is appropriate to assume that knowing the locations of 

true covariate values in the record for patient i’s jth visit (knowing Yi, j, nrepi, j = yi, j, nrepi, j) 

yields similar or higher disclosure risk compared to not knowing the locations. When the 

information contained in Zsift and ZMI is similar regarding inferring the distribution of Yi,j,k, 

we have

p Yi, j, k = yi, j, k ∣ ZMI, A, S ≥ p Yi, j, k = yi, j, k ∣ Zsift, A, S .
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Therefore, when both synthetic datasets contain comparable information, the DataSifter 

output has smaller, or rarely similar, disclosure risk compared to the MI method.

Data governors can quantify the privacy protection level of the synthetic longitudinal data 

using our disclosure risk defined above. Specifically, when calculating the maximal privacy 

loss for each record, we assume the intruder knows all other records in the raw dataset, that 

is, A = D−(i,j), and the imputation model for the synthetic data is known. The proposed data 

privacy measurement (PM) for cell (i, j, k) is defined as the difference between the expected 

and observed values

PMi, j, k = E Yi, j, k ∣ Z, D−(i, j), S − yi, j, k
= ∫ y ⋅ p Yi, j, k = y ∣ Z, D−(i, j), S dy − yi, j, k .

The PM provides statistical disclosure risk for every time point in a longitudinal record. In 

practice, the conditional model for Yi,j,k is constructed using D−(i,j) with the identical model 

specification as the missing imputation model, assuming the intruder has maximal prior 

knowledge about the original data. For Yi,j,k in Zsift or replaced cells in ZMI, we calculate 

the expected difference between the model prediction given other covariates in the synthetic 

data and the true value. For ZMI, the PMs of Yi,j,k for unchanged cells are 0. Assume we 

introduce a percent of artificial missingness to the original data and D−(i,j) provides sufficient 

information for accurate Yi,j,k predictions. For MI, there are (1 − a) of Yi,j,k with PM = 0 

and the remaining cells have equal or slightly smaller PM. Thus, DataSifter is expected to 

improve PM by at least 1/a times compared to MI. We examine the average PM for every 

time-varying variable in the simulation and application sections below.

Data utility measurement

Given a pre-specified model, we can obtain the desired utility of the partially synthetic 

data by comparing the model fitted with the original and synthetic data in terms of model 

inference and prediction accuracy. The data governor can consider a feasible parametric 

model regressing a summary variable on other covariates. For example, in EHR data, 

we can predict patients’ comorbidity scores over time, representing summary scores for 

the patients’ medical conditions. For model inference, to test the data utility based on a 

regression coefficient β, we first fit the desired model with the original dataset and obtain its 

confidence interval. Then, we generate L partially synthetic datasets under the same target 

parameter setting, where L is a large positive integer. By fitting the desired model on each 

synthetic data, we obtain a set of β l, l = 1, . . . , L and corresponding confidence intervals 

(LBβl, UBβl). In the ideal case, where the true coefficient β* is known, we can directly use 

the confidence interval coverage, ∑l = 1
L I{β* ∈ (LBβl, UBβl)}/L, as our utility measurement. 

In practice, we obtain the empirical confidence interval for β l from the synthetic datasets 

and measure if it overlaps with the confidence interval provided by the original dataset. In 

terms of prediction accuracy, we can set aside a randomly selected test set and compare the 

prediction error between models constructed with the remaining original and synthetic data 

records.
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Many alternative performance metrics can be defined to track the utility of the DataSifter-

generated synthetic datasets. For example, the Akaike information criterion, which is 

commonly used to contrast the relative quality of statistical models for a given set of data, 

provides one strategy for comparing the overall quality of the models constructed from 

original and synthetic datasets. We will focus on the parameter-level utility measurement for 

the rest of the paper.

Evaluating the performance of partially synthetic datasets

We can assess the performance of multiple partially synthetic datasets or select the desired 

parameters for a synthetic data generation process based on the data privacy and utility 

measurements defined above. Practically, we can first define a minimal average PM level for 

selected or all data cells as the threshold for data privacy. Then, we compare the data utility 

among the qualified datasets in terms of the confidence interval coverage or the confidence 

interval overlap probabilities for different model parameters and model prediction accuracy. 

Datasets with higher PM, higher confidence interval coverage or confidence interval overlap, 

and lower model prediction accuracy reduction are preferable.

DataSifter II technique

The proposed DataSifter II procedure operates on static variables X and time-varying 

variables Y separately and merges the two components back together to form the final 

partially synthetic data. The static variables are obfuscated with DataSifter I algorithm. The 

DataSifter II requires complete static variables as candidate predictors while obfuscating Y. 

We handle possible missingness for time-invariant variables by the missForest technique.37 

When obfuscating Y, we first impute the original missingness in Y with inverse probability-

weighted imputation models. Then, we randomly introduce missingness to the working 

time-varying data and impute back with a proposed robust imputation method.

