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Abstract

Static knowledge about the grammar of a natural language is represented in the

cortico-subcortical system. However, the differences in dynamic verbal processing

under different cognitive conditions are unclear. To clarify this, we conducted an

electrophysiological experiment involving a semantic priming paradigm in which

semantically congruent or incongruent word sequences (prime nouns–target verbs)
were randomly presented. We examined the event-related brain potentials that

occurred in response to congruent and incongruent target words that were preceded

by primes with or without grammatical case markers. The two participant groups

performed either the shallow (lexical judgment) or deep (direct semantic judgment)

semantic tasks. We hypothesized that, irrespective of the case markers, the

congruent targets would reduce centro-posterior N400 activities under the deep

semantic condition, which induces selective attention to the semantic relatedness of

content words. However, the same congruent targets with correct case markers

would reduce lateralized negativity under the shallow semantic condition because
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grammatical case markers are related to automatic structural integration under

semantically unattended conditions. We observed that congruent targets (e.g.,

‘open') that were preceded by primes with congruent case markers (e.g., ‘shutter-
object case') reduced lateralized negativity under the shallow semantic condition.

In contrast, congruent targets, irrespective of case markers, consistently yielded

N400 reductions under the deep semantic condition. To summarize, human neural

verbal processing differed in response to the same grammatical markers in the

same verbal expressions under semantically attended or unattended conditions.

Keyword: Neuroscience

1. Introduction

Grammatical knowledge in natural language is often biologically distinguishable

from other cognitive components, such as inference, reasoning, and intension [1],

because of the domain specificity of the modularity of grammatical computation

[2, 3]. Grammatical processing is related to the construction of verbal structures in

the production and comprehension of complex verbal contents. In the English

language, verbal processing that is based on grammatical knowledge requires a

number of procedures, such as the checking of verb inflection (e.g., “He swims."),
tense agreement of the verbs (e.g., ‘Yesterday, he swam’), or case agreement of the

pronouns before and after the verbs (e.g., “He likes him."). However, in contrast to

content words, function words are sometimes ignored or omitted in ordinary

language usage [4, 5]. The Japanese language is a head-final language with a

subject/object/verb (SOV) word order. It overtly represents the relationship of

nouns to verbs or other predicates with a case marker called a particle, which is

attached immediately after a noun to indicate the syntactic role of the noun that is

licensed as, for example, a subject ('-ga') or an object ('-o'). However, case markers

are often deleted in colloquial speech. In Japanese, for example, the object case '-o'

is deleted from the pronoun ‘kare' (‘him’) in “kare (-o) mita?” (“Have you seen

him?”). Although such omission phenomena are not ubiquitously observed across

languages, theoretical investigations of static grammatical knowledge have

suggested that verbal expressions in which function words do not appear overtly

should be analyzed like those with overt function words with the support by

phonologically covert elements [6]. In the above example, the pronoun ‘kare'
(“him”) does not possess an overt object case marker '-o', but it is assumed to be the

object in the presence of a covert case feature, such as [+ object case], which is

supposed to be positioned immediately before the verb. The inevitable question

about dynamic verbal processing is whether neural language processing is the same

depending on function words. Some tension lies between linguistic knowledge and

performance in a neural representation of natural language [7] because we do not

always use a language as we know. For instance, we know that it is more

informative and grammatically rigid to have a subject in a sentence, but in
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colloquial or spoken Japanese, a subject word is often omitted in a casual manner,

such as ‘kinou/hon-o/yonda’ (“yesterday”/“book-object”/“read”), which means “I
read a book yesterday”.

Based on the distinction between syntactic and semantic processing [8], function

words may affect the processing of content words differently depending on

whether the task requires simple lexical decisions of content words [shallow (SHL)

semantic task] or when it requires explicit judgments on the semantic relationships

between content words [deep (DP) semantic task]. When the processing of

semantic contents is not required, as in a SHL semantic task, the syntactic

properties of sentences are automatically assessed, which induces structural

integration. Structural integration can be associated with procedural memory,

which drives the automatic computation of a rule-based product or a verbal

structure. This is likely supported by cortical areas, such as the inferior frontal

gyrus and superior temporal area [9, 10].

In contrast, when the task requires semantic retrieval, as in a DP semantic task,

function words may receive less attention. This may be more obvious in languages

like Japanese that use explicit function words. Although automatic grammatical

processing can take place under DP semantic conditions, the selective attention to

sematic relatedness might result in the ignoring of function words and promoting

of the semantic retrieval of lexical information, which would change the

neurophysiological responses [11]. Attended semantic processing is thought to

be related to declarative memory, which explicitly retrieves semantic information,

and this is likely supported by a number of cortical areas [12, 13].

Task-dependent differences in verbal processing because of function words might

be related to different event-related brain potential (ERP) effects. Function words

in a SHL semantic condition may induce automatic syntactic processing, which is

reflected by changes in lateralized negativity (LN). LN frequently has a left-

lateralized, anterior-dominant distribution (left anterior negativity: LAN). LAN is

elicited in syntactic violation paradigms, such as case [14, 15] and morpho-

syntactic agreement [16, 17, 18, 19] violations, which suggests that LAN is related

to morpho-syntactic processing [8]. Alternatively, a DP semantic condition, which

likely facilitates semantic processing that is based on lexical contents, yields

changes in centro-posterior negative responses (N400) [20, 21, 22]. Changes in

N400 have been observed in response to semantic anomalies: semantically deviant

words elicited larger N400 responses than congruent words did [23]. Additionally,

the N400 appears in response to semantically congruent (SC) but unexpected

words [24]. Given that the N400 is not limited to violation paradigms, this

component has been suggested to be related to semantic integration load [25, 26].

Based on this ERP distinction, the present study aimed to examine the influence of

grammatical congruency (i.e., correct/incorrect use of function words) on simple
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sentence processing. We assumed that different ERP components would be

affected depending on whether the task required DP semantic processing or not.

For this purpose, we used a semantic priming paradigm [27] in which SC or

semantically incongruent (SI) words (prime nouns–target verbs) were presented in

order. In this paradigm, congruent targets, in contrast to incongruent ones,

generally decrease N400 potentials [28]. The reduced N400 effects reflect the

attenuation of the neural activity underlying the processing of the congruent targets

because of the prospective activity of the neural populations that represent the

targets [12, 29]. Concerning grammatical congruency, previous priming studies

have not investigated how grammatical words spatio-temporally affect N400 and/

or LN activities for semantic relatedness. However, grammatical congruency likely

promotes automatic structural processing and, hence, reduces the LN activity of

structural integration, as has been suggested by syntactic violation studies [14, 15,

16, 17, 18, 19].

