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Abstract: Korean ginseng is one of the most valuable medicinal plants worldwide. However, our un-
derstanding of ginseng proteomics is largely limited due to difficulties in the extraction and resolution
of ginseng proteins because of the presence of natural contaminants such as polysaccharides, phenols,
and glycosides. Here, we compared four different protein extraction methods, namely, TCA/acetone,
TCA/acetone–MeOH/chloroform, phenol–TCA/acetone, and phenol–MeOH/chloroform methods.
The TCA/acetone–MeOH/chloroform method displayed the highest extraction efficiency, and thus
it was used for the comparative proteome profiling of leaf, root, shoot, and fruit by a label-free
quantitative proteomics approach. This approach led to the identification of 2604 significantly modu-
lated proteins among four tissues. We could pinpoint differential pathways and proteins associated
with ginsenoside biosynthesis, including the methylerythritol 4–phosphate (MEP) pathway, the
mevalonate (MVA) pathway, UDP-glycosyltransferases (UGTs), and oxidoreductases (CYP450s).
The current study reports an efficient and reproducible method for the isolation of proteins from
a wide range of ginseng tissues and provides a detailed organ-based proteome map and a more
comprehensive view of enzymatic alterations in ginsenoside biosynthesis.

Keywords: label-free proteomics; Panax ginseng; ginsenosides; cytochrome p450; UDP-glycosyltrans-
ferase; MEP pathway; MVA pathway; TCA/acetone; methanol/chloroform

1. Introduction

Ginseng (Panax ginseng) is a precious medicinal plant exhibiting significant economic
values and pharmacological effects [1,2]. Owing to the presence of various bioactive com-
pounds such as saponins, alkaloids, polysaccharides, free amino acids, and (poly)phenolics,
ginseng has been proved to combat stress, improve the immune system, and maintain
optimal oxidative status against aging, as well as assisting medical treatments related to
central nervous system disorders, liver diseases, cardiovascular diseases, and cancer [1,3].
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The world market of ginseng root and related products is worth USD 2084 million, sug-
gesting a huge production and demand for ginseng products [2], and therefore, multiple
studies at the genome [4], transcriptome [5], and metabolite [5] level have been conducted
to understand the biology of this plant.

In addition, efforts have also been made to improve our understanding of ginseng at
the protein level by utilizing proteomics approaches. Studies have focused on identifying
stress-responsive and ginsenoside biosynthesis-related proteins, while some studies have
concentrated on comparing and analyzing proteins from different ginseng parts and
species [5–8]. However, a number of these studies used one or two tissues and were based
on two-dimensional gel electrophoresis (2-DE) analysis, limiting the comprehensiveness of
their proteome data [5,6,9]. Therefore, a systematic proteomics study using a wide range of
tissues is necessary to provide a deeper understanding of ginseng.

Protein purification is a crucial step of the sample preparation, guaranteeing sufficient
and high-quality proteins for proteome analysis [10]. TCA/acetone, phenol methanol, and
methanol/chloroform precipitation methods have been developed for the isolation of plant
proteins due to their efficiency in precipitating proteins and simultaneously removing in-
terfering compounds [11]. A recent review [12] suggested that TCA/acetone precipitation
displays high efficiency in the isolation of total proteins from a diversity of plant tissues
while the phenol/methanol method effectively produces high-quality protein samples; min-
imizes protein degradation; and removes polysaccharides, ions, and nucleic acids. Besides,
a study by Wessel and Flügge [13] pointed out that the methanol/chloroform precipitation
can work well with different kinds of proteins, especially hydrophobic proteins, in the
presence of detergents and with dilute samples. However, no single extraction method can
reap the entire proteomes of a tissue or a plant species. Therefore, the combination of two or
more approaches to integrate the strengths of each one for the isolation of proteins has been
suggested [8,14]. A recent study by Wu [14] presented a protocol that was the combination
of TCA/acetone precipitation and phenol extraction for the successful isolation of proteins
from various recalcitrant tissues.

Advancements in proteomics approaches have facilitated the proteome analysis of
various plants; however, difficulties in extracting relatively pure ginseng proteins have
remained a primary obstacle [15]. Up to now, TCA/acetone method has been extensively
used for extracting total ginseng proteins [7] while TCA precipitation and phenol extrac-
tion have been moderately employed to isolate ginseng proteins for 2-DE analysis [16].
Nonetheless, the efficiency of these methods has been tested on one or two ginseng tissues
only, hindering their wide acceptability in ginseng proteome analysis [7,17,18]. Therefore,
the development of a universal ginseng protein isolation method is a prerequisite for
high-throughput ginseng proteome analysis.