The main assumptions of the DataSifter II include (A1) the possible missingness 

mechanisms in the original data include missing at random (MAR) or missing completely at 

random (MCAR); and (A2) the sensitivity of each variable is equally important. There 

are three possible missing mechanisms. MCAR assumes that missingness is unrelated 

to any observed or unobserved variables. Under this missing mechanism, the subset of 

complete records without missingness is representative of the study population without 

selection bias. However, MCAR happens rarely. MAR is more plausible to occur such that 

missingness can be accounted for with observed data. Otherwise, missing not at random 

may occur, where analysis performed on the complete portion of data can suffer from 

selection bias. We consider the (A1) assumption to hold in the original dataset to provide 

sufficient data utility for synthetic data generation. Under this assumption, MAR or MCAR 

guarantees unbiased missing imputation, ensuring the obfuscation quality of DataSifter 

II. (A2) allows indistinguishable obfuscation for each variable and greatly simplifies the 

obfuscation procedure. We can further adjust the procedure of missingness assignment for 

specific scenarios where the data governors believe a pre-defined set of variables can be 

more sensitive than the rest.
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Sifting static variables with DataSifter I

We apply DataSifter I to obfuscate the static portion X. The DataSifter I protocol includes 

the following four steps: (1) imputation of potential missingness in the original data using 

the missForest37 algorithm, (2) introducing artificial missingness to the working data, (3) 

imputing the missing cells back, and (4) swapping partial information for similar records. 

The resulting sifted data has complete records in the same format as the original data and 

with minimal distortion of the original joint probability distribution.

The imputation procedures in DataSifter aim to create a single complete dataset disguising 

the original or artificial missing positions. We use the missForest technique that outputs 

a single imputed dataset and is proven to have smaller imputation errors than common 

methods, including MI.37,42 This non-parametric imputation technique sequentially imputes 

and updates the data by variable. In the first iteration, when imputing for the first target 

variable, it fills in the missing cells among other predictor variables with mean imputation. 

Then, it constructs random forest models (target variable versus all other variables) to 

provide imputations. In subsequent iterations, while imputing and updating by variable, 

the imputation accuracy for each target variable improves as the missing cells in all other 

variables are replaced with better predictions.

When imputing the original missing data, we employ the original stopping criterion in 

missForest. It stops to iterate when the difference between the latest and prior imputed data 

matrix is at least as great as the previous difference measured or the maximal iteration 

limit has been achieved. The difference between matrices in sets of continuous (N) and 

categorical (F) variables are defined as

ΔN =
∑k ∈ N (Xk

(r) − Xk
(r − 1))

2

∑k ∈ N (Xk
(r))

2

and

ΔF =
∑k ∈ F ∑i = 1

n I(Xik
(r) ≠ Xik

(r − 1))
Number of missing cells in categorical variables ,

where Xk
(r)

 is the imputed vector and Xik
(r)

 is the imputed value for subject i of the kth 

variable in the rth iteration.

When imputing artificial missingness, the true missing value is known. We define the 

stopping criterion under a tolerance level ϵ as

‖Xmisk, k* − Xmisk, k
(r) ‖1

‖Xmisk, k* ‖1
< ϵ,
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where Xmisk, k*  is the true values in the working data after imputing original missing data and 

Xmisk, k
(r)

 is the imputed values.

Iterative imputation algorithm for time-varying data

Although DataSifter I applies robust nonparametric imputation methods like missForest to 

impute static missing variables, effective missing imputation for time-varying data can be 

challenging. In this paper, we propose an iterative imputation algorithm for longitudinal data 

similar to the missForest algorithm. The proposed algorithm considers two types of missing 

mechanisms (MAR and MCAR) and two modeling options (linear mixed model and RE-EM 

tree). It handles missingness in time-varying variables Y with complete static variables X as 

potential predictors.

Before the imputation, we initiate all missing cells with the closest value from the same 

subject (last value carry forward or next value carry backward). If the subject has no 

observations of certain variables, we initialize such missing cells with mean imputations. 

Then, we sort the variables ascendingly based on missing percentage so that Y·,·,1 has the 

smallest missing percentage and Y ⋅ , ⋅ , ml has the most missing. Next, we start our iterative 

imputation procedure. Within an iteration, we impute from the first to the last variable with 

missing. While imputing a target variable Y·,·,k, we separate the working data into four 

groups: the observed values of the target variable Y obsk, k, variables other than the target 

among the observed rows Yobsk, − k, Xobsk, . , the missing cells of the target variable with 

current imputation values Y misk, k, and variables other than the target among the missing 

rows Ymisk, − k, Xmisk, ⋅ , where obsk and misk are the patient and visit index sets (i, j) with 

observed and missing variable k, respectively. Imputation models for the target variable is 

constructed by regressing Y obsk, k on Yobsk, − k, Xobsk, ⋅  and we update Y misk, k based on 

the imputation model. The imputation of a following missing variable k′ (k < k′ ≤ ml) will 

benefit from this update because we have better estimates of the missing values in Y·,·,k for 

constructing the imputation model or providing covariates when predicting Y misk′, k′. The 

algorithm finalizes the imputation result of a target variable when the imputation model 

predictions for the observed values are close to the true values after multiple iterations. 

For artificial missing, we directly compare the true missing values with its predictions. The 

algorithm stops when fewer than two variables need to be finalized, or the maximal iteration 

is achieved.

Imputation model under missing at random assumption.—Under different 

missing patterns, the algorithm utilizes different imputation models. When we have MAR, 

the missingness depends on observed data and the complete observations might be biased. 