Therefore, we prepared four experimental conditions. These conditions comprised

an SI condition, which was used as a baseline for the comparisons, and three

congruent conditions, depending on the presence or absence of case markers in

prime words and, if present, the correct or incorrect choice of case markers: an SC

condition without a case marker, an SC condition with a congruent case marker

(SC/GC), and an SC condition with an incongruent case marker (SC/GI). These

conditions were compared within and between SHL (lexical judgment about non-

words) and DP (explicit judgment about the semantic relatedness among words)

semantic tasks. Taken together, the neurophysiological changes in verbal

processing with or without case markers were investigated by examining the

negative potentials in the SC conditions compared to those in the SI condition

under different types of semantic attention.

We predicted that the SC/GC condition with congruent case markers would induce

automatic structural integration in the SHL task and consequently reduce the LNs

for target words compared to those in the SI condition. However, the SC/GI

condition with incongruent case markers would increase the LNs in response to

case violation compared to those in the SI condition. In the DP task, the congruent

targets (SC, SC/GC, and SC/GI) were predicted to produce N400 reductions and

not affect the LNs compared to the SI targets because case markers are usually

ignored in attended semantic processing, which is driven by the direct semantic

retrieval of lexical information. Taken together, an investigation of these ERP

effects will elucidate whether grammatical case markers are processed similarly

under SHL and DP semantic conditions.
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2. Materials and methods

2.1. Participants

Both participant groups consisted of 13 healthy Japanese participants. One

participant group performed the SHL task, and the other group conducted the DP

task. Both groups were matched for sex (SHL: 8 men, 5 women; DP: 10 men, 3

women; Fisher’s exact test, p = 0.673), age [SHL: mean ± standard deviation, 21.6

± 3.7 years; DP: 20.7 ± 2.3 years; t(24) = 0.757, p = 0.456], handedness [laterality

quotient: SHL, 0.95 ± 0.07; DP: 0.93 ± 0.10; t(24) = 1.120, p = 0.274] [30], short-

term verbal working memory [reading span: SHL, 3.1 ± 1.1; DP: 3.2 ± 0.9;

t(24) = 0.198, p = 0.845] [31], and long-term verbal memory [estimated vocabulary

transformed into z-scores: SHL, −0.151 ± 1.179; DP: 0.151 ± 0.853; t(24) = 0.075,

p = 0.46; vocabulary test: http://www.kecl.ntt.co.jp/icl/mtg/goitokusei/goi-test.

html]. The participants confirmed that they did not have any neurological or

psychological illnesses. The participants provided written informed consents in

accordance with the Declaration of Helsinki. The study was approved by the

Human Subjects Ethics Committee of Tokyo Metropolitan University.

2.2. Experimental tasks

Two experimental tasks were prepared for the participant groups. Both tasks

included four types of Japanese word sets (Fig. 1A). For the baseline comparison

condition, we prepared an SI condition, in which incongruent prime nouns

preceded the target verbs. The prime nouns did not possess grammatical case

markers [SI: ‘amado/samasu’ (“shutter/cool”)]. The SC conditions comprised three

types of stimulus sets that differed according to the presence or type of case

markers that were attached to the primes. The first SC condition included

congruent prime nouns without case markers in order to examine the effects of

semantic relatedness without case markers on ERP [SC: ‘amado/akeru’ (“shutter/
open”)]. The second congruent condition involved SC primes with congruent

object case markers [SC/GC: ‘amado-o/akeru’ (“shutter-object case/open”)]. This
condition was included to investigate how congruent case markers affected the

processing of semantic relatedness. The third SC condition included SC primes

with incongruent subject case markers [SC/GI: ‘amado-ga/akeru’ (“shutter-subject
case/open”)]. The SC/GI condition was introduced to explore how incongruent

case markers canceled the ERP effects of the semantic associations.

In the SHL task, the participants decided whether the stimulus sequences involved

non-words as soon as the target verbs appeared. They were not provided any

information about the semantic relatedness of the nouns and verbs. In contrast, in

the DP task, the participants viewed the same stimulus sets and directly determined

the semantic relatedness of the content words. Both semantic tasks have been
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shown to alter behavioral and ERP properties, and both are suited for investigating

the task-related modulation of online verbal processing [32, 33, 34, 35].

2.3. Experimental materials

A total of 448 word sequences were created for the present study. They consisted

of 50 prime-target sets in each experimental condition (200 sets) and 248 filler sets.

The prime nouns and target verbs were selected from a lexical database [36]. The

prime-target combinations were repeated in the three SC conditions (SC, SC/GC,

and SC/GI) to standardize the word processing. The prime-target pairs in the four

experimental conditions are listed in Table 1. None of the prime nouns was a

subjective agent. The target verbs were strongly transitive [e.g., the transitive verb

‘a-keru' (“open”) was used rather than the intransitive form ‘a-ku' (“open”)] and
incongruent with the non-agents in the SC/GI condition. The primes and targets,

which consisted of the three phonological units (mora), were rated as highly

familiar based on a 7-point Likert scale (1 = “not familiar”; 7 = “familiar”; prime:

5.96 ± 0.32; target: 5.86 ± 0.26) [36]. As shown in Fig. 1A, the primes in the SC/

GC condition had a congruent object case marker [the suffix or sub-word element

[(Fig._1)TD$FIG]

Fig. 1. The experimental procedure. (A) Four experimental conditions were prepared based on a

semantic priming paradigm: (i) semantically incongruent (SI), (ii) semantically congruent (SC), (iii)

semantically and grammatically congruent (SC/GC), and (iv) semantically congruent and grammatically

incongruent (SC/GI) conditions. The grammatically congruent condition (SC/GC) included primes with

a correct object case marker '-o', and the grammatically incongruent condition (GC/GI) comprised

primes with the incongruent subject case marker '-ga'. All of the stimuli, except for the targets, appeared

500 ms (blank) after the preceding stimuli disappeared, and they were maintained for 300 ms (stimulus-

onset-asynchrony: 800 ms). The targets remained on the cathode-ray-tube screen until the participants

pressed a button on the response pad. (B) The two-dimensional scalp model of the locations of the 34

electrodes, which were in accordance with the International 10–20 System. The electrodes were used to

conduct electroencephalography recordings, and they were clustered in sites (anterior, central, and

posterior) in the lateral (left and right) and midline regions. The factor of site was included in the

statistical tests.
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Table 1. The 50 prime-target pairs used in the semantically congruent (SC, SC/GC, and SC/GI) and

incongruent (SI) conditions.