Here, an attempt was made to first evaluate the efficiency and reproducibility of differ-
ent protein extraction methods, namely TCA/acetone, TCA/acetone–MeOH/chloroform,
phenol–TCA/acetone, and phenol–MeOH/chloroform, followed by utilizing the most
effective approach for the comparative proteome analysis (Figure S1). Moreover, an attempt
was also made to generate a relatively comprehensive proteome map of ginseng fruit, leaf,
root, and shoot using a label-free quantitative proteomics approach (Figure 1). Furthermore,
through the significantly modulated proteins, we generated a more comprehensive view of
the ginsenoside biosynthesis. This in-depth study provides new insights into the protein
complement of different ginseng tissues.
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Figure 1. Workflow of the experiment. Ginseng samples were collected and homogenized in Tris–Mg/NP-40 buffer. After
centrifugation at 16,000× g for 10 min at 4 ◦C, the supernatant was precipitated in 12.5% TCA/acetone at 4 ◦C for one
hour. Protein pellets, obtained through centrifugation at 16,000× g for 10 min at 4 ◦C, were subsequently washed with
methanol/chloroform, followed by trypsin digestion using the FASP method. The digested peptides were desalted and
analyzed using a label-free quantitative proteomic approach. The obtained data were analyzed and annotated using
MaxQuant, Perseus, and MapMan.

2. Results and Discussion
2.1. Optimization of Ginseng Protein Extraction Method

The medical value of Panax ginseng increases with its age, but for its use as medicine
and commercial production, a growth period of 4–6 years is often required [18]. Therefore,
in order to meet the practicality and enhance the reliability of the current study, fruit, leaf,
root, and shoot samples were harvested from various 4-year-old Panax ginseng plants and
pooled together before analysis. As ginseng leaves contain various natural contaminants
such as lipids, saccharides, and various photosynthetic pigments, the extraction of proteins
from ginseng leaves is more challenging than from other ginseng parts [19]. Therefore, we
used ginseng leaves as a model sample for checking the protein extraction efficiency of four
different extraction methods, namely TCA/acetone, TCA/acetone–MeOH/chloroform,
phenol–TCA/acetone, and phenol–MeOH/chloroform (Figure S1). Eliminating interfer-
ing compounds is an initially crucial step in extracting proteins from plant samples. A
review by Wu [12] revealed that finely powdered plant samples can be directly subjected
to TCA/acetone but not to phenol. Therefore, to ensure the homogeneity of the sam-
ples, the finely ground ginseng samples were first homogenized with Tris–Mg/NP-40
extraction buffer, and the OS was subsequently extracted using four different abovemen-
tioned methods.

SDS-PAGE analysis of isolated proteins showed that using the TCA/acetone–MeOH/
chloroform method produced more protein bands with a high resolution on the gel
than the other tested methods (Figure 2A). Furthermore, the label-free quantitative pro-
teomic analysis led to the identification of 36,145 peptides, corresponding to 4705 protein
groups. The average numbers of peptides and unique peptides were 20,383 and 8256,
22,552 and 8919, 22,437 and 7919, and 22,437 and 8981 for TCA/acetone, TCA/acetone–
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MeOH/chloroform, phenol–TCA/acetone, and phenol–MeOH/chloroform, respectively
(Table S1; Figure S2A). The average sequence coverage was 13.24, 14.99, 16.40, and 15.26 (%)
for TCA/acetone, TCA/acetone–MeOH/chloroform, phenol–TCA/acetone, and phenol–
MeOH/chloroform, respectively (Table S1; Figure 2B). Filtering out by applying a cut-off
value of 75% within three technical replicates of each sample led to the identification of
3049 proteins (Figure 2B), of which 2449, 2422, 2245, and 1883 proteins were identified
when using phenol–MeOH/chloroform, TCA/acetone–MeOH/chloroform, TCA/acetone,
and phenol–TCA/acetone extractions, respectively (Table S1; Figure 2B). Isoelectric point
(Figure S2C), molecular weight (Figure S2D), and hydrophobicity (GRAVY) (Figure S2E) of
most of these proteins were between 20 and 160 kDa, 4 and 12, and −2 and 1, respectively.
Subcellular prediction analysis using CELLO2GO web-based software showed a relatively
similar distribution of proteins isolated using the four different methods over 11 locations
(Figure S2F). Since the numbers of proteins identified by each method were relatively
similar, there was not a large difference in the molecular weight, isoelectric point, and
hydrophobicity of proteins among the tested approaches.

Figure 2. SDS-PAGE of proteins isolated from ginseng leaf using TCA/acetone, TCA/acetone–MeOH/chloroform, phenol–
TCA/acetone, and phenol–MeOH/chloroform methods (A). Venn diagram showing the distribution of proteins isolated
from ginseng leaves using four different protein extraction methods (B).