We utilize inverse probability weighting to obtain an unbiased pseudo sample for imputation 

model fitting. By pseudo sample, we mean the weighted sample that creates balance by 

up-weighting the underrepresented population and down-weighting the over-represented 

population in the complete observations, where the weights can be calculated at the subject-

level, or subject-and-time-level, to allow better imputation under different situations. For 
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subject-level, the probability of missing for each subject denoted as P{I(Yi contains NA)} 

is modeled with the corresponding logistic regression using all working complete static 

variables and a LASSO penalty is applied for variable selection. Weights are calculated by 

the estimated inverse probability of being observed

wi = 1
1 − P Yi contains NA

.

In observational data like EHR, missingness at the subject-and-time-level happens 

sporadically under usual circumstances; that is, missingness can happen at any time point for 

a patient. Similarly, subject i at time j will be weighted by wi, j = 1/[1 − P Y i, j is missing ], 
where P Y i, jis missing  is estimated by a generalized linear mixed model (GLMM) and 

LASSO penalty is applied for variables selection. After estimating the weights for the 

observed records, we construct the imputation model for each target longitudinal variable 

with a weighted linear mixed model. The linear mixed model with random intercept follows:

Y ⋅ , ⋅ , k = X* Tβ + ZTb + ϵ,

where Y·,·,k, k ∈ {1, . . ., ml} is the target longitudinal outcome, X* are the selected 

significant predictors, Z is the design matrix for random effects, bi ∼ N 0, σb
2 , and ϵi ~ 

N(0, σ2).

Accordingly, Var Y ⋅ , ⋅ , k = σ2 ZTZT + I = σ2H, with T = σb
2/σ2 In × n. We estimate the 

imputation model by optimizing the weighted log likelihood for complete cases:

Lw = C − 1
2log( H ) − 1

2nlog σ2 − 1
2σ2 Y ⋅ , ⋅ , k

−X*β TW* TH−1W* Y ⋅ , ⋅ , k − X*β ,

where C is a constant and

W * =

w1, 1 0 ⋯ 0
0 w1, 2 ⋯ 0
⋯ ⋯ ⋯ ⋯
0 ⋯ 0 wn, Jn

is a ∑i = 1
n Ji × ∑i = 1

n Ji  diagonal matrix. We obtain each stochastic imputation with 

Xi*β + b i, where b i is randomly sampled from N 0, σb
2 .

Imputation model under MCAR.—Under MCAR, we propose to employ two modeling 

options GLMM43 or RE-EM tree44 as imputation models within the iterative procedure. 

The two procedures are referred to as DataSifter II GLMM and DataSifter II RE-EM. Note 

that GLMM can handle various data types, including continuous, binary, and count data, 

Zhou et al. Page 12

J Algorithm Comput Technol. Author manuscript; available in PMC 2023 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



whereas the RE-EM tree is an effective algorithm for continuous measurements. For the 

DataSifter II GLMM, variable selection is conducted separately with GLMM LASSO. Here 

we perform a grid search for the regularization parameter and use Bayesian information 

criterion to select the best model. Since an appropriate starting point is crucial for model 

convergence, DataSifter II incorporates two methods to initiate the parameters when fitting 

GLMM LASSO. The first method estimates all the parameters by glmmPQL, which is 

using pseudo-likelihood. GlmmPQL estimates the mean and variance parameters iteratively 

with maximum likelihood assuming normality.45 It approximates the true likelihood with 

a strong normality assumption, but provides a computationally efficient way of estimating 

initial regression parameters. When the signal is sparse and the GLMM algorithm does not 

converge with the glmmPQL initial values, we may consider initialization using zeros or 

another user-specified initialization.

Selected variables are denoted as X* = X1*, …, Xs* , which may come from longitudinal 

variables other than the target and static variables. We fit the following prediction model for 

every missing longitudinal variable

ηi, j = g E Yi, j = Xi, j* Tβ + Zi, jT γi,

where g(·) is a known link function, Zi,j is the designed matrix for random effects γi, γi ~ 

N(0, D), i = 1, . . . , n represents subjects, and j = 1, . . . , Ji are different time points.

After estimating β and D using observed data, we impute the missing values by randomly 

sampling γi ∼ N(0, D) and then obtain a Best Linear Unbiased Prediction imputation 

prediction g−1(Xi, j
* Tβ + Zi, j

T γi) for Yi,j,k with missing values.

DataSifter II RE-EM provides an alternative robust obfuscation for continuous time-varying 

measurements. RE-EM tree model combines the tree-based estimation for fixed effects and 

parametric estimation for random effects.44 RE-EM tree is a semi-parametric generalization 

of the linear mixed effect model

Yi, j = f Xi, j, 1, …, Xi, j, ms + Zi, jTγi + ϵi, j,

where ϵi, 1, …, ϵi, Ji
T ∼ N 0, Ri , γi ~ N(0, D), f(·) function denotes a regression tree in 

the previous model, and Ri records the variance-covariance structure for the ith error term. 

RE-EM tree enjoys the capability of modeling the non-linear trend for fixed effects so 

that variable selection can be avoided. Parameter estimation for the RE-EM tree follows 

a two-step procedure: First, when estimating f(·), RE-EM tree adapts the CART tree 

algorithm. Assuming that γi′s are known and equal to the current estimate γi
(r), the outcome 

of f(·) is Y i, j − Zi, j
Tγi

r . Fitting the tree is a binary recursive procedure that splits the 

whole population into similar subgroups. The default minimum number of subjects in the 

terminal node is set to 20. Also, a new split will be made when the reduction in sum of 

squares between the individual outcome and group average is <1%. In other words, we 
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set the complexity parameter (cp) to be 0.01. To avoid overfitting, pruning is done by 

10-fold cross-validation after the initial fitting. The final tree is selected with the largest 

cp value within one standard error above the minimized 10-fold cross-validated error. 