No. Prime noun Congruent target verb Incongruent target verb

Japanese English Japanese English Japanese English

1 雨戸 Shutter 開ける Open 冷ます Cool

2 意見 Opinion 述べる State 建てる Build

3 遺産 Inheritance 分ける Divide 閉める Shut

4 遺体 Corpse 埋める Bury 鳴らす Sound

5 植木 Garden plant 枯らす Wither 受ける Take

6 獲物 Game 逃がす Lose 溶かす Melt

7 落葉 Leaves 燃やす Burn 交わす Exchange

8 会社 Company 辞める Leave 惜しむ Spare

9 会話 Conversation 交わす Exchange 染める Dye

10 片目 One eye 閉じる Close 済ます Finish

11 楽器 Instrument 鳴らす Sound 過ごす Spend

12 危険 Danger 避ける Avoid 降ろす Unload

13 期限 Deadline 延ばす Extend 埋める Bury

14 基準 Standard 満たす Satisfy 浮かす Save

15 休暇 Holiday 過ごす Spend 着せる Dress

16 疑惑 Doubt 晴らす Dispel 分ける Divide

17 故人 Deceased 惜しむ Spare 下げる Lower

18 国旗 National flag 揚げる Fly 入れる Take

19 御飯 Dinner 食べる Eat 燃やす Burn

20 財布 Wallet 落とす Lose 述べる State

21 座席 Seat 空ける Leave 果たす Accomplish

22 砂糖 Sugar 溶かす Melt 伸ばす Straighten

23 資金 Money 貯める Earn 逃がす Lose

24 試験 Examination 受ける Take 借りる Rent

25 事件 Incident 起こす Cause 替える Change

26 事実 Truth 告げる Tell 空ける Leave

27 下着 Underwear 替える Change 終える Finish

28 上位 Higher rank 占める Occupy 開ける Open

29 食費 Food expenses 浮かす Save 避ける Avoid

30 白髪 Grey hair 染める Dye 上げる Make

31 新居 New house 建てる Build 晴らす Dispel

32 背筋 Back 伸ばす Straighten 止める Cease

33 煙草 Smoking 止める Cease 満たす Satisfy

34 貯金 Savings 増やす Increase 揚げる Fly

35 戸棚 Cupboard 閉める Shut 散らす Throw

(Continued)
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‘-o’; for example, ‘amado-o’ (“shutter-object case”)]. The primes in the SC/GI

condition had an incongruent subject case marker [the suffix ‘-ga’; for example,

‘amado-ga’ (“shutter-subject case”)]. In the SI condition, the same 50 targets were

pseudo-randomly paired with the primes. The semantic relatedness of the

congruent and incongruent prime-target sets was assessed on a 5-point Likert

scale (5 = “strongly related”; 1 = “completely unrelated”) by 12 participants who

were not in the two experimental groups [congruent: 4.88 ± 0.18; incongruent:

1.53 ± 0.23; t(11) = 35.354, p < 0.0001].

Two hundred pseudo-words (e.g., ‘ryouru'; familiarity = 1.562) with low

familiarity scores (1.57 ± 0.015) were homogeneously inserted into the second

position of the stimulus sequence in the four experimental conditions [familiarity:

condition, F(3,147) = 0.554, p = 0.646] (Fig. 1A). The pseudo-words, which were

indispensable in the SHL task, were expected to inhibit or facilitate the attention

given to semantic relatedness in the DP task. In the SHL task, the pseudo-words

provided crucial information about the task-related response (i.e., ‘YES' as a

response for a non-word) before the appearance of the target words. Therefore, the

participants were unlikely to explicitly commit to their judgment on the semantic

relatedness of the words during the presentation of the final target verb. In contrast,

Table 1. (Continued)

No. Prime noun Congruent target verb Incongruent target verb

Japanese English Japanese English Japanese English

36 荷物 Luggage 降ろす Unload 占める Occupy

37 任期 Term 終える Finish 下ろす Withdraw

38 任務 Duty 果たす Accomplish 落とす Lose

39 値段 Price 下げる Lower 起こす Cause

40 眠気 Sleepy 覚ます Wipe 延ばす Extend

41 火花 Spark 散らす Throw 辞める Leave

42 麦茶 Barley tea 冷やす Chill 閉じる Close

43 浴衣 Summer cotton
Kimono

着せる Dress 立てる Manage

44 用事 Job 済ます Finish 貯める Earn

45 洋書 Foreign book 借りる Rent 告げる Tell

46 預金 Deposit 下ろす Withdraw 冷やす Chill

47 予定 Schedule 立てる Manage 覚ます Wipe

48 予約 Reservation 入れる Take 枯らす Wither

49 利益 Profit 上げる Make 食べる Eat

50 緑茶 Green tea 冷ます Cool 増やす Increase

SC: semantically congruent; SC/GC: semantically and grammatically congruent; SC/GI: semantically congruent and grammatically

incongruent.
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in the DP task, the pseudo-words were expected to promote selective attention to

the proceeding targets because the participants could not determine the semantic

relatedness of the words until the presentation of the targets. To summarize, the

pseudo-words helped to accentuate the differences in the semantic-processing

loads between the SHL and DP tasks.

The 448 sequences were divided into four lists such that the same primes and

targets did not appear repeatedly in the lists. The stimulus sequences in each list, as

well as the four stimulus lists, were presented randomly.

2.4. Experimental procedure

The participants sat in an electrically shielded soundproof room and faced a 17-in

cathode-ray-tube monitor that was 0.7 m in front of the participants. A test trial

started when a fixation symbol (****) was presented in black in the center of a

light-gray screen. All of the words appeared 500 ms after the antecedents

disappeared, and they were maintained for 300 ms, except for the target verbs

(stimulus-onset asynchrony: 800 ms). The target verbs were shown until the

participant responded by pressing the corresponding button on the response pad

with either their left or right thumb (Fig. 1A). Correct and incorrect response types

were assigned randomly to the left or right thumb, and these assignments were

counterbalanced across the participants. The participants were instructed to

respond as quickly and accurately as possible.