Common methods based on TCA/acetone precipitation and phenol extraction, which
have successfully isolated ginseng proteins from one or two ginseng tissues for 2-DE
analysis [17], might be no longer effective in extracting a wide range of ginseng tissues
for label-free quantitative proteomic analysis. Alternatively, the idea of combining two
extraction methods to incorporate the strengths of every single one for isolating proteins
from different ginseng tissues has shown considerable potential. Particularly, a recent
study by Li [8] showed that the combination of GdnHCl with methanol/chloroform precip-
itation led to improved extraction of proteins from ginseng cauline leaves, compared with
GdnHCl lysate and Tris–HCl lysate methods. However, this combination still displayed
certain limitations as the SDS-PAGE quality and the number of identified proteins were
relatively modest [8]. In the current study, the TCA/acetone–MeOH/chloroform method
maintained the advantages of both TCA/acetone precipitation, which allows extraction of
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total proteins [20], and MeOH/chloroform extraction, which efficiently removes remaining
contaminants (especially lipids) without clear quantitative loss of proteins [13], resulting
in a better extraction of ginseng proteins as observed on the SDS-PAGE (Figure 2A) and
by the number of identified proteins (Figure 2B). An extraction method is considered to
be effective when it reproducibly attains the most comprehensive proteome and simul-
taneously minimizes protein degradation and contaminants [20]. Therefore, although
the phenol–MeOH/chloroform method produced a slightly higher number of identified
proteins than the TCA/acetone–MeOH/chloroform, the poor gel profile and high toxic-
ity to humans of phenol made it an unsuitable choice for our subsequent analysis. The
TCA/acetone–MeOH/chloroform could produce a clear gel profile and a higher number
of identified proteins, compared with the other tested methods; therefore, it was utilized to
extract proteins from ginseng tissues for global identification.

2.2. Label-Free Quantification Using Four Different Ginseng Tissues

The LC-MS/MS analysis led to the identification of a total of 39,275 peptides, which
corresponded to 4764 protein groups. A cut-off value of 75% was applied within four
technical replicates of each tissue sample, leading to the identification of 3073 proteins
(Figure 3A). Of these, 1434, 1958, 2137, and 2211 proteins were found to be in the fruit, root,
leaf, and shoot samples, respectively. Subsequently, multiple ANOVA tests, controlled
by Benjamini–Hochberg FDR threshold of 0.05, were applied on the identified proteins to
demarcate 2604 differentially regulated proteins with fold change more than 1.5 (Table S2;
Figure 3B). While 1179 proteins were common in all four tissues, 287, 18, 132, and 39
proteins were common in the leaf/shoot, leaf/root, shoot/root, and root/fruit samples,
respectively (Figure 3B).

Sequential multi-scatter plot and principal component analysis (PCA) were there-
after performed to analyze the correlation and variations among the four ginseng tissues
(Figure 3C,D). The PCA plot illustrates a clear separation among all of the four sample sets,
demarcating the distinctness of the differential tissue proteomes (Figure 3C). While the
root and leaf samples were separated in PC1 accounting for 42.8% of the total variation,
the shoot and fruit samples were resolved in PC2 that accounted for 26.7% of the total
variation. Furthermore, the multi-scatter plot with the Pearson correlation coefficients of
the technical replicates in each sample set ranging from 0.931 to 0.965 indicated a strong
correlation among the technical replicates of the same samples (Figure 3D).

Previously, ginseng proteomic studies were based primarily on 2-DE analysis, leading
to the identification of a relatively low number of proteins (about 1000 proteins) in these
studies [6,16]. The development of the shotgun techniques, coupled with advancements
in MS, has significantly improved the number of proteins identified from various plant
tissues [15]. A recent study combined GdnHCl with methanol/chloroform precipitation
to extract proteins from ginseng cauline leaves, leading to the identification of 1366 pro-
teins [8]. However, by applying basic fractionation, the number of proteins isolated using
this method increased significantly to 3608 proteins [8]. In the current study, by using the
TCA/acetone–MeOH/chloroform for protein extraction, followed by a label-free quan-
titative proteomic analysis, we successfully identified 4764 proteins from ginseng fruit,
leaf, root, and shoot (Figure 3A). This is the first study on ginseng in which such a high
number of identified proteins is reported from a wide range of tissues using only one
extraction method without fractionation. However, further investigations comparing this
method with different MS sample preparations such as single-pot solid-phase-enhanced
sample preparation (SP3) [21], in-StageTip digestion (iST) [22], and the suspension trapping
(S-Trap) filter [23] using various ginseng tissues might provide a deeper understanding of
the sample preparation for ginseng proteomics.
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Figure 3. A total of 4764 protein groups were identified in this study. Out of these, 2604 proteins were significantly
modulated among four tissues (A). Venn diagram showing the distribution of 2604 proteins (B). Principle component
analysis of the differentially regulated proteins (C). Multi-scatter plots of label-free protein intensities between different
technical replicates of the samples with Pearson correlation coefficient values (D).

2.3. Functional Classification of Identified Proteins
2.3.1. Functions of Commonly Identified Proteins among Four Tissues

For the further investigation of the significantly modulated proteins, we performed
hierarchical clustering analysis (HCA) which separated all the identified proteins into four
clusters based on log2 of the z-score normalized intensities among the technical replicates of
each sample (Figure 4A). While Cluster 1 consisted of 265 proteins with high abundance in
the shoot, Cluster 2 included 1104 proteins with increased abundance in the leaf. Clusters 3
and 4 contained 448 and 787 proteins, which were maximally accumulated in the fruit and
root, respectively (Figure 4B)
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Figure 4. Expression profile of 2604 significantly modulated proteins identified by label-free quantitative proteome analysis.
Hierarchical clustering (A) was carried out by Perseus software. Expression patterns of 4 protein clusters (B). Gene ontology
analysis was performed for functional annotation of proteins in four clusters using AgriGO (ver. 2.0) (C,D).