Second, extract the random effect estimates γi from a linear mixed model that regress Yij on 

f Xi, j, 1, …, Xi, j, ms .

Create partially synthetic time-varying data

Using the proposed iterative imputation tool, we can create partially synthetic time-varying 

data by handling potential missing in Y, generate artificial missingness and impute back.

Similar to the preprocessing step for static variables, we intend to initiate the process with 

a complete dataset containing both static and time-varying data. The working complete 

static data X can be obtained from missForest imputation. If missing values exist in the 

time-varying variables, we pre-process the data using the proposed imputation algorithm 

under MAR assumption. In practice, we can choose the subject-level or subject-and-time-

level propensity model for missing based on different missing patterns, that is, we model 

P{I(Yi contains NA)} if missingness usually happens at subject-level and P{I(Yij = NA)} if 

missingness happens sporadically. Since the true missing values are unknown, we finalize 

the imputation result for a target variable k when ‖Yobsk, k − Yobsk, k
(r) ‖1/‖Yobsk, k‖1 < ϵ at 

current iteration r for a pre-specified tolerance level ϵ, where k ∈ {1, . . . , ml}.

Following the initial imputation, we start Sifting by introducing artificial random missing 

values to the longitudinal variables in the working complete dataset. Such randomly 

generated missingness follows an MCAR missing mechanism, which guarantees that the 

unweighted complete-case analysis is bias-free. We then impute the missing variables one 

by one with the proposed imputation procedure under MCAR with a data-driven choice of 

either the parametric or semi-parametric imputation model.

Implementation of DataSifter II

We use Algorithm 1 to summarize the proposed imputation method for time-varying 

variables. The algorithm terminates the imputation for variable Y·,·,k at the rth iteration 

when

‖Yobsk, k − Yobsk, k
(r) ‖1

‖Yobsk, k‖1
< ϵ

at a tolerance level ϵ. When imputing artificial missing data, the original missing values are 

given. Hence, we have an alternative criterion for determining if the imputation results are 

finalized:

‖Ymisk, k − Ymisk, k
(r) ‖1

‖Ymisk, k‖1
< ϵ
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Algorithm 1.

Time-varying data missing imputation algorithm.

1:
Input: complete static variables X ∈ ℝ ∑iJi × ms, time-varying variables Y ∈ ℝ ∑iJi × ml , missing 
mechanism (MAR or MCAR), imputation model (GLMM or RE-EM tree), and tolerance level ϵ.

2: Initially impute the missing cells in Y with a combination of last value carry forward and next value carry 
backward.

3: Sort the ml variables in Y based on missing rate so that the first variable in Y has the least missing and the last 
variable in Y has the most missing.

4: Create a list of missing variable indexes vlist = {km, ..., ml} where missingness appear from the knth variable.

5: Sort the ml variables in Y based on missing rate so that the first variable in Y has the least missing and the last 
variable in Y has the most missing.

6: Create a list of missing variable indexes vlist = {km, ..., ml} where missingness appear from the kth variable.

7: repeat

8:  for k ∈ vlist

9:   Separate data in four groups with

10:
    

Yobsk, k
Ymisk, k

Yobsk, − kXobsk, .
Ymisk, − kXmisk, .

11:   if missing mechanism = MAR

12:    Construct propensity score model for missingness and calculate the inverse probability of missing for 
records with row indexes obsk.

13:    Perform variable selection with LMM with LASSO using Y obsk, k as outcome and 

Yobsk, − k, Xobsk, ⋅  as potential predictors.

14:    Fit inverse probability weighted LMM with Y obsk, k as outcome and selected predictors as covariates.

15:    Impute missing values Y misk, k using the weighted LMM.

16:   else

17:    if imputation model = GLMM

18:     Fit GLMM with LASSO regularization regressing Y obsk, k on Yobsk, − k, Xobsk, ⋅ .

19:    else

20:     Fit RE-EMtree regressing Y obsk, k on Yobsk, − k, Xobsk, ⋅ .

21:    end if

22:    Impute missing values Y misk, k using the fitted imputation model.

23:   end if

24:  end for

25:  iteration = iteration + 1

26:  if Imputation finalizing criteria at tolerance level ϵ has met

27:   Exclude k from vlist.

28:  end if

29: until iteration > maxit or the length of vlist ≤ 1.

30: Output Sifted time-varying variables Ys.
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Algorithm 2.

Outlines the complete DataSifter II implementation method.

1:
Input: static variables X ∈ ℝn × ms, time-varying variables Y ∈ ℝ ∑iJi × ml , imputation model I, 
DataSifter I obfuscation level L, percent of artificial missing to introduce a, and tolerance level ϵ.

2: Operate DataSifter I on the static variables under obfuscation level L and obtain complete static variables. For 

patient i create Ji, replicates of the working complete static record to create Xs ∈ ℝ∑iJi × ms.

3: Operate Algorithm 1 (XS, Y,MAR,GLMM,ϵ) to impute possible original missingness in Y.

4: Introduce random missingness to a\% of data values for data obfuscation purpose among the ml time-varying 
variables in the working data and obtain data with artificial missingness denoted as Y*. Record real values of the 
missing cells.