2.5. Data recording and analysis

Neurophysiological activity was continuously recorded electroencephalographical-

ly (Synamp1: Compumedics Neuroscan, Inc., Charlotte, NC). Thirty-four sintered

Ag/AgCl electrodes were placed evenly across the participants’ scalps according to
the spatial norm for data recording (approximate distance between electrodes:

5 cm) and the International 10–20 System (Fig. 1B). Three additional electrodes

were placed around the eyes for horizontal and vertical electro-oculographic

recordings. All of the electrodes were referenced online to the left mastoid and re-

referenced offline to the linked mastoids. The ground electrode was placed around

the anterior prefrontal surface. The data were recorded with a sampling frequency

of 250 Hz and band-pass frequency range of 0 to 70 Hz. The impedance was set to

<5 kΩ throughout the experiment.

The continuously recorded electroencephalography data were filtered with band-

pass frequencies ranging from 0.1 to 40 Hz (finite impulse response filter: 24 dB/

octave, zero-phase shift) and then segmented into 50 epochs from 200 ms before to

700 ms after the onset of the target verbs in each condition. Individual-averaged

ERP waveforms were produced for each condition after baseline correction with

the mean potential of the 200 ms before target onset and artifact rejection (peak-to-
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peak amplitude of ± 75 μV). The grand-averaged waveforms were smoothed with

the moving average method (9 sampling points: 36 ms) for easier visualization.

The grand-averaged waveforms for the left frontal (No. 3 in Fig. 1B) and midline

parietal (No. 19 in in Fig. 1B) electrodes were plotted to visualize the results of the

SHL task (Fig. 2A) and DP task (Fig. 2B). A semantic-related N400 effect that

peaks approximately 400 ms post-stimulus in the midline centro-parietal region has

been widely reported in priming studies since Kutas and Hillyard’s work in 1980

[23]. The reductions in the negative potentials in response to semantic congruency

(SC, SC/GC, or SC/GI minus SI) were reconstructed into two-dimensional scalp

maps for every 100 ms between 300 and 700 ms, during which significant

statistical effects were observed (Fig. 2A and B) with customized codes for GNU

Octave, ver.4.0.2.

2.6. Statistical analysis

The changes in response accuracy and response time (RT) were tested with

repeated-measures analysis of variance (ANOVA; n = 13 in each group). The two-

way ANOVAs included the within-subjects factor of condition (four levels: SI, SC,

SC/GC, and SC/GI) and between-subjects factor of group (two levels: SHL and

DP). Multiple comparisons were conducted between the paired conditions in each

task group or between the SHL and DP groups in each condition with permutation

t-tests, as described below. The RT data were transformed logarithmically (log10)

to normalize the distribution.

For the neurophysiological data for each 100-ms interval, we conducted ANOVAs

utilizing the three within-subject factors of condition, hemisphere (left and right),

and site (anterior, central, and posterior) for the lateral site and the two factors of

condition and site for the midline site. The lateral anterior, central, and posterior

sites all included four electrodes, and the midline central and posterior sites

involved three electrodes each, while the midline anterior site only consisted of two

electrodes because the ground electrode was placed at the anterior site (Fig. 1B).

The amplitude averages, which were calculated separately for each lateral and

midline site and each interval (25 data points for each 100-ms interval) in each of

the four conditions, were utilized in the statistical tests.

We analyzed each task separately because strong morphological and amplitude

waveform differences were expected between the SHL and DP tasks (Fig. 2A and

B), and an analysis of the data for all of the tasks would likely mask statistically

significant information on the ERP effects in each group [37]. That is, the overall

variance in the amplitudes across the SHL and DP task groups would likely

conceal amplitude effects that were specific for the SHL task group, which might

have less amplitude variation. The group differences in amplitude strength might

also yield apparent topographical differences between the two task groups, even
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though the data for both task groups in the present study might multiplicatively

yield ERPs with similar scalp distributions, as was suggested in a previous study

[38].

Hence, in order to directly compare the function-related topographic differences of

the ERP effects (congruent minus incongruent) of the two task groups, the data

were normalized with vector length [38, 39, 40]. The ANOVAs including the

condition and topographic factors were conducted with the data that were

normalized by vector length according to the following formula: [√Σ (x2i,j); x = an

amplitude; i = an electrode; j = a condition or group]. That is, the vector length

was calculated by the square root (√) of the sum of squares of the raw amplitudes

(x) from the recording electrodes. Subsequently, the amplitudes observed at the

scalp electrodes were divided or scaled by their vector lengths. The vector

normalization was conducted separately within each group in order to test

differences of scalp distributions between the SHL and DP groups. However, when

we needed to test different scalp distributions of the ERP effects among the

congruent conditions within each task group, the vector normalization was applied

to each scalp region of interest within each condition. Significant interaction

effects of condition/group and the topographic factors (hemisphere and/or site) that

remained after scaling were considered indices of different neuro-functional

backgrounds of the two task groups: That is, different neural sources may be

related to different conditions. Even if the same cortical areas contributed to the

[(Fig._2)TD$FIG]

Fig. 2. Behavioral test results. Comparisons of the response times of the four experimental conditions

in the (A) shallow (SHL) and (B) deep (DP) semantic tasks. Compared to the semantically incongruent

(SI) condition, the three related conditions [semantically congruent (SC), semantically and

grammatically congruent (SC/GC), or semantically congruent/grammatically incongruent (SC/GI)

minus semantically incongruent (SI) conditions] yielded faster response times for task-related decisions

in both the SHL and DP tasks.
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results obtained with the different conditions, their stimulus-related activity

changes would differ between the conditions, and these changes would indicate

functional segregation [40].