For functional annotation of the identified proteins, we carried out gene ontology (GO)
enrichment analysis via AgriGO through homolog identification of P. ginseng proteins in
A. thaliana (TAIR10) [24] (Table S3). Notably, in the GO classification of molecular function,
catalytic activity was the largest GO term in Clusters 1, 2, 3, and 4 with the involvement of
101 (38.1%), 347 (31.4%), 140 (31.3%), and 262 (33.3%) proteins, respectively (Figure 4C).
Hydrolase activity, oxidoreductase activity, and transferase activity were the three main
subgroups of catalytic activity found in all of the four clusters, while ligase activity was
found in only Cluster 2 (Figure 4D). The metabolism overview of MapMan analysis indi-
cated that most of the proteins related to the catalytic activity in Cluster 1 were involved
in the biosynthesis of methionines, cellulose and precursors, phospholipids, flavonoids,
and isoprenoids, which are more active in the shoot [25]. Meanwhile, the proteins asso-
ciated with catalytic activity in Cluster 2 were majorly involved in the biosynthesis of
various amino acids, photosynthesis, nucleotide metabolism (synthesis of purines and
pyrimidines), CHO metabolism (synthesis of starch and sucrose), and the synthesis of
secondary metabolites (flavonoids, isoprenoids, and phenylpropanoids), which take place
predominantly in the leaf of plants [25]. By contrast, most of the proteins that belonged to
the catalytic activity in Clusters 3 and 4 were mainly associated with the degradation of dif-
ferent molecules (such as amino acids, nucleotides, lipids, starch, sucrose, and flavonoids),
glycolysis, and tricarboxylic acid cycle, which commonly occur in the fruit and root of
plants [25] (Table S3). The result of MapMan analysis is consistent with the result from the
HCA (Figure 4A,B).
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2.3.2. Functions of Tissue-Specific Proteins

Among the 2604 identified proteins, 65, 168, 88, and 58 proteins were specifically iden-
tified in the fruit, leaf, root, and shoot, respectively (Table S2; Figure 5A). For understanding
the functional significance of these proteins, the metabolic overview and cell function were
analyzed using MapMan (Figure 5B), followed by an interactome analysis using STRING
(v. 11.0) (Figure 5C).

Figure 5. Overview of tissue-specific proteins (A). Functional annotation of tissue-specific proteins was carried out using
MapMan (B). Protein–protein interaction networks of tissue-specific proteins related to metabolic processes were analyzed
using STRING (ver. 11.0), coupled with Cytoscape (ver. 3.7.2) (C).

The metabolism overview of MapMan analysis revealed that among 65 proteins
specific to the fruit, 10 proteins were classified into six metabolic groups, of these, lipid
metabolism was the largest group, containing acyl-(acyl-carrier-protein) desaturase and
3-ketoacyl-acyl carrier protein synthase I involved in the fatty acid synthesis and elongation
(Table S4). For the leaf-specific proteins, 13 groups accounting for 37 proteins were catego-
rized; of these, the photosynthesis process with proteins associated with the light reaction
of photosystems I and II and photorespiration was the major metabolism. Regarding the
88 root-specific proteins, 10 metabolic groups accounting for 21 proteins were sorted, of
which secondary metabolism was the largest, containing six proteins. Differently, cell wall
with six proteins associated with the formation and modification of the cell wall was the
most dominant metabolic group of shoot-specific proteins (Table S4).

Furthermore, the cell function of MapMan analysis showed that six groups accounting
for 14 fruit-specific proteins were categorized, of these, abiotic stress was the largest group,
with five proteins. Protein synthesis, protein aminoacylation, and protein targeting were
the most dominant groups associated with 38 proteins specific to the leaf. Meanwhile, the
largest groups of proteins specific to the root were protein degradation and biotic stress.
Transport and signaling were the most predominant groups related to 10 proteins included
exclusively in the shoot (Figure 5B).

To have a global view of all possible interactions among specific proteins that were
involved in the metabolisms of each sample set, protein–protein interaction networks were
created. After STRING functional enrichment analysis, a total of 5, 29, 6, and 9 proteins
uniquely stemming from the fruit, leaf, shoot, and root, respectively, showed interactions
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on the network (Figure 5C). Among these, photosynthesis was the primary metabolism
influencing various activities in the leaf, while CHO metabolism and secondary metabolism
were predominant metabolisms in the root and shoot, respectively. Gluconeogenesis was
the metabolism linked to different metabolic activities in the fruit.