5: Operate Algorithm 1 (XS, Y*,MCAR,I,ϵ) to obtain sifted time-varying variables YS.

6:
Output: A single complete and sifted dataset Xs, Ys ∈ ℝ ∑iJi × ms + ml .

Residual diagnostics

The residuals or errors introduced by DataSifter II obfuscated values follow a mixture 

distribution. When the final imputation model for variable Y·,·,k at its last iteration 

rk satisfies ‖Y misk, k − Y misk, k
rk ‖1/‖Y misk, k‖1 < ϵ, the summation of absolute residuals is 

controlled by ϵ and the original observed values. On the other hand, the residual is 

Y misk, k − Y misk, k
(maxit)

. Thus, the model fitting can be assessed with the observed versus predicted 

values diagnostic plot. First, we subset the obfuscated cells. Then, we plot the observed 

values on the vertical axis and the predicted values on the horizontal axis. When the two 

values are only different by a small error term, points in the diagnostic plot will scatter 

around the diagonal line. If significant outliers are detected, we may consider alternative 

strategies to remedy these atypical cases, for example, removing outliers from the final 

shareable dataset to better protect the data utility.

Simulation studies

Simulation setup

In this section, we conduct controlled simulation studies to evaluate the data privacy and 

utility protection of DataSifter and MI methods. The original simulation data is generated 

with n = 500, or n = 1000 subjects, each with Ji time points, where Ji varies from 1 to 10 

with equal probability, two longitudinal variables (Y1 and Y2), five static independent true 

predictors (X1, X2, . . ., X5), and w = 5 or w = 20 white noise variables. The true static 

predictors are generated by normal distributions with different means and unit variance. The 

white noise variables are also generated by normal distributions but with different means and 

larger variances. The longitudinal variable Y1 is associated with static variables only (X1, 

X2, X3), and Y2 is associated with both static (X4, X5) and longitudinal (Y1) variables. We 

consider linear and non-linear associations when generating Y1 and Y2, respectively.

Under the linear association, Y1 is generated by the following Linear Mixed Model:
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Yi, j, 1 = 1 − X1, i − 0.5X2, i − 0.3X3, i + 0.8Visiti, j + b0i + ϵi, j,

where i = 1, . . . , n is the indicator for patients, and j = 1, . . . , Ji is the indicator for time. 

Here Ji is the total visit number for patient i and Ji ∈ {1, 2, . . . , 10}, b0i is a subject specific 

random intercept that follows a N(0, 1) distribution, and ϵi,j are independent for different 

time points and follows N(0, 4). Variable Y2 depends on two static variables and Y1.

Yi, j, 2 = − 15 + 0.2Yi, j, 1 − X4, i + 0.2X5, i + 2Visiti, j + b1i
+ ϵi, j .

Similarly, b1i ~ N(0, 1) and ϵi,j ~ N(0, 4). We know that 

under random intercept V Y i, ⋅ , 1 = ZiDZi
T + σ2IJi where Zi = 1Ji × 1, D = 

Var(b0i) and σ2 = Var(ϵi.j). Thus, Cov(Yi,j,1, Yi,j′,1) = Var(b0i) and 

Corr Y i, j, 1, Y i, j′, 1 = Cov Y i, j, 1, Y i, j′, 1 / Var Y i, j, 1 Var Y i, j′, 1 = Var b0i
/ Var ϵi, j + Var b0i

. After some 

calculations, Corr(Yi,j,1, Yi,j′,1) = 0.2 for all i and j ≠ j′. Similarly, Corr(Yi,j,2, Yi,j′,2) = 

0.2.

We also consider cases with non-linear relationships. Similar to the linear setting, we 

construct models with a compound symmetry correlation structure. Our two longitudinal 

variables are derived by

Yi, j, 1 = 10 + 3sin X1, i − 0.2X2, i
2 − 0.1X1, i ⋅ X3, i + Visiti, j

+ b0i′ + ϵi, j′ ,

and

Yi, j, 2 = 2 + 0.05sin Yi, j, 1 + 0.4exp cos X4, i
− 0.02Yi, j, 1 ⋅ X5, i + 2Visiti, j + b1, i′ + ϵi, j′ ,

Where b0i′ ∼ N(0, 9), b1i′ ∼ N(0, 16), and ϵi, j′ ∼ N(0, 64). We have Var(Yi,j,1) = 73, Corr(Yi,j,1, 

Yi,j′,1) = 0.12, Var(Yi,j,2) = 80, and Corr(Yi,j,2, Yi,j′,2) = 0.2, where j ≠ j′.

The complete data generated by the above procedure will be used to examine different data 

obfuscation methods. To mimic real-world data, we also consider a scenario where some 

observations in Y1 and Y2 contains missing values, which follow the MAR missing data 

mechanism. First we define the missing indicator for variable Y1 to be M(Yi,j,1) = I(Yi,j,1 = 

NA), ∀i ∈ {1, . . . , n} and j ∈ {1, . . . , Ji} and similarly for Y2. The original missingness 

M(Yi,j,1) and M(Yi,j,2) is generated from the two sets of logistic regressions. The first set 

considers different probabilities of missingness at individual and time levels. Under this 

model, we allow partially missing subjects.
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logit P M Yi, j, 1 = 1 = − 2 + 10X1, i − 10Visiti, j + bi .
logit P M Yi, j, 2 = 1 = 3 − 4X5, i − 12Visiti, j + bi′,

where bi, bi′ ∼ N(0, 1). The two models will provide around 20% to 30% missingness for 

each longitudinal variable.