Follow-up ANOVAs that were based on the recalculated error terms of each level

in order to correspond with the sphericity problem were conducted to elucidate the

significant effects of a condition. The Greenhouse-Geyser correction was applied,

if necessary. In order to further examine the differences between the SI and

congruent (SC, SC/GC, and SC/GI) conditions for each topographic level, triple

multiple comparisons were performed with two-tailed paired t-tests. Because we

needed to conduct up to 216 post-hoc paired t-tests, if necessary [2 task groups × 4

time windows × 9 scalp sites × 3 comparisons (SI vs. SC, SC/GC, or SC/GI)], we

performed permutation tests to avoid type-I errors [41], as previously described

[42, 43]. This resampling method is based on the idea that statistical test

distributions are created just by multiple permutation analyses to avoid type-I error.

The core notion is that a tested probability distribution is itself derived by a

multiple comparison test that discards the false positives that result from multiple

testing. The data for the paired conditions (13 × 2 sets) were repeatedly resampled

from the acquired data (216 × 26 participants) so that the same resampling patterns

were not included. The resampled data were compared with paired t-tests in order

to obtain dummy t-values. Because the number of permutations was too vast to

compute overall t-values, and, alternatively, the 216 resampled data values were

too small for a probability resolution, the permutation procedures were repeated

only 10,000 times for a probability resolution of p = 0.0001. The actual t-values

were tested with a uniform permutation distribution of 10,000 dummy t-values, and

they were considered significant at a corrected α-level of p < 0.05 when the

original values were outside the 95% confidence interval (CI). We reported both

the original t-values and the 95% CIs of the dummy t-values. The permutation

procedure (10,000 resamples from 4 conditions × 26 participants) was also applied

to the paired and unpaired t-tests of the RTs in the behavioral analyses. Statistical

significance was set at an α-level of 0.05 or less for all of the analyses. The

neurophysiological results that were obtained with the overall and follow-up

ANOVAs are summarized in Table 2 and Table 3, respectively. The statistical tests

were conducted with IBM SPSS Statistics (IBM Japan, Tokyo, Japan) and

customized codes for GNU Octave, ver.4.0.2.

3. Results

3.1. Behavioral results

The participants performed very well in both the SHL and DP tasks. No significant

differences were observed in the accuracy among the conditions and task groups
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[SHL: 96.3 ± 1.2%; DP: 93.1 ± 2.1%; condition: F(3,72) = 1.749, p = 0.165;

condition × group: F(3,72) = 1.068, p = 0.368].

For RT, both groups showed similar patterns in the SC conditions. The participants

generally detected the target verbs more quickly in the three SC conditions (SC:

775 ± 85 ms; SC/GC: 721 ± 78 ms; SC/GI: 771 ± 79 ms) than in the SI condition

(969 ± 100 ms) [condition: F(3,72) = 30.243, p < 0.0001; multiple comparisons

(95% CI of dummy paired t-values in a permutation test: −2.216 to 2.188): SC vs.

SI, t(25) = 4.727, p = 0.0006, corrected; SC/GC vs. SI: t(25) = 5.482, p = 0.0002,

corrected; SC/GI vs. SI: t(25) = 6.565, p < 0.0001, corrected].

The post-hoc analyses of the significant interaction effects in each task group

[condition × group: F(3,72) = 6.476, p = 0.008] also indicated that the participants

in the SHL group responded more rapidly to the targets in the SC conditions (SC:

492 ± 148 ms; SC/GC: 476 ± 137 ms; SC/GI: 477 ± 142 ms) than in the SI

condition (SI: 546 ± 152 ms) [condition: F(3,36) = 11.607, p = 0.0003; multiple

comparisons (95% CI of dummy paired t-values: −2.216 to 2.188): SC vs. SI,

t(12) = 3.247, p = 0.007, corrected; SC/GC vs. SI: t(12) = 4.232, p = 0.001,

corrected; SC/GI vs. SI: t(12) = 5.638, p = 0.0002, corrected] (Fig. 2A).

The participants in the DP task group also responded faster in the SC conditions

(SC: 1058 ± 438 ms; SC/GC: 967 ± 426 ms; SC/GI: 1065 ± 364 ms) than in the SI

Table 2. Results of the overall analysis of variance (ANOVA) of the neurophysiological effects in the

shallow (SHL) and deep (DP) semantic tasks.

SHL (n = 13) DP (n = 13)

Effects df F-values F-values

300–400 ms 400–500 ms 500–600 ms 600–700 ms 300–400 ms 400–500 ms 500–600 ms 600–700 ms

Lateral

C 3,36 2.813 3.919* 3.111* 4.539** 3.321 5.309* 6.775** 6.148**

C × H 3,36 0.135 0.608 0.593 0.524 1.041 1.530 3.641* 2.367

C × S 6,72 1.730 0.798 1.279 0.575 1.545 2.159 2.732* 4.494*

C × H × S 6,72 1.847 2.154 1.165 1.093 1.007 0.465 1.208 0.909

Midline

C 3,36 5.179** 3.385* 1.982 2.804 4.133* 8.222*** 10.436*** 9.249***

C × S 6,72 1.193 0.790 1.328 1.102 3.605** 4.688*** 5.258*** 6.915***

df: degrees of freedom; C: condition; H: hemisphere; S: site.

The ANOVAs of the lateral and midline regions included the mean amplitudes across the channels of the anterior, central, and posterior

sites, as represented in Fig. 1B.
* p < 0.05.
** p < 0.01.
*** p < 0.001.
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condition (SI: 1392 ± 371 ms) [condition: F(3,36) = 20.135, p = 0.0002; multiple

comparisons (95% CI of dummy paired t-values: −2.216 to 2.188): SC vs. SI,

t(12) = 4.229, p = 0.001, corrected; SC/GC vs. SI: t(12) = 5.028, p = 0.0002,

corrected; SC/GI vs. SI: t(12) = 5.310, p = 0.0002, corrected] (Fig. 2B).

Moreover, the participants in the DP task responded to the SC targets with

congruent case markers (SC/GC) more quickly compared to those without case

markers (SC) [multiple comparisons (95% CI of dummy paired t-values: −2.216 to

2.188): t(12) = 3.837, p = 0.003, corrected] (Fig. 2B). However, the participants in

the SHL group did not show such behavioral patterns [multiple comparisons (95%

CI of dummy paired t-values: −2.216 to 2.188): SC/GC vs. SC, t(12) = 1.857,

p = 0.091, corrected]. These findings suggest that the congruent grammatical

markers had different effects in the two semantic tasks.