Tissue-specific proteins are important factors contributing to differences in anatomical
characteristics and physiological functions among living tissues. Therefore, some stud-
ies have been conducted to identify and characterize tissue-specific proteins in various
plants [26,27]. On P. ginseng, few studies have determined proteins specific to ginseng leaves
and roots. A study by Seung [28] successfully identified and characterized root-specific
RNase-like proteins (GMPs) in roots of wild ginseng, which might work as vegetative
storage proteins promoting its survival in the natural habitat. Furthermore, Li [8] high-
lighted 878 and 1754 proteins specific to the roots and cauline leaves, respectively. The
author also revealed that the cauline leaf-specific proteins were primarily associated with
photosynthesis and related energy conversion while the proteins specific to the root were
involved in the biosynthesis and modification of biomacromolecules [8]. The functional
annotation and molecular processes highlighted in the leaf and root in the current study are
were relatively consistent with the previous report [8]. However, as the present study was
performed on all fruit, leaf, root, and shoot tissues, the number of overlapped proteins was
significantly increased, while the number of tissue-specific proteins was also highlighted.

2.4. Decoding the Proteome Modulations in Association with Ginsenoside Biosynthesis

Ginsenosides, a well-known triterpenoid saponin type in the ginseng plant, are natural
secondary metabolites of ginseng, exhibiting a diversity of medicinal effects [1]. Recently,
more than 180 ginsenosides have been identified and categorized into three main types:
protopanaxadiol (PPD) type, protopanaxatriol (PPT) type, and oleanane type, with the
first two commonly existing in P. ginseng [29,30]. The biosynthesis of ginsenosides can
be divided into three main stages: (1) the biosynthesis of the precursor isopentenyl py-
rophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP) through the MVA and
MEP pathways, (2) the conversion of IPP and DMAPP into 2,3-oxidosqualene, and (3) the
formation of ginsenosides and sterols from 2,3-oxidosqualene [31].

It is a fact that ginsenosides are unevenly distributed in different parts of ginseng.
A few studies have confirmed that the total ginsenoside content of the ginseng leaf and
fruit was higher than that of the root [32], yet there have been no studies elucidating the
molecular mechanism for this difference. This study, for the first time, revealed a relatively
comprehensive proteome profile of the ginseng fruit, leaf, root, and shoot, providing a
new understanding of the molecular basis for the variation in the ginsenoside content
among the four tissues. Our result identified a total of 67 proteins associated with the
ginsenoside biosynthesis (Table S5). Of these, acetyl-CoA C-acetyltransferase (ACCT),
hydroxymethylglutaryl-CoA synthase (HMGS), and diphosphomevalonate decarboxylase
(MVD) related to the MVA pathway were more abundant in the shoot. Nine proteins
associated with the MEP pathway, namely one protein of 1-deoxy-D-xylulose-5-phosphate
synthase family (DXS), two proteins of 1-deoxy-D-xylulose 5-phosphate reductoisomerase
family (DXR), one protein of 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase
family (ispD), one protein of 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase family
(ispE), one protein of 2-C-methyl-D-erythritol 2,4-cyclodiphosphate synthase family (ispF),
two proteins of (E)-4-hydroxy-3-methylbut-2-enyl-diphosphate synthase family (ispG),
and one protein of 4-hydroxy-3-methylbut-2-enyl diphosphate reductase family (ispH),
showed higher abundance in the leaf. In addition, 28 UGTs were identified, of which 5, 12,
6, and 5 proteins were highly accumulated in the fruit, leaf, root, and shoot, respectively.
Furthermore, 22 CYP450s were also identified, of which 4, 5, 6, and 7 proteins were highly
abundant in the fruit, leaf, root, and shoot, respectively. Proteins such as isopentenyl-
diphosphate delta-isomerase (IDI) and beta-amyrin synthase (β–AS) were also identified
with high abundance in the ginseng leaf sample, while cycloartenol synthase (CAS) was
highly accumulated in shoot and leaf samples. Besides, 2, 3, 6, and 1 proteins related to
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the biosynthesis of ginsenosides were found to be specific to the fruit, leaf, root, and shoot,
respectively (Figure 6; Table S5).

Figure 6. Expression profiles of identified proteins involved in the MEP (A) and the MVA (B) pathways. PPT-type (C) and
PPD-type (D) ginsenosides. The abundance of UGTs and CYP450s related to ginsenoside biosynthesis (E). Color codes
represent abundance patterns of identified proteins wherein red and blue indicate a high and low abundance of proteins in
particular tissues, respectively. F—fruit, L—leaf, R—root, S—shoot.