We compared the performance of four types of synthetic datasets: DataSifter with GLMM 

generated on complete original data, DataSifter with RE-EM tree generated on complete 

original data, multiple imputed synthetic data generated on complete original data, and 

DataSifter with RE-EM tree generated on original data that contains missing. All the 

sifted data are generated without static data obfuscation (L =no obfuscation). We applied 

the MI method using two-level normal models with homogeneous within-group variances 

as the imputation model to create multiply imputed partially synthetic datasets, which is 

implemented in mice R package.46,47 We compared the first three types of synthetic data 

to assess the obfuscation performance. To demonstrate that DataSifter can successfully 

handle missingness in the original data, we further show that the decrease in data utility 

preservation is small after bringing in original missingness under the RE-EM tree imputation 

method. All synthetic data are generated by randomly introducing 20% artificial missingness 

in Y1 and Y2 and impute the missing cells back. Static variables, including the white noise 

variables, are not obfuscated. One hundred replications are constructed for each type of 

synthetic dataset under every simulation setting.

Simulation results

Using the proposed data utility and data PM, we evaluate synthetic datasets generated by 

DataSifter and MI. Data utility is measured in terms of prediction accuracy and inference 

based on models trained on synthetic datasets. For prediction accuracy, we construct test 

sets with identical sample size as the training dataset (n = 500 or n = 1000 and Ji ∈ 
{1, . . . , 10}). We then use the predictive models constructed on the synthetic datasets to 

predict the target longitudinal variables in the test set. Absolute deviance in predicted and 

observed values of Y1 and Y2 are calculated as the prediction error. The model inference is 

measured by the 95% confidence interval coverage of the true parameter value among the 

100 replications under linear association scenario. Data utility is examined using the average 

PM for the first 100 records of Y1 and Y2. As defined in section “DataSifter II technique,” 

for an obfuscated (replaced) target cell Yi,j,k, we use the conditional model fitted by D−(i,j) 

to represent intruder’s prior knowledge and PMi,j,k is the difference between the conditional 

mean and the observed yi,j,k.

The average prediction errors on test data are summarized in Table 1. Based on 100 

replications, under most simulation settings, the average test error on Y1 and Y2 are similar 

across different synthetic data generation methods, and these results are indistinguishable 

from the original data. For Y2, under the linear association, the MI method provides slightly 

better prediction accuracy. This result indicates that the parameter estimations with synthetic 

data generated by DataSifter are relatively accurate. Note that the DataSifter RE-EM tree 

provides similarly accurate coefficient estimates when the raw datasets have original missing 
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values, demonstrating the algorithm’s ability to handle partially missing sensitive data. 

Moreover, stable results are observed under linear and nonlinear associations, training 

sample sizes, and noise levels, which suggests that our proposed imputation method is 

robust.

Since the proposed imputation method is aimed at minimizing imputation error rather 

than accounting for the uncertainty of the missing values, the 95% confidence intervals 

constructed on sifted datasets are narrower than the original data. As shown in Table 

2, for variable Y1, the MI method achieves desired 95% coverage while the DataSifter 

GLMM achieves 89–98% accuracy. Due to the slower convergence rate of non-parametric 

estimations and non-linear model specification, the synthetic datasets generated by 

DataSifter RE-EM have smaller CI coverage compared to the previous two methods, ranging 

from 76% to 94%. For Y2, the CI coverage for X4 (one of the static predictors) is relatively 

small under the DataSifter methods (43–68%). Nevertheless, we observe that the DataSifter 

GLMM method (87% and 84%) provides much better CI coverage for predictor Y1 than 

the MI method (39% and 21%). Y1 is a special predictor for Y2, as it includes artificial 

missing. This result validates the utility benefit of the proposed iterative imputation method 

for the cases where important predictors have extensive missingness. DataSifter II better 

preserves the outcome and predictor relationship because it updates the missing predictor 

information during each iteration. In contrast, the MI method provides imputations solely 

based on complete records and may suffer from missing predictors, that is, a smaller 

number of complete records. Therefore, the CI coverages from the DataSifter RE-EM tree 

method are expected to be smaller than the MI method for longitudinal predictors that 

contain artificial missing. However, given the same percentage of artificial missingness, the 

proposed algorithms’ benefit in CI coverage diminishes under larger sample sizes.

The average PM for different synthetic datasets is illustrated in Figure 2. Each boxplot 

records the distribution of average PM for Y1 and Y2 over 100 replications among the 

first 100 records. Under all scenarios, the two DataSifter methods have similar PM values 

and distributions. The MI method offers significantly lower PM, see Figure 2. In fact, 

when introducing 20% artificial missingness to the longitudinal variables, the average mean 

PM is around 5.25 times higher in sifted datasets compared to multiply imputed datasets. 

This result provides empirical evidence for the PM improvement derivation, see section 

“DataSifter II technique.” Compared to multiple imputed datasets, sifted datasets have at 

least 1/a times higher average PM, where a is the percent of the introduced artificial missing 

values in the data.