TheDP task generally resulted in longer RTs than the SHL task did [DP vs. SHL (95%

CI of dummy unpaired t-values: −2.216 to 2.188): SI, t(24) = 9.16, p < 0.0001,

corrected; SC: t(24) = 5.906, p< 0.0001, corrected; SC/GC: t(24) = 5.484, p= 0.0002,

corrected; SC/GI: t(24) = 6.645, p < 0.0001, corrected]. These results support the

prediction that the DP task requires more cognitively loaded verbal processing.

3.2. Neurophysiological results

Several discrepancies were observed in the ERP effects from approximately 300

ms after the presentation of the target verbs between the SHL (Fig. 3A) and DP

Table 3. Neurophysiological results of the follow-up ANOVAs examining the

main effect of condition in the deep (DP) semantic task group.

DP (n = 13)

Effects df F-values

300–400 ms 400–500 ms 500–600 ms 600–700 ms

Lateral

Central 3,36 7.069*** 5.848**

Posterior 3,36 8.049*** 9.773***

Midline

Central 3,36 6.069** 11.419*** 14.471*** 13.368***

Posterior 3,36 3.644* 5.806** 9.147*** 9.744***

df: degrees of freedom.

The lateral and midline ANOVAs included the mean amplitudes across the channels, as represented in

Fig. 1B.
* p < 0.05.
** p < 0.01.
*** p < 0.001.
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(Fig. 3B) task groups. Table 2 and Table 3 summarize the results of the overall

ANOVAs of both tasks and the follow-up ANOVA of the DP task, respectively.

In the SHL task, grammatical congruency affected the ERP patterns both spatially

and temporally (Fig. 3A). To summarize so far, the SC condition without case

markers transiently reduced the N400 around 300 ms post-stimulus. However, the

SC/GC condition with the congruent case markers reduced the LN in later time

windows.

The overall ANOVAs of the condition and topographic factors showed significant

main effects of condition in the lateral site [condition: 400–500 ms, F(3,36) = 3.919,

p = 0.017; 500–600 ms: F(3,36) = 3.111, p = 0.042; 600–700 ms: F(3,36) = 4.539,

p = 0.009] and midline site [condition: 300–400 ms, F(3,36) = 5.179, p = 0.004;

400–500 ms: F(3,36) = 3.385, p = 0.031] (Table 2).

The post-hoc multiple comparisons (SC, SC/GC, and SC/GI vs. SI) that were

conducted with the permutation procedure (Fig. 3C) showed that the congruent

case markers (SC/GC) reduced the LNs for the target verbs at the lateral site [SC/

GC vs. SI (95% CI of dummy paired t-values: −2.064 to 1.987): 400–500 ms,

t(12) = 4.432, p < 0.0001, corrected; 600–700 ms: t(12) = 2.955, p = 0.005,

corrected] and midline site [SC/GC vs. SI (95% CI of dummy paired t-values:

−2.064 to 1.987): 300–400 ms, t(12) = 3.172, p = 0.002, corrected; 400–500 ms:

t(12) = 4.111, p = 0.0002, corrected]. In contrast, the N400 reductions for the

congruent target verbs without case markers (SC) appeared transiently at the

midline site only [SC vs. SI (95% CI of dummy paired t-values: −2.064 to 1.987):

300–400 ms, t(12) = 3.926, p = 0.0002, corrected]. The incongruent case markers

(SC/GI) did not produce significant ERP effects in any of the intervals.

To test the spatial distributions of the negativity reductions for semantic

congruency (SC and SC/GC minus SI), vector-normalized ANOVAs were

conducted on the condition (SC and SC/GC) and topographic (hemisphere and/

or site) factors. A significant interaction of condition and site was found at the

lateral site [300–400 ms: condition × site, F(2,24) = 5.876, p = 0.021], which

suggests that the SC and SC/GC conditions yielded different N400 and LN

reductions, respectively (Fig. 3A).

The DP task yielded similar centro-posterior N400 reductions in the SC, SC/GC,

and SC/GI conditions irrespective of the presence or congruency of the case

markers. Additionally, a congruent case marker temporally promoted the onset of

the N400 reduction in the SC/GC condition because the effect appeared about 100

ms earlier than those in the other conditions (Fig. 3B).

As the maximal (max) statistical values across the four time windows indicated in

the overall ANOVAs, the main and interaction effects according to the condition

factors were significant in the lateral [condition (max): 500–600 ms,
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[(Fig._3)TD$FIG]

Fig. 3. Neurophysiological test results. The scalp distributions of the event-related potential effects of

semantic congruency at the target position are shown every 100 ms after 300 ms post-stimulus in the

(A) shallow (SHL) and (B) deep (DP) semantic task groups [semantically congruent (SC), semantically

and grammatically congruent (SC/GC), or semantically congruent/grammatically incongruent (SC/GI)

minus semantically incongruent (SI) conditions]. The darker red areas indicate greater reduction of

negative amplitudes for semantic congruency. The colored asterisks above the maps indicate significant

main effects of the condition in the analysis of variance (ANOVA) of the lateral (red) and midline

(green) sites. The potential maps that are shown against the light-green background indicate significant

effects (p < 0.05, corrected) of the multiple comparisons between the SI condition and each of the three
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F(3,36) = 6.775, p = 0.0009; condition × hemisphere (max): 500–600 ms, F(3,36) =

3.641, p = 0.023; condition × site (max): 600–700 ms, F(6,72) = 4.494, p = 0.009]

and midline site [condition (max): 500–600 ms, F(3,36) = 10.436, p < 0.0001;

condition × site (max): 600–700 ms, F(6,72) = 6.915, p = 0.0008] (Table 2). The

follow-up ANOVAs of each site showed significant condition effects at the lateral

central (LC) and lateral posterior (LP) sites [condition (max): LC (500–600 ms),

F(3,36) = 7.069, p = 0.0007; LP (600–700 ms): F(3,36) = 9.773, p < 0.0001] and

midline central (MC) and midline posterior (MP) sites [condition (max): MC

(500–600 ms), F(3,36) = 14.471, p < 0.0001; MP (600–700 ms): F(3,36) = 9.744,

p < 0.0001] (Table 3).