Biosynthesis of IPP and DMAPP is essential to most living organisms. Depending on
species, these precursors of isoprenoids can be synthesized through only the MVA pathway
like some archaea and eukaryotes or only the MEP pathway like most bacteria or both of
these pathways in most photosynthetic eukaryotes [33]. The MVA pathway is responsible
for the conversion of acetyl-CoA into IPP and DMAPP, while the MEP pathway produces
the IPP and DMAPP from glyceraldehyde and pyruvate (Figure 6A,B). In P. ginseng, studies
based on phytochemical and inhibitor experiments, transcriptome, and genome sequencing
revealed that the biosynthesis of IPP and DMAPP, the precursors of ginsenosides, has the
involvement of both MVA and MEP pathways [24,31,34]. In addition, by conducting
deep RNA sequencing on the 1–5-year-old ginseng root samples and five different tissues,
Xue [35] not only determined most genes related to the MVA and MEP pathways but also
pointed out the relative expression of these genes among different aging samples and
tissues. However, these genes are not directly involved in the reactions of the MVA and
MEP pathways, but their products (enzymes) are. This means that the abundance pattern
of these enzymes in the fruit, leaf, root, and shoot of ginseng might be a deciding factor
for the differences in the biosynthesis of the IPP and DMAPP and subsequently of tissue-
specific CYP450s and UGTs, differentiating the types and concentration of ginsenosides
in various parts of the ginseng plant [29,36]. In the present study, the higher abundance
of proteins related to the MVA pathway (ACCT, HMGS, and MDV) was observed in the
shoot, while all proteins associated with the MEP pathway (1 DXS, 2 DXR, ispD, ispE, ispF,
2 ispG, and ispH) showed the highest abundance in the leaf. These findings suggest that
the biosynthesis of ginsenosides in the shoots might have the major involvement of the
MVA pathway, while the biosynthesis of ginsenosides in the leaves might rely majorly on
the MEP pathway. The findings are logically suitable to the plastic location of the MEP
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pathway and in concordance with the results from the research of Xue [35] that all genes
related to the MEP pathway had higher levels of gene expression in the leaf than the root
of P. ginseng.

The present study also highlights the increased abundance of cycloartenol cyclase
(CAS) in the shoot and β-amyrin synthase (β-AS) in the leaf. The precursors, IPP and
DMAPP, are converted into several metabolic intermediates and then to 2,3-oxidosqualene,
which in turn undergoes variable cyclization by oxidosqualene cyclases (OSCs), hydroxyla-
tion by CYP450s, and glycosylation by UGTs to form an array of ginsenosides (Figure 6) [33].
The formation of sterols from 2,3-oxidosqualene is catalyzed by two different OSCs, namely
lanosterol synthase (LAS) and CAS, while β-AS is involved in the production of oleanane.
The formation of sterols from 2,3-oxidosqualene is catalyzed by two different OSCs,
namely lanosterol synthase (LAS) and CAS, while β-AS is involved in the production
of oleanane [29,37]. Our findings led to speculation that the biosynthesis of sterols might
be more active in the shoot samples, whereas the pathways involving the production of the
triterpenoid oleanane are differentially active in leaf tissues.

The PPD- and PPT-type saponins make up a majority of ginsenosides in P. ginseng. The
biosynthesis of PPD- and PPT-type saponins occurs when 2,3-oxidosqualene is converted
into dammolarenediol by dammolarenediol synthase (DS), then into protopanaxadiol
(PPD) by cytochrome P450 CYP716A47 (PPDS) before undergoing one more hydroxylation
catalyzed by cytochrome P450 CYP716A53v2 (PPTS) to form protopanaxatriol (PPT). The
PPD and PPT are subsequently glycosylated by different UGTs to form a diversity of PPD-
and PPT-type ginsenosides [33,35]. In our study, six UGTs related to the biosynthesis
of PPD-type saponins were found to be differentially accumulated in the leaf tissues,
including UGT71A27 (Pg_S6256.3) catalyzing the biosynthesis of compound K from PPD,
UGT45 (Pg_S5977.4) converting PPD into Rh2, UGT47AE2 (Pg_S4174.7) catalyzing the
biosynthesis of Rh2 from PPD and the biosynthesis of F2 from compound K, UGT94Q2
(Pg_S6708.3 and Pg_S2289.21) catalyzing the conversion of ginsenoside Rh2 to ginsenoside
Rg3 and triggering the biosynthesis of ginsenoside Rd from ginsenoside F2, and UGT1
(Pg_S4493.1) triggering C20–OH glycosylation of ginsenoside Rg3 to produce ginsenoside
Rd and converting Rh2 to F2 [38,39]. Besides, two proteins participating in the formation
of PPT-type saponins comprising PPTS (Pg_S1770.12) catalyzing the formation of PPT from
PPD and UGT101 (Pg_S4157.4) catalyzing the biosynthesis of ginsenoside F1 from PPT and
the conversion of ginsenoside F1 to ginsenoside Rg1 also displayed a high abundance in
the leaf samples [40]. The increased abundance of these proteins in the leaf demonstrated
that the biosynthesis of PPD- and PPT-type ginsenosides in the leaf tissues is promisingly
higher than in the fruit, root, and shoot. Furthermore, the appearance of CYP450s and UGTs
specific to the fruit, leaf, root, and shoot may explain the existence of ginsenosides that
are specific to each tissue. These results are consistent with a previous study by Kang [32]
showing that the total ginsenoside content in the leaf of P. ginseng is 12 times higher than
that of the main root and that the leaves of P. ginseng contain a high amount of ginsenosides
Rh1 and Rb3, whereas its main roots have a higher quantity of ginsenosides Rb1 and Rc.