Biomedical application

The MIMIC-III represents a sizable single-center database that provides patients’ medical 

records in a large tertiary care hospital between 2001 and 2012. MIMIC-III data stores 

information related to patients’ admission, including vital signs, medications, laboratory 

measurements, length of stay, survival data, and more.48 We consider a subset of 7080 

patients who had at least two visits to the hospital who contributed 17,594 hospital 

admission records with demographic variables, including insurance type, gender, race, age, 

marital status, and death after admission. Admission information such as insurance type, 
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admission type, and month of admission is also available. MIMIC-III contains de-identified 

or coded data that is considered free of protected health information. However, the data 

request process, including taking an online course and submitting an application with 

specific research topics and requested information, can still take more than three weeks. 

Using the data for any rigorous scientific investigation requires the researcher to go through 

a time-consuming data request procedure, while in the end, the investigation may find no 

significant results. DataSifter II allows a quicker turnaround for checking the potentials of 

research hypotheses. For example, we want to investigate the association between length 

of stay in tertiary care hospitals and Medicaid insurance type controlling other patient 

demographic variables using the MIMIC-III data. We illustrate how to use the sifted data 

to answer our initial research question and evaluate both utility and privacy protection 

performance in the sifted MIMIC-III data. We also compare the synthetic MIMIC-III 

datasets generated by DataSifter II with that of the MI method. A linear mixed effect model 

is used to regress the length of hospital stay on patient characteristics. The privacy protection 

effort is measured by the privacy measurement (PM) for age and length of hospital stay 

among the first 100 records.

First, we obfuscate the following longitudinal variables: (1) length of stay, (2) month of 

admission, (3) death after visit, and (4) age at visit. Next, we consider generating two types 

of Sifted data: with (L =medium) or without (L =no obfuscation) static data obfuscation 

using DataSifter I. By using the DataSifter II protocol, we introduce 20% missingness in 

the longitudinal variables specified above to obtain the first type of sifted data without 

static obfuscation. The RE-EM tree model is used as the imputation model because of 

its more flexible mean structure. Then, we generate the second type of sifted data with 

further obfuscation on the static variables using DataSifter I under the medium level of 

obfuscation, which entails two rounds of artificial missing introduction and imputation, each 

one randomly obfuscating 25% of the cells. The other setting for the medium obfuscation 

level defines neighbors as the cases with the closest top 5% distance and swaps 60% of the 

features with a neighboring case. As a comparison, we also create partially synthetic data 

with MI based on 20% random, artificial missingness on the four longitudinal variables. The 

MI dataset and the Sifted dataset without static obfuscation have the same amount of data 

cells being replaced in each replication. The Sifted dataset with static obfuscation has the 

highest level of privacy protection among the three by altering an extra 25% of the cells in 

the static data. Fifty replications are generated for each type of partially synthetic data.

Next, we compare the model parameter estimates between models fitted on the original data 

and on the three different types of synthetic data, assuming the following linear mixed effect 

model:

Length of stayi, j = β0 + β1Age + β2Medicaid
+ β3Private insurance + β4White
+ β5Black + β6Male
+ β7Emergency admission
+ β8Urgent admission
+ β9Single + β10English language
+ β11Visiti, j + b1iVisiti, j + ϵi, j,
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where b1i ∼ N 0, σb1
2 , and ϵi,j ~ N(0, σ2).

Results in Figure 3 show that the DataSifter II provides much better privacy protection than 

the MI method with a small loss in data utility. Medicaid is not associated with the length of 

stay in any synthetic and original data fitted models. According to Figure 3(A), most of the 

mean PM by row (record) are below five among the 50 multiply imputed synthetic datasets. 

The average PM is 0.33 for age at admission and 1.53 for the length of hospital stay. The 

DataSifter method provides a significant improvement in terms of PM with 14.87 and 8.17 

as the average PMs for age and hospital stay, respectively. We can also infer from Figure 

3(A) that the mean PMs can vary considerably from row to row in sifted datasets without 

static obfuscation.

Figure 3(B) illustrates the deviance of parameter estimates between the model fitted with 

three types of synthetic dataset and the original linear mixed model. Only significant 

parameter estimates are shown in the plot. The box plots represent the empirical CIs or 

the distribution of β ’s among 50 replicates. The black dots and purple intervals illustrate 

the coefficient estimates and CIs from the original model. According to Figure 3(B), all 

the empirical CIs from MI and DataSifter without static obfuscation overlap with the CIs 

acquired from original data. The MI-created synthetic datasets provide the most accurate 

β ’s that align closely with the original estimates and a small estimation bias is observed for 

the sifted data without static obfuscation. Five out of seven empirical CIs from the model 

constructed from the sifted data with static obfuscation have overlapped with the original 

CIs. The results suggest that the data utility is well preserved in sifted datasets after intensive 

obfuscation.

Since none of the fitted models obtained from the sifted datasets show that β2 is significantly 

different from zero, researchers who are interested in the relationship between Medicaid and 

length of hospital stay may conclude ”no statistical association” from anyone of the sifted 
datasets presented in the simulation study.