The planned pairwise comparisons (three times: SC, SC/GC, and SC/GI vs. SI) of

the central and posterior sites revealed earlier N400 reductions in the SC/GC

condition at the MC and MP sites (300–400 ms) [SC/GC vs. SI (95% CI of dummy

paired t-values: −2.064 to 1.987): MC, t(12) = 3.479, p = 0.0008, corrected; MP:

t(12) = 2.933, p = 0.005, corrected] (Fig. 3B). In later time windows, similar N400

reductions were observed in all of the congruent conditions at the MC, MP, and LP

sites. The maximum effects were observed from 500 to 600 ms [SC vs. SI (95% CI

of dummy paired t-values: −2.064 to 1.987): LP, t(12) = 3.493, p = 0.0008,

corrected; MC: t(12) = 3.665, p = 0.0004, corrected; MP: t(12) = 4.823, p < 0.0001,

corrected; SC/GC vs. SI: LP, t(12) = 4.332, p < 0.0001, corrected; MC:

t(12) = 5.613, p < 0.0001, corrected; MP: t(12) = 3.925, p = 0.0002, corrected; SC/

GI vs. SI: LP, t(12) = 3.514, p = 0.0008, corrected; MC: t(12) = 3.510, p = 0.0008,

corrected; MP: t(12) = 3.697, p = 0.0002, corrected].

In the vector-normalized ANOVA on the negativity reductions (SC, SC/GC, and

SC/GI minus SI), the three congruent conditions did not show significantly

different spatial patterns at the lateral sites [600–700 ms: condition × hemisphere,

F(2,24) = 0.632, p = 0.54; condition × site: F(4,48) = 0.61, p = 0.993; condition ×

hemisphere × site: F(4,48) = 2.646, p = 0.077] or midline site [condition × site:

F(4,48) = 1.188, p = 0.328]. These results suggest that the ERP effects of the three

congruent conditions had similar neuro-functional backgrounds.

Finally, we examined whether the presentation of the congruent case markers

differentially affected the ERP effects in the SHL and DP tasks. We removed the

congruent conditions. The red arrows indicate the centro-posterior N400 reduction, and the green arrow

indicates the lateralized negativity (LN) reduction. The grand-averaged waveforms of the left frontal

(No. 3) and midline parietal (No. 19) electrodes are plotted for both groups [SI (baseline for

comparison): black; SC: green; SC/GC: red; SC/GI: blue]. The negative potential value is plotted

upward, and the potential amplitude is scaled in μV. (C) Permutation distribution of the dummy t-values

(n = 10,000) for the post-hoc test of multiple comparisons between the incongruent (SI) and congruent

(SC, SC/GC, and SC/GI) conditions. The t-values outside the 95% confidence interval (–2.064 to 1.987)
were considered significant at a corrected α-level of p < 0.05.
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amplitude strengths with the vector normalization procedure within each group and

then directly compared the spatial patterns of the ERP effects (congruent minus

incongruent) with ANOVAs of the group and topographic (hemisphere and/or site)

factors in each task [37]. The significant interaction effects [300–400 ms: lateral,

group × hemisphere × site, F(2,24) = 3.504, p = 0.046; midline: group × site,

F(2,24) = 3.589, p = 0.043] suggest that, when the congruent case markers appeared

in the primes (SC/GCs in Fig. 3A and B), the SHL and DP tasks produced distinct

neurophysiological components. That is, the congruent case markers yielded LN

reductions in the SHL task and centro-posterior N400 reductions in the DP task.

However, when case markers were not present in the SC primes (SCs in Fig. 3A

and B), both the SHL (mean values for 300–400 ms) and DP (mean values for

400–700 ms) tasks showed centro-posterior N400 reductions, as revealed by the

nonsignificant group-related interactions [lateral: group × hemisphere, F(1,12) =

0.027, p = 0.872; group × site: F(2,24) = 0.106, p = 0.900; group × hemisphere ×

site: F(2,24) = 1.677, p = 0.208; midline: group × site, F(2,24) = 3.370, p = 0.059].

These results suggest that the overlapping neurophysiological activities occurred in

response to the congruent targets without case markers in the SHL and DP tasks.

4. Discussion

In the current study, we set out to conduct neurophysiological experiments to

examine the hypothesis that the accessibility to grammatical words in verbal

processing induces different neurophysiological responses under the SHL and DP

semantically attended conditions. Thus, we manipulated the presence and types of

grammatical case markers and compared four conditions: the SI condition, SC

condition without case markers, and SC conditions with congruent (SC/GC) or

incongruent (SC/GI) case markers.

The behavioral results showed that the processing of the congruent targets was

generally more rapid than the processing of the incongruent targets. In addition, the

congruent case markers facilitated target processing solely in the DP task. These

results suggest that case markers have different effects in the SHL and DP tasks.

The neurophysiological results demonstrated that only the SC/GC condition with

congruent case markers in the SHL task yielded LN reductions, which exhibited a

scalp distribution that differed from typical centro-posterior N400 reductions. In

the DP task, the three congruent conditions yielded similar N400 reductions. Thus,

the novel finding in this study is that the processing of the same words through the

same case markers yielded different LN and N400 reductions under the SHL and

DP semantic conditions, respectively.

A parsimonious interpretation of the findings is that case markers function

differently under the SHL and DP semantic conditions after spreading the
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activation [12, 44] of the lexical representations. In the SHL task, the correct case

markers might have induced automatic structural integration, while the correct case

markers likely facilitated semantic retrieval in the DP task.

The spreading activation of the lexical representations decays immediately after

sensory input without strategic relief, but it is potentiated by higher cognitive

functions [44, 45]. The transient N400 reduction (300–400 ms) in the SC condition

in the SHL task probably reflected automatic lexical activation [46]. Because the

SHL task did not require explicit semantic relatedness between the words, the

neurophysiological effects of the SC condition probably remained at the transient

neural activation level and therefore, were not reinforced.

In contrast, the LN reduction effects of the congruent case markers (SC/GC in the

SHL task) might have been functionally segregated from transient lexical

activation. Although the LN reduction in the SC/GC condition did not indicate

significant left dominancy, visual inspection of Fig. 3A shows left fronto-central

LN reductions in the SC/GC condition. These LN reductions might be a reverse

pattern that is comparable to LAN enhancements in morpho-syntactic processing

[8], such as case violation [14, 15] and morpho-syntactic agreement violation [16,

17, 18, 19]. Case markers that were correctly used in the SHL task likely reduced

the structural integration difficulty [47] that was less dependent on transient lexical

activation and yielded the LN reduction.