3. Materials and Methods
3.1. Plant Materials

P. ginseng cv. Chunpoong was grown in a controlled growth chamber at the Depart-
ment of Ginseng Research, National Institute of Horticultural and Herbal Science (NIHHS),
Rural Development Administration (RDA), Eumseong, Korea (latitude 36◦94, longitude
127◦75). The average temperature and humidity of the greenhouse were maintained at
22.5 ± 2.5 ◦C and 50 ± 10%, respectively. Four-year-old leaves, shoots, roots, and fruits
from five different ginseng plants were harvested and immediately stored at −80 ◦C
for analysis.
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3.2. Total Protein Extraction

The leaf samples (1 g) of 4-year-old plants from five different plants were pooled
together, homogenized in 10 mL of Tris–Mg/NP-40 extraction buffer (0.5 M Tris–HCl, 2%
(v/v) NP-40, 20 mM MgCl2, 2% (v/v) β-mercaptoethanol, and 2% (w/v) polyvinylpolypyrr-
olidone, pH 8.3) and subjected to centrifugation at 16,000× g for 10 min at 4 ◦C. The
OS was used for the subsequent extractions using trichloroacetic acid (TCA)/acetone,
TCA/acetone–MeOH/chloroform, phenol–TCA/acetone, and phenol–MeOH/chlo-
roform methods.

The TCA/acetone method was carried out as described previously [7,41]. Briefly, the
OS was incubated with 4 volumes of 12.5% (w/v) TCA/acetone containing 0.07% (v/v)
β-mercaptoethanol for 1 h at −20 ◦C and then centrifuged at 16,000× g for 10 min at 4 ◦C
to obtain protein pellets. The TCA/acetone–MeOH/chloroform method was performed
as described previously [13]. Briefly, the OS was first extracted using the TCA/acetone
method, and the obtained proteins were then mixed with 4 volumes of methanol, then an
equal volume of chloroform, and then 3 volumes of the sterile distilled water before being
centrifuged at 16,000× g for 5 min to collect protein pellets. For the phenol–TCA/acetone,
the OS was vigorously mixed with the same volume of saturated phenol and separated
into two phases through centrifugation at 3500× g for 5 min at 4 ◦C. The lower phase
containing proteins was incubated with 4 volumes of 12.5% (w/v) TCA/acetone containing
0.07% (v/v) β-mercaptoethanol for 1 h at −20 ◦C before being centrifuged at 16,000× g
for 10 min at 4 ◦C to collect protein pellets. The phenol–MeOH/chloroform method was
performed similarly to the phenol–TCA/acetone method with a slight difference: the lower
phase yielded from the phenol extraction was incubated with 4 volumes of methanol and
1 volume of chloroform for 1 h at −20 ◦C prior to being centrifuged at 16,000× g for 10 min
at 4 ◦C to collect protein pellets. The resulting pellets of these methods were finally washed
with 80% acetone containing 0.07% (v/v) β-mercaptoethanol and then stored at −20 ◦C
until further analysis.

The extraction of total proteins from ginseng fruits, leaves, roots, and shoots was
conducted using the TCA/acetone–MeOH/chloroform as described above.

3.3. Label-Free Quantitative Proteome Analysis Using Q-Exactive Mass Spectrometer

Label-free quantitative proteomic analysis of ginseng fruit, leaf, root, and shoot sam-
ples was performed as described previously [7]. Briefly, the digested peptides, obtained
from the in-solution trypsin digestion using the FASP method, coupled with a 30k spin
filter (Merck Millipore, Darmstadt, Germany) [42], were desalted using C18 column (Oasis
HLB 1 cc Vac Cartridge, 30 mg sorbent per cartridge, 30 µm, 100/pk, WAT094225, Waters,
Ireland). Subsequently, the desalted peptides were dissolved in solvent A (water/ACN,
98:2 v/v; 0.1% formic acid), followed by the reversed-phase chromatography separation
utilizing a UHPLC Dionex UltiMate 3000 (Thermo Fisher Scientific, Madison, WI, USA)
instrument [43]. In the UHPLC, the sample was first trapped with an Acclaim PepMap
100 trap column (100 µm × 2 cm, nanoViper C18, 5 µm, 100 Å) and then washed with
98% solvent A for 6 min at a flow rate of 6 µL/min prior to being separated in an Acclaim
PepMap 100 capillary column (75 µm × 15 cm, nanoViper C18, 3 µm, 100 Å) at a flow rate
of 400 nL/min. As the UHPLC was running, the LC analytical gradient was increased
gradually from 2% to 35% solvent B during the first 90 min and then from 35% to 95% in
the next 10 min; finally, 90% and 5% solvent B were run for 5 min and 15 min, respectively.
The integration of liquid chromatography–tandem mass spectrometry (LC-MS/MS) with
an electrospray ionization source to the quadrupole-based mass spectrometer Q Exactive
Orbitrap High-Resolution Mass Spectrometer (Thermo Fisher Scientific, Madison, WI,
USA) allowed the resulting peptides to be electro-sprayed through a coated silica emit-
ted tip (PicoTip emitter, New Objective, Massachusetts, USA) at an ion spray voltage of
2000 eV, generating the MS spectra with a resolution of 70,000 (200 m/z) in a mass range
of 350–1800 m/z. For ion accumulation, 100 ms was set as the maximum injection time.
The eluted samples, measured in a data-dependent mode for the 10 most abundant peaks
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(Top15 method) with the high mass accuracy Orbitrap after ion activation/dissociation
with Higher Energy C-trap Dissociation (HCD) at 27 collision energy in a 100–1650 m/z
mass range, were used for MS/MS events (resolution of 17,500) [43]. The obtained pro-
teomics data have been deposited to the ProteomeXchange Consortium via the PRIDE [44]
partner repository with the dataset identifier PXD022914.