Discussion

The reported results shown above demonstrate that the DataSifter with Time-varying 

Correlated Data (DataSifter II) technique balances between maintaining the energy of the 

original data (preserves information or data utility) while simultaneously introducing a 

level of privacy protection safeguarding against re-identification of sensitive information 

contained in the archive. The simulation results based on introducing 20% artificial 

missingness suggest that data utility is better preserved for longitudinal variables that 

depend only on static variables (Y1) compared to variables that depend on both static and 

longitudinal variables (Y2). The two imputation method options, GLMM and RE-EM tree, 

provide accurate and computationally efficient imputations for Y1 and Y2 under linear and 

nonlinear generative models. The RE-EM tree method is efficient computationally when the 

number of longitudinal variables is large and the number of subjects is small compared to 

the number of variables in the data. According to both simulation and application results, 

DataSifter II provides extended privacy protection with moderate utility loss in terms of CI 

coverage compared to the MI method.
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The goal of the proposed algorithm is to support preliminary hypothesis testing on privacy-

aware partially synthetic datasets. DataSifter II does not provide the best data privacy 

protection like differentially private algorithms or the best data utility preservation like MI. 

We aim to balance the level of perturbation introduced to the original data and the quality 

to provide statistical inference. This is to ensure maximal data utility under different levels 

of privacy protection needs. For example, a synthetic dataset for internal use requested 

by a trusted research institute might have a weaker privacy protection requirement than a 

synthetic dataset for educational purposes. Accurate quantification of both criteria is critical 

for achieving the goal. Hence, we proposed and applied the PM in this paper that provides 

record-level disclosure risk of the longitudinal synthetic data, assuming the intruder has 

maximal prior knowledge about the original data. Data utility corresponding to each level of 

obfuscation is then examined by the deviance in inference based on a pre-defined model.

Section “Data utility measurement” mentioned that the data governor could consider using 

a pre-defined parametric model for utility purposes, such as regressing summary variables 

like comorbidity score on other variables. One might argue that one model does not cover 

all inference-related use cases. In practice, we can propose multiple parametric models for 

better inference testing. It could be challenging to propose a comprehensive set of testing 

models for general EHR related to numerous diseases. However, when the data request 

is explicit about a specific disease, the data governor may consider models related to the 

context.

The data obfuscation for static variables was done by the original DataSifter I method, 

which includes the per record swapping operation ensuring record-level perturbation (some 

of the data cells among the static variables are altered) for any non-isolated subject. Our 

application shows that this extra level of protection on static variables only introduces a 

small bias in model-based statistical inference. It is almost impossible to apply the swapping 

operation on time-varying variables without damaging the within-subject correlation. As a 

result, some of the timevarying variables for a specific record might be untouched in the 

synthetic dataset due to chance when the percent of artificial missingness is small. We can 

consider multiple iterations of the DataSifter II operation and adaptively assign artificial 

missing data to guarantee obfuscation in each record’s time-varying variables.

Depending on the specific data characteristics, the DataSifter II performance may be 

impacted in terms of its efficiency and balance between privacy protection and utility 

reservation. We employed a linear (GLMM) model and a tree (RE-EM tree) structured 

model to approximate the distribution for each longitudinal variable conditional on other 

variables in the data. The utility preservation for each longitudinal variable may be affected 

by (1) the complexity of the relationship, (2) empirical variance of the target time-varying 

variable, (3) the data type of the predictors, and (4) alternative within-subject covariance 

structures.

The DataSifter II algorithm provides data governors and researchers with a semi-automated 

and reliable framework for sensible information exchange. Despite perturbing individual-

level records, the overall sifted time-varying data shares similar population-level information 

with the original process. DataSifting allows data owners to create pseudo populations with 

Zhou et al. Page 22

J Algorithm Comput Technol. Author manuscript; available in PMC 2023 January 20.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a custom level of obfuscation, meeting different data sharing needs. This method provides 

a rapid and effective information exchange process facilitating research hypotheses testing 

(confirmatory analytics) and data-driven discovery (exploratory analytics). Many biomedical 

research and development partnerships may benefit from the DataSifter II technology to 

conduct advanced trans-disciplinary research and translate fundamental science advances 

into clinical practice. The proposed algorithm can also be useful beyond the health and 

biomedical domains, which in this study represent the primary target application areas. For 

instance, statistical obfuscation and generation of longitudinal synthetic data could be very 

useful in studies of insurance policies and claims, census records, geopolitical information, 

social justice, and environmental data. Many dynamic processes might contain protected 

personal, regulated governmental, or IP organizational information, which require guarding 

against inappropriate (mis)use. In such cases, DataSifter II can be utilized to simulate 

realistic records to meet different requirements for data privacy, security, and utility in 

various applications. We have shared the DataSifter II R package on our GitHub repository 

https://github.com/SOCR/DataSifterII.
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Figure 1. 
Graphical workflow depicting the organization of the DataSifter Time-varying 

Measurements (DataSifter II).
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Figure 2. 
Average privacy measurement among first 100 rows in the synthetic datasets. The scenario 

with small noise level contains w = 5 and large noise level contains w = 20 white noise 

variables.
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Figure 3. 
MIMIC III synthetic data privacy (A) and utility (B) evaluation. Plot A summaries the 

distribution of mean privacy measurement for age and length of hospital stay for the first 100 

rows across 50 synthetic datasets generated by DataSifter (without static obfuscation using 

DataSifter I) and multiple imputation. Plot B compares the significant coefficient estimates 

(p-value < 0.05) among the models fitted with original data, and synthetic datasets generated 

by DataSifter II (with or without static obfuscation) and multiple imputation. The boxes 

illustrate the distribution of coefficients estimated on 50 synthetic datasets. The black dots 

and purple intervals are the parameter estimates and confidence intervals from the linear 

mixed model fitted by the original dataset.
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