The above argument is also supported by the canceling of the presumed ERP

effects in the SC/GI condition in which the incongruent case markers prevented the

LN reductions in response to the structural integration between the primes and

targets, even though they were lexically congruent with each other.

In the DP task, verbal processing through congruent case markers (SC/GC)

generally showed similar N400 reductions as those in the SC and SC/GI

conditions, which was consistent with previous findings of priming [14]. The

centro-parietal N400 has been widely observed in response to semantic integration

load [25, 26], such as semantic violation [23] and semantic unexpectancy [24].

Hence, the present N400 reductions in all of the congruent conditions were likely

related to semantic processing that was based on the lexical information of words.

The scalp distributions of the N400 reductions in the DP task did not differ from

the distribution of the transient N400 reductions in the SC condition in the SHL

task. Hence, the N400 reductions in the DP task might have been related to

enhancements of the transient lexical activation as well as semantic integration

[48]. These processes likely inhibited the automatic structure-dominant integration

that is assisted by grammatical case markers, and they might have been associated

with the direct determination of semantic relationships.
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In addition, the observation of a significant N400 reduction from 300 to 400 ms in

the SC/GC condition indicated that the neurophysiological effects appeared more

rapidly in the DP task. Therefore, a congruent case marker facilitated the

neurophysiological activation of a given lexical representation and semantic

integration under attentional control. Such an attention-based temporal change is

analogous to the facilitation of visual searches under prepared attention [49]. The

behavioral finding that the RTs of the targets in the SC/GC condition were faster

than those in the SC condition, both of which possessed the same prime-target

stimulus sets but not the same case markers, might also support this argument.

To summarize the overall findings, case markers facilitated automatic structural

integration in the SHL task and, in turn, accelerated semantic processing in the DP

task.

The present results have potential implications on models of neural language

processing. The time window of approximately 400 ms post-stimulus in language

processing is considered the critical time domain for syntactic and semantic

processing, and it is reflected by LAN and N400, respectively [20, 21, 22].

However, it is unclear why online verbal processing forks into two branches in this

latency and how the two processes interact [50]. The results of the present study

suggest that this temporal window is related to the decay of automatic lexical

neural activation. More precisely, this temporal domain may correspond to the

stage in which online verbal processing diverges after spreading the activation

decay based on different cognitive demands, as represented in Fig. 4.

Under the DP semantic condition (Fig. 4A), the automatic spreading of the

activation of the lexical representations is enhanced across the related features,

such as “Tool”, “Open”, and “House”, and maintained by selective attention to the

semantic relatedness. When target words (e.g., “Open”) with a related feature are

presented, the N400 reductions are consistently produced because of the

prospective neural activities of related neural populations [12, 29]. Such

activation-based N400 effects may be supported by the distribution of concept-

specific and concept-general cortical areas [12, 13].

Conversely, under the SHL semantic condition (Fig. 4B), the verbal processing is

not supported by case markers, the spreading activation briefly decays, as was

observed in the SC condition. However, verbal processing through congruent case

markers may not depend mainly on the spreading activations of the related features

but rather derive structural integration from the case information. Primes with

congruent case markers likely evoke not only lexical but also structural

information, which is exemplified by the lexical conceptual structure of the

transitive verb used in the present study (e.g., [X ACT [Y BECOME <STATE>] in

Fig. 4B) [51]. For example, the prime “Shutter” activates related features,

including “Open,” which is consistent with the “STATE” slot in the causative
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structural frame. Hence, when the target word “Open” is preceded by a case marker

that constrains the structural frame, the target word that fits the structure is easily

integrated into the structural frame. Such structural integration through grammati-

cal words may be automatically promoted under the SHL semantic conditions,

which consequently yield LN reductions.

[(Fig._4)TD$FIG]

Fig. 4. Dual processing model of local verbal processing. Verbal processing after the spread of the

activation of the lexical representations separates into the two main streams around 300 ms after the

verbal inputs. (A) Semantic processing: under deep semantic conditions requiring direct decisions on

semantics, the spreading activation of the lexical representations is enhanced and maintained by

selective attention to semantic relatedness, which consequently yields a centro-posterior N400

reduction, which was observed in the semantically and grammatically congruent condition (SC/GC) in

the deep semantic task. (B) Syntactic processing: under shallow semantic conditions without explicit

decisions on semantics, verbal processing through congruent case markers not only depends on lexical

activation but also evokes structural information (e.g., [X ACT [Y BECOME <STATE>]), which

promotes the structural integration of primes and targets. Facilitated automatic structural integration

yields a lateralized negativity (LN) reduction, as has been observed in the SC/GC condition in the

shallow semantic task.
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Although little is known about the neural correlates of the switching between

syntactic and semantic processing under different cognitive requirements, the

results of an intra- and intro-cranial neurophysiological study has suggested that

the thalamus is associated with the verbal switching mechanism [52]. Subcortical

structures [53], including the thalamus, are candidate regions that are associated

with the switching mechanism for the facilitation or inhibition of structure-

dominant verbal processing. Basal ganglia-thalamo-cortical circuits remove and

strengthen neural inhibition for not only motor but also cognitive processes [54,

55], and these circuits may contribute to cognitive switching under different

cognitive requirements [56]. The present study did not provide precise spatial

information about the neural correlates of the verbal switching mechanism. Thus,

future neuroimaging studies should be conducted to elucidate whether subcortical

structures are critically responsible for the switching of alternative neural verbal

processes in association with cortical language areas, such as the inferior frontal

areas [57, 58], thereby adapting to changes in cognitive demands.

5. Conclusions

In the present study, we conducted a neurophysiological experiment with a

semantic priming paradigm, in which SC or SI prime-target sequences were

randomly presented. The aim of the study was to examine the uniformity of

grammatical processing, i.e., whether the grammatical words in verbal processing

yielded different neurophysiological responses under the SHL and DP semantic

conditions. Congruent case markers yielded LN reductions in response to

congruent targets in the SHL semantic task, while, irrespective of case markers,

congruent targets similarly yielded N400 reductions in the DP semantic task. In

summary, the human brain processes the same grammatical items in the same

verbal expressions differently in accordance with SHL and DP semantic

requirements.
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