3.4. Data Processing Using MaxQuant Software

The MS spectra of ginseng fruit, leaf, root, and shoot samples were cross-referenced
against the genome sequencing database (http://ginsengdb.snu.ac.kr/ (accessed on
1 April 2021)) maintained by Seoul National University [4]. Label-free quantification (LFQ)
was performed using default precursor mass tolerances set by Andromeda, with 20 ppm
for the first search and 4.5 ppm for the following ones. The search of the LFQ data was
based on 0.5 Da of a product mass tolerance with a maximum of two missed tryptic
digestions. Carbamidomethylation of cysteine residues was chosen for the fixed modifi-
cations, while acetylation of lysine residues and oxidation of methionine residues were
selected for additional modifications. The false discovery rate (FDR), which was set at 1%
for peptide identifications, was determined based on a reverse nonsense version of the
original database.

The data processing for LFQ was performed using MaxLFQ, available as a part of the
MaxQuant suite [45]. Subsequently, Perseus software (v. 1.6.14.0) [46] was employed for fur-
ther statistical and graph analyses. The Perseus software enables performing missing value
imputation of protein intensities from a normal distribution (width: 0.3, downshift: 1.8);
HCA; and multiple-sample test (one-way ANOVA), controlled by Benjamini–Hochberg
method based on an FDR threshold of 0.05, for identifying the significant differences in
the protein abundance among the ginseng fruit, leaf, root, and shoot samples. Functional
annotation of the identified proteins was undertaken, employing MapMan and AgriGO
(v. 2.0) [47,48]. The interaction networks of differentially regulated proteins were pre-
dicted by STRING analysis (v. 11.0), coupled with Cytoscape (v. 3.7.2.0) [49]. Subcellular
localization analysis was performed using CELLO2GO web-based software [50].

4. Conclusions

P. ginseng is a precious plant with immense medical and economic value; however,
our knowledge about ginseng proteomics is still scanty. Here, a label-free quantitative
proteomic analysis was employed to generate a comprehensive proteome map of the
ginseng fruit, leaf, root, and shoot. To optimize the extraction of ginseng proteins, we
first compared four different protein extraction methods, and we finally adopted the
TCA/acetone–MeOH/chloroform method for further analysis. The increased abundance of
most of the proteins related to the ginsenoside biosynthesis illustrated that the biosynthesis
of ginsenosides in the leaves is probably higher than in the fruit, root, and shoot, while
the tissue-specific CYP450s and UGTs might elucidate the existence of proteins specific
to each tissue. In addition, the increased abundance of CAS in the shoot and β-AS in the
leaf leads to speculation that the biosynthesis of sterols might be more active in the shoot
samples, whereas the production of oleanane-type ginsenosides might be more active in
the leaf tissues. Taken together, the results of the current study show that this efficient
and reproducible method for the ginseng protein isolation, which plays a vital role in
facilitating the development of ginseng proteomics, provides a relatively comprehensive
picture of the ginsenoside biosynthesis and new insights into the protein complement of
different ginseng tissues.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/plants10071409/s1, Figure S1: Diagram showing the protein extraction procedures using
different protein extraction methods. Figure S2: In-depth proteome analysis of proteins isolated
using four different protein extraction methods, namely, TCA/acetone, TCA/acetone–MeOH/chlo,
Phenol–TCA/acetone, Phenol–MeOH/chlo. Table S1: Label-free proteomic analysis of proteins
isolated from ginseng leaves using TCA/acetone, TCA/acetone–MeOH/chlo, Phenol–TCA/acetone,
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and Phenol–MeOH/chlo methods, Table S2: Label-free proteomic analysis of proteins isolated from
ginseng fruit, leaf, root, and shoot tissues using TCA/acetone–MeOH/chlo, Table S3: Gene ontology
(GO) enrichment analysis of proteins isolated from ginseng fruit, leaf, root, and shoot tissues, Table
S4: Cell function and metabolism overview of proteins specific to fruit, leaf, root, and shoot using
MapMan software, Table S5: List of proteins involved in ginsenoside biosynthesis.
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